379
Views
0
CrossRef citations to date
0
Altmetric
Review

A Review of Vitamin D and Its Precursors in Plants and Their Translation to Active Metabolites in Meat

ORCID Icon, , , , , , , & ORCID Icon show all

References

  • Dulaney, E. L.; Stapley, E. O.; Simpf, K. Studies on Ergosterol Production by Yeasts. Appl. Microbiol. 1954, 2(6), 371–379. DOI: 10.1128/AM.2.6.371-379.1954.
  • Porep, J. U.; Walter, R.; Kortekamp, A.; Carle, R. Ergosterol as an Objective Indicator for Grape Rot and Fungal Biomass in Grapes. Food Control. 2014, 37, 77–84. DOI: 10.1016/j.foodcont.2013.09.012.
  • Houghton, L. A.; Vieth, R. The Case against Ergocalciferol (Vitamin D2) as a Vitamin Supplement. Am. J. Clin. Nutr. 2006, 84(4), 694–697. DOI: 10.1093/ajcn/84.4.694.
  • Pludowski, P.; Holick, M. F.; Grant, W. B.; Konstantynowicz, J.; Mascarenhas, M. R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A. P.; Karonova, T.; et al. Vitamin D Supplementation Guidelines. J. Steroid Biochem. Mol. Biol. 2018, 175, 125–135. DOI: 10.1016/j.jsbmb.2017.01.021.
  • Vieth, V. R.;. Vitamin D Supplementation: Cholecalciferol, Calcifediol, and Calcitriol. Eur. J. Clin. Nutr. 2020, 74(11), 1493–1497. DOI: 10.1038/s41430-020-0697-1.
  • Yashaswi, S.; Ajay, T.; Varshney, V.; Harsh, N. Ergosterol Quantification: A Tool to Measure Fungal Infection in Plant Tissue. Res. J. Biotechnol. 2019, 14(4), 86–88.
  • Simon, R. R.; Phillips, K. M.; Horst, R. L.; Munro, I. C. Vitamin D Mushrooms: Comparison of the Composition of Button Mushrooms (Agaricus Bisporus) Treated Postharvest with UVB Light or Sunlight. J. Agric. Food Chem. 2011, 59(16), 8724–8732. DOI: 10.1021/jf201255b.
  • Björn, L. O.; Wang, T. Is Provitamin D a UV-B Receptor in Plants? In In Responses of Plants to UV-B Radiation; Rozema, J., Manetas, Y., Björn, L.-O., Eds.; Springer Netherlands: Dordrecht, Netherlands, 2001; pp 1–8.
  • Baur, A. C.; Brandsch, C.; König, B.; Hirche, F.; Stangl, G. I. Plant Oils as Potential Sources of Vitamin D. Front. Nutrit. 2016, 3, 29. DOI: 10.3389/fnut.2016.00029.
  • Hollis, B. W.;; Comparison of Equilibrium and Disequilibrium Assay Conditions for Ergocalciferol, Cholecalciferol and Their Major Metabolites. Journal of Steroid Biochemistry. 1984, 211, 81–86. DOI:10.1016/0022-4731(84)90063-3.
  • Nonclassic, B. D.;; Actions of Vitamin D. The Journal of Clinical Endocrinology & Metabolism. 2009, 941, 26–34. DOI:10.1210/jc.2008-1454.
  • Wilson, L. R.; Tripkovic, L.; Hart, K. H.; Lanham-New, S. A. Vitamin D Deficiency as a Public Health Issue: Using Vitamin D2 or Vitamin D3 in Future Fortification Strategies. Proc. Nutr. Soc. 2017, 76(3), 392–399. DOI: 10.1017/S0029665117000349.
  • Tripkovic, L.; Wilson, L.; Hart, K.; Elliott, R.; Smith, C. P.; Bucca, G.; Penson, S.; Chope, G.; Hypponen, E.; Berry, J.; et al. The D2-D3 Study: A Randomised, Double-blind, Placebo-controlled Food-fortification Trial in Women, Comparing the Efficacy of 15ug/d Vitamin D2 Vs Vitamin D3 in Raising Serum 25OHD Levels. Proc. Nutr. Soc. 2015, 74(OCE1), E16. DOI: 10.1017/S0029665115000312.
  • Chakalian, M.; Cao, J.; Hu, J.; Vanous, C.; Sum, S. Vitamin D2 and D3 Supplementation Effect on Serum 25(OH)D Levels: A Meta-Analysis. Current Develop.Nutr. 2020, 4(Supplement_2), 1782. DOI: 10.1093/cdn/nzaa067_009.
  • Windaus, A.; Lüttringhaus, A.; Deppe, M. über das krystallisierte Vitamin D1. Justus Liebigs Annalen der Chemie. 1931, 489(1), 252–269. DOI: 10.1002/jlac.19314890114.
  • Tan, E. S.; Tham, F. S.; Okamura, W. H. Vitamin D1. Chem. Commun. 2000, 23, 2345–2346. doi: 10.1039/B007191I.
  • Kasahara, A. K.; Singh, R. J.; Noymer, A.; Bhutta, Z. A. Vitamin D (25OHD) Serum Seasonality in the United States. PLOS ONE. 2013, 8(6), e65785. DOI: 10.1371/journal.pone.0065785.
  • Anjum, I.; Jaffery, S. S.; Fayyaz, M.; Samoo, Z.; Anjum, S. The Role of Vitamin D in Brain Health: A Mini Literature Review. Cureus. 2018, 10, 7. DOI: 10.7759/cureus.2960.
  • Veldurthy, V.; Wei, R.; Oz, L.; Dhawan, P.; Jeon, Y. H.; Christakos, S. Calcium Homeostasis and Aging. Bone Res. 2016. 4(1), 16041. DOI:10.1038/boneres.2016.41
  • Gil, A.; Plaza-Diaz, J.; Mesa, M. D. Classic and Novel Actions. Ann. Nutr. Metab. 2018. 72(2), 87–95. DOI:10.1159/000486536
  • Viljakainen, H. T.; Korhonen, T.; Hytinantti, T.; Laitinen, E. K. A.; Andersson, S.; Mäkitie, O.; Lamberg-Allardt, C.; Maternal Vitamin D Status Affects Bone Growth in Early Childhood—a Prospective Cohort Study. Osteoporosis International. 2011, 223, 883–891. DOI:10.1007/s00198-010-1499-4.
  • Mpandzou, G.; E. Aït Ben, H.; Regragui, W.; Benomar, A.; Yahyaoui, M.; Vitamin D Deficiency and Its Role in Neurological Conditions: A Review. Revue Neurologique. 2016, 1722, 109–122. DOI:10.1016/j.neurol.2015.11.005.
  • Burton, J. M.; Costello, F. E.; Vitamin D in Multiple Sclerosis and Central Nervous System Demyelinating Disease—A Review. Journal of Neuro-Ophthalmology. 2015, 352, 194–200. DOI:10.1097/wno.0000000000000256.
  • Teagarden, D. L.; Meador, K. J.; Loring, D. W.; Low Vitamin D Levels are Common in Patients with Epilepsy. 2Epilepsy Research. 2014, 1088, 1352–1356. DOI:10.1016/j.eplepsyres.2014.06.008.
  • Fyfe, I.;; Reduced Level of Dietary Vitamin D Is Associated with PD. Nature Reviews Neurology. 2015, 112, 68. DOI:10.1038/nrneurol.2014.265.
  • Littlejohns, T. J.; Henley, W. E.; Lang, I. A.; Annweiler, C.; Beauchet, O.; Chaves, P. H. M.; Fried, L.; Kestenbaum, B. R.; Kuller, L. H.; Langa, K. M.; et al. Vitamin D and the Risk of Dementia and Alzheimer Disease. Neurology. 2014, 83(10), 920–928. DOI: 10.1212/wnl.0000000000000755.
  • Grundmann, M.; von Versen-Höynck, F.; Vitamin D - Roles in Women’s Reproductive Health? Reproductive Biology and Endocrinology. 2011, 91, 146. DOI:10.1186/1477-7827-9-146.
  • Nikooyeh, B.; Anari, R.; Neyestani, T. R. Chapter 38 - Vitamin D, Oxidative Stress, and Diabetes: Crossroads for New Therapeutic Approaches. In Diabetes, (Second ed.; Preedy, V.R., Ed.; Academic Press: Cambridge, Massachusetts, 2020; pp 385–395.
  • Mokhtari, Z.; Hekmatdoost, A.; Nourian, M. Antioxidant Efficacy of Vitamin D. J Parathyr Dis 2017, 5(1), 11–16.
  • Tarcin, O.; Yavuz, D. G.; Ozben, B.; Telli, A.; Ogunc, A. V.; Yuksel, M.; Toprak, A.; Yazici, D.; Sancak, S.; Deyneli, O.; et al.; Effect of Vitamin D Deficiency and Replacement on Endothelial Function in Asymptomatic Subjects. The Journal of Clinical Endocrinology & Metabolism. 2009, 9410, 4023–4030. DOI:10.1210/jc.2008-1212.
  • Nakai, K.; Fujii, H.; Kono, K.; Goto, S.; Kitazawa, R.; Kitazawa, S.; Hirata, M.; Shinohara, M.; Fukagawa, M.; Nishi, S. Vitamin D Activates the Nrf2-Keap1 Antioxidant Pathway and Ameliorates Nephropathy in Diabetic Rats. Am. J. Hypertens. 2013, 27(4), 586–595. DOI: 10.1093/ajh/hpt160.
  • Manson, J. E.; Mayne, S. T.; Clinton, S. K. Vitamin D and Prevention of Cancer — Ready for Prime Time? N. Engl. J. Med. 2011, 364(15), 1385–1387. DOI: 10.1056/NEJMp1102022.
  • Fletcher, J.; Cooper, S. C.; Ghosh, S.; Hewison, M. The Role of Vitamin D in Inflammatory Bowel Disease: Mechanism to Management. Nutrients. 2019, 11(5), 5. DOI: 10.3390/nu11051019.
  • Korn, S.; Hübner, M.; Jung, M.; Blettner, M.; Buhl, R.; Severe and Uncontrolled Adult Asthma Is Associated with Vitamin D Insufficiency and Deficiency. Respiratory Research. 2013, 141, 25. DOI:10.1186/1465-9921-14-25.
  • Bener, A.; Ehlayel, M. S.; Tulic, M. K.; Hamid, Q. Vitamin D Deficiency as a Strong Predictor of Asthma in Children. Int. Arch. Allergy Immunol. 2012, 157(2), 168–175. DOI: 10.1159/000323941.
  • Satirapoj, B.; Limwannata, P.; Chaiprasert, A.; Supasyndh, O.; Choovichian, P. Vitamin D Insufficiency and Deficiency with Stages of Chronic Kidney Disease in an Asian Population. BMC Nephrol. 2013, 14(1), 206. DOI: 10.1186/1471-2369-14-206.
  • Martinelli, V.; Dalla Costa, G.; Colombo, B.; Dalla Libera, D.; Rubinacci, A.; Filippi, M.; Furlan, R.; Comi, G. Vitamin D Levels and Risk of Multiple Sclerosis in Patients with Clinically Isolated Syndromes. Mult. Scler. J. 2014, 20(2), 147–155. DOI: 10.1177/1352458513494959.
  • Cameron, F. G.; Peter, M. M.; Adit, A. G.; The Role of Vitamin D in Prevention and Treatment of Infection. Inflammation & Allergy - Drug Targets. 2013, 124, 239–245. DOI:10.2174/18715281113129990046.
  • Grant, W. B.; Giovannucci, E. The Possible Roles of Solar ultraviolet-B Radiation and Vitamin D in Reducing Case-fatality Rates from the 1918–1919 Influenza Pandemic in the United States. Dermato-Endocrinology. 2009, 1(4), 215–219. DOI: 10.4161/derm.1.4.9063.
  • Arnson, Y.; Itzhaky, D.; Mosseri, M.; Barak, V.; Tzur, B.; Agmon-Levin, N.; Amital, H.; Vitamin D Inflammatory Cytokines and Coronary Events: A Comprehensive Review. Clinical Reviews in Allergy & Immunology. 2013, 452, 236–247. DOI:10.1007/s12016-013-8356-0.
  • Greiller, C. L.; Martineau, A. R. Modulation of the Immune Response to Respiratory Viruses by Vitamin D. Nutrients. 2015, 7(6), 4240–4270. DOI: 10.3390/nu7064240.
  • Gorczynski, R. M.;. Understanding Classical Conditioning of Immune Responses, in NeuroImmune Biology. In Berczi, I., Gorczynski, R.M., Eds.; Elsevier, Amsterdam, Netherlands: 2001; pp 237–254.
  • Zdrenghea, M. T.; Makrinioti, H.; Bagacean, C.; Bush, A.; Johnston, S. L.; Stanciu, L. A. Vitamin D Modulation of Innate Immune Responses to Respiratory Viral Infections. Rev. Med. Virol. 2017, 27(1), e1909. DOI: 10.1002/rmv.1909.
  • Sabetta, J. R.; DePetrillo, P.; Cipriani, R. J.; Smardin, J.; Burns, L. A.; Landry, M. L.; Goletti, D. Serum 25-Hydroxyvitamin D and the Incidence of Acute Viral Respiratory Tract Infections in Healthy Adults. PLOS ONE. 2010, 5(6), e11088. DOI: 10.1371/journal.pone.0011088.
  • Berry, D. J.; Hesketh, K.; Power, C.; Hyppönen, E. Vitamin D Status Has a Linear Association with Seasonal Infections and Lung Function in British Adults. Br. J. Nutr. 2011, 106(9), 1433–1440. DOI: 10.1017/S0007114511001991.
  • Martineau, A. R.; Jolliffe, D. A.; Hooper, R. L.; Greenberg, L.; Aloia, J. F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A. A.; et al. Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-analysis of Individual Participant Data. BMJ. 2017, 356, i6583. DOI: 10.1136/bmj.i6583.
  • Kaufman, H. W.; Niles, J. K.; Kroll, M. H.; Bi, C.; Holick, M. F.; Reddy, S. V. SARS-CoV-2 Positivity Rates Associated with Circulating 25-hydroxyvitamin D Levels. PLOS ONE. 2020, 15(9), e0239252. DOI: 10.1371/journal.pone.0239252.
  • Ali, N.;; Role of Vitamin D in Preventing of COVID-19 Infection, Progression and Severity. Journal of Infection and Public Health. 2020, 1310, 1373–1380. DOI:10.1016/j.jiph.2020.06.021.
  • Panfili, F. M.; Roversi, M.; D’Argenio, P.; Rossi, P.; Cappa, M.; Fintini, D. Possible Role of Vitamin D in Covid-19 Infection in Pediatric Population. Journal of Endocrinological Investigation 2020, (9). DOI: 10.1007/s40618-020-01327-0.
  • Weisman, Y.;. Non-classic Unexpected Functions of Vitamin D. Pediatric Endocrinology Reviews : PER 2010, 8(2), 103–107.
  • Holick, M. F.;; The Vitamin D Deficiency Pandemic: Approaches for Diagnosis, Treatment and Prevention. Reviews in Endocrine and Metabolic Disorders. 2017, 182, 153–165. DOI:10.1007/s11154-017-9424-1.
  • Cashman, K. D.; Dowling, K. G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C. T.; Michaelsen, K. F.; Mølgaard, C.; et al. Vitamin D Deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103(4), 1033–1044. DOI: 10.3945/ajcn.115.120873.
  • Holick, M. F.;; The Vitamin D Deficiency Pandemic and Consequences for Nonskeletal Health: Mechanisms of Action. Molecular Aspects of Medicine. 2008, 296, 361–368. DOI:10.1016/j.mam.2008.08.008.
  • Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D Deficiency 2.0: An Update on the Current Status Worldwide. Eur. J. Clin. Nutr. 2020, 74(11), 1498–1513. DOI: 10.1038/s41430-020-0558-y.
  • Lips, P.; van Schoor, N.; Bravenboer, N. Vitamin D-Related Disorders. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism; Rosen, C., Ed.; Wiley, Hoboken, New Jersey: 2013; pp 613–623.
  • Ross, A. C.; Manson, J. E.; Abrams, S. A.; Aloia, J. F.; Brannon, P. M.; Clinton, S. K.; Durazo-Arvizu, R. A.; Gallagher, J. C.; Gallo, R. L.; Jones, G.; et al.; Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of Medicine: What Clinicians Need to Know. The Journal of Clinical Endocrinology & Metabolism. 2011, 961, 53–58. DOI:10.1210/jc.2010-2704.
  • Bendik, I.; Friedel, A.; Roos, F. F.; Weber, P.; Eggersdorfer, M. A Critical and Essential Micronutrient for Human Health. Front. Physiol. 2014, 5, 248. DOI: 10.3389/fphys.2014.00248.
  • Cashman, K. D.;. Vitamin D Deficiency: Defining, Prevalence, Causes, and Strategies of Addressing. Calcif. Tissue Int. 2020, 106(1), 14–29. DOI: 10.1007/s00223-019-00559-4.
  • Sato, M.; Morishita, T.; Katayama, T.; Satomura, S.; Okuno, H.; Sumida, N.; Sakuma, M.; Arai, H.; Katoh, S.; Sairyo, K.; et al.; Relationship between Age-related Decreases in Serum 25-hydroxyvitamin D Levels and Skeletal Muscle Mass in Japanese Women. Journal of Medical Investigation. 2020, 671.2, 151–157. DOI:10.2152/jmi.67.151.
  • Joshi, D.; Center, J. R.; Eisman, J. A.; Vitamin D Deficiency in Adults. Australian Prescriber. 2010, 334, 103–106. DOI:10.18773/austprescr.2010.053.
  • Bergman, P.; Norlin, A.-C.; Hansen, S.; Björkhem-Bergman, L. Vitamin D Supplementation to Patients with Frequent Respiratory Tract Infections: A Post Hoc Analysis of a Randomized and Placebo-controlled Trial. BMC Res. Notes. 2015, 8(1), 391. DOI: 10.1186/s13104-015-1378-3.
  • Jat, K. R.;. Vitamin D Deficiency and Lower Respiratory Tract Infections in Children: A Systematic Review and Meta-analysis of Observational Studies. Trop. Doctor. 2017, 47(1), 77–84. DOI: 10.1177/0049475516644141.
  • Pletz, M. W.; Terkamp, C.; Schumacher, U.; Rohde, G.; Schütte, H.; Welte, T.; Bals, R.; Vitamin D Deficiency in Community-acquired Pneumonia: Low Levels of 1,25(OH)2 D are Associated with Disease Severity. Respiratory Research. 2014, 151, 53. DOI:10.1186/1465-9921-15-53.
  • Behjat Sasan, S.; Zandvakili, F.; Soufizadeh, N.; Baybordi, E. The Effects of Vitamin D Supplement on Prevention of Recurrence of Preeclampsia in Pregnant Women with a History of Preeclampsia. Obstetrics and Gynecology International. 2017, 2017, 8249264. DOI: 10.1155/2017/8249264.
  • Bodnar, L. M.; Catov, J. M.; Simhan, H. N.; Holick, M. F.; Powers, R. W.; Roberts, J. M.; Maternal Vitamin D Deficiency Increases the Risk of Preeclampsia. The Journal of Clinical Endocrinology & Metabolism. 2007, 929, 3517–3522. DOI:10.1210/jc.2007-0718.
  • Purswani, J. M.; Gala, P.; Dwarkanath, P.; Larkin, H. M.; Kurpad, A.; Mehta, S.; The Role of Vitamin D in Pre-eclampsia: A Systematic Review. BMC Pregnancy and Childbirth. 2017, 171, 231. DOI:10.1186/s12884-017-1408-3.
  • Tartagni, M.; Cicinelli, M. V.; Tartagni, M. V.; Alrasheed, H.; Matteo, M.; Baldini, D.; De Salvia, M.; Loverro, G.; Montagnani, M.; Vitamin D Supplementation for Premenstrual Syndrome-Related Mood Disorders in Adolescents with Severe Hypovitaminosis D. Journal of Pediatric and Adolescent Gynecology. 2016, 294, 357–361. DOI:10.1016/j.jpag.2015.12.006.
  • Bertone-Johnson, E. R.; Hankinson, S. E.; Bendich, A.; Johnson, S. R.; Willett, W. C.; Manson, J. E. Calcium and Vitamin D Intake and Risk of Incident Premenstrual Syndrome. Arch.Internal Med. 2005, 165(11), 1246–1252. DOI: 10.1001/archinte.165.11.1246.
  • Bahrami, A.; Avan, A.; Sadeghnia, H. R.; Esmaeili, H.; Tayefi, M.; Ghasemi, F.; Nejati Salehkhani, F.; Arabpour-Dahoue, M.; Rastgar-Moghadam, A.; Ferns, G. A.; et al. High Dose Vitamin D Supplementation Can Improve Menstrual Problems, Dysmenorrhea, and Premenstrual Syndrome in Adolescents. Gynecol. Endocrinol. 2018, 34(8), 659–663. DOI: 10.1080/09513590.2017.1423466.
  • Cormier, C.; Souberbielle, J. C.; Kahan, A.; Hyperparathyroidism and Osteoporosis. Revue De Medecine Interne. 2004, 25(SUPPL, 5. DOI:10.1016/S0248-8663(04)80055-9.
  • Holick, M. F.;. Vitamin D and Bone. Diet, Nutrients, and Bone Health. 2016, 2013, 155–168.
  • Marcinowska-Suchowierska, E.; Kupisz-Urbanska, M.; Lukaszkiewicz, J.; Pludowski, P.; Jones, G. Vitamin D Toxicity a Clinical Perspective. Front. Endocrinol. 2018, 9(SEP), 1–7. DOI: 10.3389/fendo.2018.00550.
  • Pasco, J. A.; Henry, M. J.; Nicholson, G. C.; Sanders, K. M.; Kotowicz, M. A.; Vitamin D Status of Women in the Geelong Osteoporosis Study: Association with Diet and Casual Exposure to Sunlight. Medical Journal of Australia. 2001, 1758, 401–405. DOI:10.5694/j.1326-5377.2001.tb143643.x.
  • Hollis, B. W.;. Circulating 25-Hydroxyvitamin D Levels Indicative of Vitamin D Sufficiency: Implications for Establishing a New Effective Dietary Intake Recommendation for Vitamin D. J. Nutr. 2005, 135(2), 317–322. DOI: 10.1093/jn/135.2.317.
  • Hossein-nezhad, A.; Holick, M. F.; Optimize Dietary Intake of Vitamin D: An Epigenetic Perspective. Current Opinion in Clinical Nutrition & Metabolic Care. 2012, 156, 567–579. DOI:10.1097/MCO.0b013e3283594978.
  • Schmid, A.; Walther, B. Natural Vitamin D Content in Animal Products. Adv. Nutr. 2013, 4(4), 453–462. DOI: 10.3945/an.113.003780.
  • Black, L. J.; Lucas, R. M.; Sherriff, J. L.; Björn, L. O.; Bornman, J. F. In Pursuit of Vitamin D in Plants. Nutrients. 2017, 9(2), 136. DOI: 10.3390/nu9020136.
  • Boland, R.; Skliar, M.; Curino, A.; Milanesi, L. Vitamin D Compounds in Plants. Plant Sci. 2003, 164(3), 357–369. DOI: 10.1016/S0168-9452(02)00420-X.
  • Jäpelt, R.; Jakobsen, J. Vitamin D in Plants: A Review of Occurrence, Analysis, and Biosynthesis. Front. Plant Sci. 2013, 4, 136. DOI: 10.3389/fpls.2013.00136.
  • Kühn, J.; Schröter, A.; Hartmann, B. M.; Stangl, G. I. Cocoa and Chocolate are Sources of Vitamin D2. Food Chem. 2018, 269, 318–320. DOI: 10.1016/j.foodchem.2018.06.098.
  • Pronyk, C.; Abramson, D.; Muir, W. E.; White, N. D. G. Correlation of Total Ergosterol Levels in Stored Canola with Fungal Deterioration. J. Stored Prod. Res. 2006, 42(2), 162–172. DOI: 10.1016/j.jspr.2004.12.004.
  • Higgs, J. D.;. The Changing Nature of Red Meat: 20 Years of Improving Nutritional Quality. Trends Food Sci. Technol. 2000, 11(3), 85–95. DOI: 10.1016/S0924-2244(00)00055-8.
  • Derbyshire, E.;. Associations between Red Meat Intakes and the Micronutrient Intake and Status of UK Females: A Secondary Analysis of the UK National Diet and Nutrition Survey. Nutrients. 2017, 9(7), 768. DOI: 10.3390/nu9070768.
  • Hill, K. M.; Jonnalagadda, S. S.; Albertson, A. M.; Joshi, N. A.; Weaver, C. M. Top Food Sources Contributing to Vitamin D Intake and the Association of Ready-to-Eat Cereal and Breakfast Consumption Habits to Vitamin D Intake in Canadians and United States Americans. J. Food Sci. 2012, 77(8), H170–H175. DOI: 10.1111/j.1750-3841.2012.02787.x.
  • Crowe, F. L.; Steur, M.; Allen, N. E.; Appleby, P. N.; Travis, R. C.; Key, T. J. Plasma Concentrations of 25-hydroxyvitamin D in Meat Eaters, Fish Eaters, Vegetarians and Vegans: Results from the EPIC–Oxford Study. Public Health Nutrit. 2011, 14(2), 340–346. DOI: 10.1017/S1368980010002454.
  • Liu, J.; Greenfield, H.; Strobel, N.; Fraser, D. R. The Influence of Latitude on the Concentration of Vitamin D3 and 25-hydroxy-vitamin D3 in Australian Red Meat. Food Chem. 2013, 140(3), 432–435. DOI: 10.1016/j.foodchem.2012.10.032.
  • Strobel, N.; Buddhadasa, S.; Adorno, P.; Stockham, K.; Greenfield, H. Vitamin D and 25-hydroxyvitamin D Determination in Meats by LC–IT-MS. Food Chem. 2013, 138(2), 1042–1047. DOI: 10.1016/j.foodchem.2012.08.041.
  • Tanaka, Y.; Frank, H.; Deluca, H. Biological Activity of 1,25-Dihydroxyvitamin D3 in the Rat. Endocrinology. 1973, 92(2), 417–422. DOI: 10.1210/endo-92-2-417.
  • Vitamin, G. H.;. D in Nature: A Product of Synthesis And/or Degradation of Cell Membrane Components. Biochemistry. 2018, 83(11), 1350–1357. DOI: 10.1134/S0006297918110056.
  • Holick, M.; MacLaughlin, J.; Clark, M.; Holick, S.; Potts, J.; Anderson, R.; Blank, I.; Parrish, J.; Elias, P. Photosynthesis of Previtamin D3 in Human Skin and the Physiologic Consequences. Science. 1980, 210(4466), 203–205. DOI: 10.1126/science.6251551.
  • Holick, M.; MacLaughlin, J.; Doppelt, S. Regulation of Cutaneous Previtamin D3 Photosynthesis in Man: Skin Pigment Is Not an Essential Regulator. Science. 1981, 211(4482), 590–593. DOI: 10.1126/science.6256855.
  • MacLaughlin, J.; Anderson, R.; Holick, M. Spectral Character of Sunlight Modulates Photosynthesis of Previtamin D3 and Its Photoisomers in Human Skin. Science. 1982, 216(4549), 1001–1003. DOI: 10.1126/science.6281884.
  • Bikle, D. D.;; Mechanism of Action, and Clinical Applications. Chemistry & Biology. 2014, 213, 319–329. DOI:10.1016/j.chembiol.2013.12.016.
  • Webb, A. R.; Decosta, B. R.; Holick, M. F.; Sunlight Regulates the Cutaneous Production of Vitamin D3 by Causing Its Photodegradation. The Journal of Clinical Endocrinology & Metabolism. 1989, 685, 882–887. DOI:10.1210/jcem-68-5-882.
  • Hagenau, T.; Vest, R.; Gissel, T. N.; Poulsen, C. S.; Erlandsen, M.; Mosekilde, L.; Vestergaard, P.; Global Vitamin D Levels in Relation to Age, Gender, Skin Pigmentation and Latitude: An Ecologic Meta-regression Analysis. Osteoporosis International. 2008, 20(1), 133. DOI:10.1007/s00198-008-0626-y.
  • Bikle, D. D.; Pillai, S.; Vitamin, D. Calcium, and Epidermal Differentiation. Endocrine Rev. 1993, 14(1), 3–19. DOI: 10.1210/edrv-14-1-3.
  • Holick, M. F.;. Environmental Factors that Influence the Cutaneous Production of Vitamin D. Am. J. Clin. Nutr. 1995, 61(3), 638S–645S. DOI: 10.1093/ajcn/61.3.638S.
  • Tian, X. Q.; Chen, T. C.; Matsuoka, L. Y.; Wortsman, J.; Holick, M. F. Kinetic and Thermodynamic Studies of the Conversion of Previtamin D3 to Vitamin D3 in Human Skin. J. Biol. Chem. 1993, 268(20), 14888–14892. DOI: 10.1016/S0021-9258(18)82416-4.
  • White, P.; Cooke, N.; The Multifunctional Properties and Characteristics of Vitamin D-binding Protein. Trends in Endocrinology & Metabolism. 2000, 118, 320–327. DOI:10.1016/S1043-2760(00)00317-9.
  • Bouillon, R.; Schuit, F.; Antonio, L.; Rastinejad, F. Vitamin D Binding Protein: A Historic Overview. Front. Endocrinol. 2020, 10, 910. DOI: 10.3389/fendo.2019.00910.
  • Macdonald, H. M.;. Contributions of Sunlight and Diet to Vitamin D Status. Calcified Tissue International. 2013, 92(2), 163–176. DOI: 10.1007/s00223-012-9634-1.
  • Bienaimé, F.; Prié, D.; Friedlander, G.; Souberbielle, J. C. Vitamin D Metabolism and Activity in the Parathyroid Gland. Molecular and Cellular Endocrinology. 2011, 347(1–2), 30–41. DOI: 10.1016/j.mce.2011.05.031.
  • Bikle, D. D.;. Extrarenal Synthesis of 1,25-Dihydroxyvitamin D and Its Health Implications. iInVitamin D: Physiology, Molecular Biology, and Clinical Applications; Holick, M.F., Ed.; Humana Press: Totowa, NJ, 2010; p 277–295.
  • Jones, G.; Prosser, D. E.; Kaufmann, M. 25-Hydroxyvitamin D-24-hydroxylase (CYP24A1): Its Important Role in the Degradation of Vitamin D. Archives of Biochemistry and Biophysics. 2012, 523(1), 9–18. DOI: 10.1016/j.abb.2011.11.003.
  • Plachot, J. J.; Du Bois, M. B.; Halpern, S.; Cournot-Witmer, G.; Garabedian, M.; Balsan, S.; In Vitro Action of 1,25-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol on Matrix Organization and Mineral Distribution in Rabbit Growth Plate. Metabolic Bone Disease and Related Research. 1982, 42, 135–142. DOI:10.1016/0221-8747(82)90027-3.
  • Hąc-Wydro, K.; Wydro, P.; Jagoda, A.; Kapusta, J. The Study on the Interaction between Phytosterols and Phospholipids in Model Membranes. Chemistry and Physics of Lipids. 2007, 150(1), 22–34. DOI: 10.1016/j.chemphyslip.2007.06.211.
  • Akihisa, T.; Kokke, W.; Tamura, T. Naturally Occurring Sterols and Related Compounds from Plants. In Physiology and Biochemistry of Sterols; American Oil Chemists’ Society: Champaign, GW Patterson, WD Nes: 1991.
  • Dumolt, J. H.; Rideout, T. C. The Lipid-lowering Effects and Associated Mechanisms of Dietary Phytosterol Supplementation. Curr. Pharm. Des. 2017, 23(34), 5077–5085. DOI: 10.2174/1381612823666170725142337.
  • Lopes, G.; Sousa, C.; Bernardo, J.; Andrade, P. B.; Valentão, P.; Ferreres, F.; Mouga, T.; Sterol Profiles in 18 Macroalgae of the Portuguese Coast. Journal of Phycology. 2011, 475, 1210–1218. DOI:10.1111/j.1529-8817.2011.01028.x.
  • Terasaki, M.; Hirose, A.; Narayan, B.; Baba, Y.; Kawagoe, C.; Yasui, H.; Saga, N.; Hosokawa, M.; Miyashita, K.; Evaluation of Recoverable Functional Lipid Components of Several Brown Seaweeds (Phaeophyta) from Japan with Special Reference to Fucoxanthin and Fucosterol Contents. Journal of Phycology. 2009, 454, 974–980. DOI:10.1111/j.1529-8817.2009.00706.x.
  • Ohyama, K.; Suzuki, M.; Kikuchi, J.; Saito, K.; Muranaka, T. Dual Biosynthetic Pathways to Phytosterol via Cycloartenol and Lanosterol in Arabidopsis. Proc. National Academy Sci. 2009, 106(3), 725–730. DOI: 10.1073/pnas.0807675106.
  • Brumfield, K. M.; Laborde, S. M.; Moroney, J. V.; A Model for the Ergosterol Biosynthetic Pathway in Chlamydomonas Reinhardtii. European Journal of Phycology. 2017, 521, 64–74. DOI:10.1080/09670262.2016.1225318.
  • Suzuki, M.; Xiang, T.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T.; Hayashi, H.; Katsube, Y.; Kushiro, T.; Shibuya, M.; et al. Lanosterol Synthase in Dicotyledonous Plants. Plant Cell Physiol. 2006, 47(5), 565–571. DOI: 10.1093/pcp/pcj031.
  • Rodrı́guez-Concepción, M.; Boronat, A. Elucidation of the Methylerythritol Phosphate Pathway for Isoprenoid Biosynthesis in Bacteria and Plastids. A Metabolic Milestone Achieved through Genomics. Plant Physiol. 2002, 130(3), 1079–1089. DOI: 10.1104/pp.007138.
  • Miller, M. B.; Haubrich, B. A.; Wang, Q.; Snell, W. J.; Nes, W. D. Evolutionarily Conserved Δ 25(27)-olefinergosterol Biosynthesis Pathway in the Alga Chlamydomonas Reinhardtii. J. Lipid Res. 2012, 53(5), 1636–1645. DOI: 10.1194/jlr.M027482.
  • Phillips, K. M.; Horst, R. L.; Koszewski, N. J.; Simon, R. R.; Lobaccaro, J.-M. A. Vitamin D4 in Mushrooms. PLOS ONE. 2012, 7(8), e40702. DOI: 10.1371/journal.pone.0040702.
  • Silvestro, D.; Villette, C.; Delecolle, J.; Olsen, C. E.; Motawia, M. S.; Geoffroy, P.; Miesch, M.; Jensen, P. E.; Heintz, D.; Schaller, H. Vitamin D5 in Arabidopsis Thaliana. Sci. Rep. 2018, 8(1), 16348. DOI: 10.1038/s41598-018-34775-z.
  • Magalhães, P. J.; Carvalho, D. O.; Guido, L. F.; Barros, A. A. Detection and Quantification of Provitamin D2 and Vitamin D2 in Hop (Humulus Lupulus L.) By Liquid Chromatography–Diode Array Detection–Electrospray Ionization Tandem Mass Spectrometry. J. Agric. Food Chem. 2007, 55(20), 7995–8002. DOI: 10.1021/jf071308d.
  • Douglas, L. M.; Konopka, J. B. Fungal Membrane Organization: The Eisosome Concept. Annu. Rev. Microbiol. 2014, 68(1), 377–393. DOI: 10.1146/annurev-micro-091313-103507.
  • Glossmann, H. H.;. Origin of 7-dehydrocholesterol (Provitamin D) in the Skin. J. Invest. Dermatol. 2010, 130(8), 2139–2141. DOI: 10.1038/jid.2010.118.
  • Aburjai, T.; Al-Khalil, S.; Abuirjeie, M. Vitamin D3 and Its Metabolites in Tomato, Potato, Egg Plant and Zucchini Leaves. Phytochemistry. 1998, 49(8), 2497–2499. DOI: 10.1016/S0031-9422(98)00246-5.
  • Rashwan, M.; Khalifa, A.; Zeiad, F. K. A.; Mohamed, M. Nutrient and Phytochemical Compounds of Persimmon and Husk Tomato. Assiut J. Agric. Sci. 2017, 48, 102–112. DOI: 10.21608/ajas.2017.4933.
  • Hughes, L. J.; Black, L. J.; Sherriff, J. L.; Dunlop, E.; Strobel, N.; Lucas, R. M.; Bornman, J. F. Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients. 2018, 10(7), 876. DOI: 10.3390/nu10070876.
  • von Hurst, P. R.; Moorhouse, R. J.; Raubenheimer, D. Preferred Natural Food of Breeding Kakapo Is a High Value Source of Calcium and Vitamin D. J. Steroid Biochem. Mol. Biol. 2016, 164, 177–179. DOI: 10.1016/j.jsbmb.2015.10.017.
  • Jäpelt, R. B.; Silvestro, D.; Smedsgaard, J.; Jensen, P. E.; Jakobsen, J. Quantification of Vitamin D3 and Its Hydroxylated Metabolites in Waxy Leaf Nightshade (Solanum Glaucophyllum Desf.), Tomato (Solanum Lycopersicum L.) And Bell Pepper (Capsicum Annuum L.). Food Chem. 2013, 138(2), 1206–1211. DOI: 10.1016/j.foodchem.2012.11.064.
  • Jäpelt, R. B.; Silvestro, D.; Smedsgaard, J.; Jensen, P. E.; Jakobsen, J. LC–MS/MS with Atmospheric Pressure Chemical Ionisation to Study the Effect of UV Treatment on the Formation of Vitamin D3 and Sterols in Plants. Food Chem. 2011, 129(1), 217–225. DOI: 10.1016/j.foodchem.2011.04.029.
  • Mello, J. R.; Habermehl, G. G. [Effects of Calcinogenic Plants–qualitative and Quantitative Evaluation]. Dtsch Tierarztl Wochenschr 1998, 105(1), 25–29.
  • Prema, T. P.; Raghuramulu, N. Free Vitamin D3 Metabolites in Cestrum Diurnum Leaves. Phytochemistry. 1994, 37(3), 677–681. DOI: 10.1016/S0031-9422(00)90337-6.
  • Skliar, M.; Curino, A.; Milanesi, L.; Benassati, S.; Boland, R. Nicotiana Glauca: Another Plant Species Containing Vitamin D3 Metabolites. Plant Sci. 2000, 156(2), 193–199. DOI: 10.1016/S0168-9452(00)00254-5.
  • Curino, A.; Skliar, M.; Boland, R.; Identification of 7-dehydrocholesterol, Vitamin D3, 25(OH)-vitamin D3 and 1,25(OH)2-vitamin D3 in Solanum Glaucophyllum Cultures Grown in Absence of Light. Biochimica Et Biophysica Acta (BBA) - General Subjects. 1998, 14253, 485–492. DOI:10.1016/S0304-4165(98)00103-2.
  • Curino, A.; Milanesi, L.; Benassati, S.; Skliar, M.; Boland, R. Effect of Culture Conditions on the Synthesis of Vitamin D3 Metabolites in Solanum Glaucophyllum Grown in Vitro. Phytochemistry. 2001, 58(1), 81–89. DOI: 10.1016/S0031-9422(01)00090-5.
  • Prema, T. P.; Raghuramulu, N. Vitamin D3 and Its Metabolites in the Tomato Plant. Phytochemistry. 1996, 42(3), 617–620. DOI: 10.1016/0031-9422(95)00883-7.
  • Esparza, M. S.; Vega, M.; Boland, R. L.; Synthesis and Composition of Vitamin D-3 Metabolites in Solanum Malacoxylon. Biochimica Et Biophysica Acta (BBA) - General Subjects. 1982, 7193, 633–640. DOI:10.1016/0304-4165(82)90254-9.
  • Skliar, M. I.; Boland, R. L.; Mourino, A.; Tojo, G. Isolation and Identification of Vitamin D3, 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3 in Solanum Malacoxylon Incubated with Ruminal Fluid. J. Steroid Biochem. Mol. Biol. 1992, 43(7), 677–682. DOI: 10.1016/0960-0760(92)90293-R.
  • Aburjai, T.; Bernasconi, S.; Manzocchi, L.; Pelizzoni, F. Isolation of 7-dehydrocholesterol from Cell Cultures of Solanum Malacoxylon. Phytochemistry. 1996, 43(4), 773–776. DOI: 10.1016/0031-9422(96)00341-X.
  • Horst, R. L.; Reinhardt, T. A.; Russel, J. R.; Napoli, J. L. The Isolation and Identification of Vitamin D2 and Vitamin D3 from Medicago Sativa (Alfalfa Plant). Arch. Biochem. Biophys. 1984, 231(1), 67–71. DOI: 10.1016/0003-9861(84)90363-1.
  • Boland, R. L.;. Plants as a Source of Vitamin D3 Metabolites. Nutr. Rev. 1986, 44(1), 1–8. DOI: 10.1111/j.1753-4887.1986.tb07543.x.
  • Jäpelt, R. B.; Didion, T.; Smedsgaard, J.; Jakobsen, J. Seasonal Variation of Provitamin D2 and Vitamin D2 in Perennial Ryegrass (Lolium Perenne L.). J. Agric. Food Chem. 2011, 59(20), 10907–10912. DOI: 10.1021/jf202503c.
  • Rambeck, W.; Oesterhelt, W.; Vecchi, M.; Zucker, H. Occurrence of Cholecalciferol in the Calcinogenic Plant Trisetum Flavescens. Biochem. Biophys. Res. Commun. 1979, 87(3), 743–749. DOI: 10.1016/0006-291X(79)92021-7.
  • Mello, J. R. B.;. Calcinosis—calcinogenic Plants. Toxicon. 2003, 41(1), 1–12. DOI: 10.1016/S0041-0101(02)00241-6.
  • Rambeck, W. A.; Kreutzberg, O.; Bruns-Droste, C.; Zucker, H.; Vitamin D3 in the Grass Trisetum Flavescens. Zeitschrift Für Pflanzenphysiologie. 1981, 1041, 9–16. DOI:10.1016/S0044-328X(81)80090-6.
  • Pike, J. W.; Christakos, S.; Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinology and Metabolism Clinics of North America. 2017, 464, 815–843. DOI:10.1016/j.ecl.2017.07.001.
  • Atsuko, T.; Toshio, O.; Makoto, T.; Tadashi, K. Possible Origin of Extremely High Contents of Vitamin D3 in Some Kinds of Fish Liver. Comparative Biochemistry and Physiology Part A: Physiology. 1991, 100(2), 483–487. DOI: 10.1016/0300-9629(91)90504-6.
  • Jakobsen, J.; Saxholt, E. Vitamin D Metabolites in Bovine Milk and Butter. J. Food Compost. Anal. 2009, 22(5), 472–478. DOI: 10.1016/j.jfca.2009.01.010.
  • Mattila, P. H.; Piironen, V. I.; Uusi-Rauva, E. J.; Koivistoinen, P. E. Contents of Cholecalciferol, Ergocalciferol, and Their 25-Hydroxylated Metabolites in Milk Products and Raw Meat and Liver as Determined by HPLC. J. Agric. Food Chem. 1995, 43(9), 2394–2399. DOI: 10.1021/jf00057a015.
  • FAOSTAT. Food Supply - Livestock and Fish Primary Equivalent. 2020 [cited 2020 11 Nov]; Available from: http://www.fao.org/faostat/en/#data/CL.
  • Koshy, K. T.; Van der Slik, A. L. High-performance Liquid Chromatographic Method for the Determination of 25-hydroxycholecalciferol in the Bovine Liver, Kidney, and Muscle. J. Agric. Food Chem. 1977, 25(6), 1246–1249. DOI: 10.1021/jf60214a024.
  • Bennink, M. R.; Ono, K. Vitamin B12, E and D Content of Raw and Cooked Beef. J. Food Sci. 1982, 47(6), 1786–1792. DOI: 10.1111/jt.1365-2621.1982.tb12883.x.
  • Chan, W.; Brown, J.; Lee, S.; Buss, D. Supplement to McCance and Widdowson’s “The Composition of Foods”; The Royal Society of Chemistry: London, 1995.
  • Chan, W.; Brown, J.; Church, S.; Buss, D. The Royal Society of Chemistry. In Supplement to McCance and Widdowson’s “The Composition of Foods”. United Kingdom: London, 1996.
  • MAFF. Determination of 25-OH Vitamin D in Selected Foodstuffs; Nobel House, London: UK, 1997.
  • Montgomery, J. L.; Parrish, F. C., Jr.; Beitz, D. C.; Horst, R. L.; Huff-Lonergan, E. J.; Trenkle, A. H. The Use of Vitamin D3 to Improve Beef Tenderness. J. Anim. Sci. 2000, 78(10), 2615–2621. DOI: 10.2527/2000.78102615x.
  • Montgomery, J. L.; Carr, M. A.; Kerth, C. R.; Hilton, G. G.; Price, B. P.; Galyean, M. L.; Horst, R. L.; Miller, M. F. Effect of Vitamin D3 Supplementation Level on the Postmortem Tenderization of Beef from Steers. J. Anim. Sci. 2002, 80(4), 971–981. DOI: 10.2527/2002.804971x.
  • Foote, M. R.; Horst, R. L.; Huff-Lonergan, E. J.; Trenkle, A. H.; Parrish, F. C., Jr.; Beitz, D. C. The Use of Vitamin D3 and Its Metabolites to Improve Beef Tenderness. J. Anim. Sci. 2004, 82(1), 242–249. DOI: 10.2527/2004.821242x.
  • Jakobsen, J.; Clausen, I.; Leth, T.; Ovesen, L. A New Method for the Determination of Vitamin D3 and 25-hydroxyvitamin D3 in Meat. J. Food Compost. Anal. 2004, 17(6), 777–787. DOI: 10.1016/j.jfca.2003.10.012.
  • Montgomery, J. L.; Blanton, J. R., Jr.; Horst, R. L.; Galyean, M. L.; Morrow, K. J., Jr.; Wester, D. B.; Miller, M. F. Effects of Biological Type of Beef Steers on Vitamin D, Calcium, and Phosphorus Status. J. Anim. Sci. 2004, 82(7), 2043–2049. DOI: 10.2527/2004.8272043x.
  • Montgomery, J. L.; King, M. B.; Gentry, J. G.; Barham, A. R.; Barham, B. L.; Hilton, G. G.; Blanton, J. R., Jr.; Horst, R. L.; Galyean, M. L.; Morrow, K. J., Jr.; et al. Supplemental Vitamin D3 Concentration and Biological Type of Steers. II. Tenderness, Quality, and Residues of Beef. J. Anim. Sci. 2004, 82(7), 2092–2104. DOI: 10.2527/2004.8272092x.
  • Wertz, A. E.; Knight, T. J.; Trenkle, A.; Sonon, R.; Horst, R. L.; Huff-Lonergan, E. J.; Beitz, D. C. Feeding 25-hydroxyvitamin D3 to Improve Beef Tenderness. J. Anim. Sci. 2004, 82(5), 1410–1418. DOI: 10.2527/2004.8251410x.
  • Carnagey, K. M.;. Use of 25-hydroxyvitamin D3 and Vitamin E and Manipulation of Dietary Calcium to Improve Tenderness of Beef; Iowa State University: Ames, Iova, 2006.
  • Cho, Y. M.; Choi, H.; Hwang, I. H.; Kim, Y. K.; Myung, K. H. Effects of 25-hydroxyvitamin D3 and Manipulated Dietary Cation-anion Difference on the Tenderness of Beef from Cull Native Korean Cows1. J. Anim. Sci. 2006, 84(6), 1481–1488. DOI: 10.2527/2006.8461481x.
  • Purchas, R.; Zou, M.; Pearce, P.; Jackson, F. Concentrations of Vitamin D3 and 25-hydroxyvitamin D3 in Raw and Cooked New Zealand Beef and Lamb. J. Food Compost. Anal. 2007, 20(2), 90–98. DOI: 10.1016/j.jfca.2006.07.001.
  • Bilodeau, L.; Dufresne, G.; Deeks, J.; Clément, G.; Bertrand, J.; Turcotte, S.; Robichaud, A.; Beraldin, F.; Fouquet, A. Determination of Vitamin D3 and 25-hydroxyvitamin D3 in Foodstuffs by HPLC UV-DAD and LC–MS/MS. J. Food Compost. Anal. 2011, 24(3), 441–448. DOI: 10.1016/j.jfca.2010.08.002.
  • Duffy, S. K.; O’Doherty, J. V.; Rajauria, G.; Clarke, L. C.; Cashman, K. D.; Hayes, A.; O’Grady, M. N.; Kerry, J. P.; Kelly, A. K. Cholecalciferol Supplementation of Heifer Diets Increases Beef Vitamin D Concentration and Improves Beef Tenderness. Meat Sci. 2017, 134, 103–110. DOI: 10.1016/j.meatsci.2017.07.024.
  • Aborhyem, S.; Hamza, D.; Agamy, N. Vitamin D Content in Some Food Items Sold in Egyptian Markets. Canadian Journal of Clinical Nutrition. 2020, 8(2), 62–77. DOI: 10.14206/canad.j.clin.nutr.2020.02.06.
  • Thompson, J. N.;. Determination of Cholecalciferol in Meat and Fat from Livestock Fed Normal and Excessive Quantities of Vitamin D. Food Chem. 1993, 46(3), 313–318. DOI: 10.1016/0308-8146(93)90126-Z.
  • Clausen, I.; Jakobsen, J.; Leth, T.; Ovesen, L. Vitamin D3 and 25-hydroxyvitamin D3 in Raw and Cooked Pork Cuts. J. Food Compost. Anal. 2003, 16(5), 575–585. DOI: 10.1016/S0889-1575(03)00064-4.
  • Wilborn, B. S.; Kerth, C. R.; Owsley, W. F.; Jones, W. R.; Frobish, L. T. Improving Pork Quality by Feeding Supranutritional Concentrations of Vitamin D3. J. Anim. Sci. 2004, 82(1), 218–224. DOI: 10.2527/2004.821218x.
  • Larson-Meyer, D. E.; Ingold, B. C.; Fensterseifer, S. R.; Austin, K. J.; Wechsler, P. J.; Hollis, B. W.; Makowski, A. J.; Alexander, B. M.; Óvilo, C. Sun Exposure in Pigs Increases the Vitamin D Nutritional Quality of Pork. PLOS ONE. 2017, 12(11), e0187877. DOI: 10.1371/journal.pone.0187877.
  • Barnkob, L. L.; Petersen, P. M.; Nielsen, J. P.; Jakobsen, J. Vitamin D Enhanced Pork from Pigs Exposed to Artificial UVB Light in Indoor Facilities. Eur. Food Res. Technol. 2019, 245(2), 411–418. DOI: 10.1007/s00217-018-3173-6.
  • DTU. Danish Institute for Food and Veterinary Research, Revision 6.0. Danish Food Composition Databank. 2007; Available from: http://www.foodcomp.dk/fcdb_default.asp.
  • Mattila, P. H.; Valkonen, E.; Valaja, J. Effect of Different Vitamin D Supplementations in Poultry Feed on Vitamin D Content of Eggs and Chicken Meat. J. Agric. Food Chem. 2011, 59(15), 8298–8303. DOI: 10.1021/jf2012634.
  • El Khasmi, M.; Bargaâ, R.; Riad, F.; Safwate, A.; El Hassane, T.; Farh, M.; El Abbadi, N.; Abouhafs, R. Meat Levels of 25-hydroxyvitamin D3 in Moroccan One-humped Dromedary<br>camels (Camelus Dromedarius). Emir. J. Food Agric. 2013, 25(4), 267–273. DOI: 10.9755/ejfa.v25i4.15495.
  • Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D. A.; Pierroz, D. D.; Weber, P.; Hoffmann, K. A Systematic Review of Vitamin D Status in Populations Worldwide. Br. J. Nutr. 2014, 111(1), 23–45. DOI: 10.1017/S0007114513001840.
  • Wahl, D. A.; Cooper, C.; Ebeling, P. R.; Eggersdorfer, M.; Hilger, J.; Hoffmann, K.; Josse, R.; Kanis, J. A.; Mithal, A.; Pierroz, D. D.; et al.; A Global Representation of Vitamin D Status in Healthy Populations. Archives of Osteoporosis. 2012, 71, 155–172. DOI:10.1007/s11657-012-0093-0.
  • Duffy, S. K.; O’Doherty, J. V.; Rajauria, G.; Clarke, L. C.; Hayes, A.; Dowling, K. G.; O’Grady, M. N.; Kerry, J. P.; Jakobsen, J.; Cashman, K. D.; et al. Vitamin D-biofortified Beef: A Comparison of Cholecalciferol with Synthetic versus UVB-mushroom-derived Ergosterol as Feed Source. Food Chem. 2018, 256, 18–24. DOI: 10.1016/j.foodchem.2018.02.099.
  • Jakobsen, J.; Maribo, H.; Bysted, A.; Sommer, H. M.; Hels, O. 25-Hydroxyvitamin D3 Affects Vitamin D Status Similar to Vitamin D3 in Pigs – But the Meat Produced Has a Lower Content of Vitamin D. Br. J. Nutr. 2007, 98(5), 908–913. DOI: 10.1017/S0007114507756933.
  • Burild, A.; Lauridsen, C.; Faqir, N.; Sommer, H. M.; Jakobsen, J. Vitamin D3 and 25-hydroxyvitamin D3 in Pork and Their Relationship to Vitamin D Status in Pigs. J. Nutr. Sci. 2016, 5, e3. DOI: 10.1017/jns.2015.28.
  • Hansen, L.; Tjønneland, A.; Køster, B.; Brot, C.; Andersen, R.; Cohen, A. S.; Frederiksen, K.; Olsen, A. Vitamin D Status and Seasonal Variation among Danish Children and Adults: A Descriptive Study. Nutrients. 2018, 10(11), 1801. DOI: 10.3390/nu10111801.
  • Levis, S.; Gomez, A.; Jimenez, C.; Veras, L.; Ma, F.; Lai, S.; Hollis, B.; Roos, B. A.; Vitamin D Deficiency and Seasonal Variation in an Adult South Florida Population. The Journal of Clinical Endocrinology & Metabolism. 2005, 90(3), 1557–1562. DOI:10.1210/jc.2004-0746.
  • Standal, I. B.; Mozuraityte, R.; Rustad, T.; Alinasabhematabadi, L.; Carlsson, N.-G.; Undeland, I. Quality of Filleted Atlantic Mackerel (Scomber Scombrus) during Chilled and Frozen Storage: Changes in Lipids, Vitamin D, Proteins, and Small Metabolites, Including Biogenic Amines. J. Aquat. Food Prod. Technol. 2018, 27(3), 338–357. DOI: 10.1080/10498850.2018.1436107.
  • Mattila, P.; Ronkainen, R.; Lehikoinen, K.; Piironen, V. Effect of Household Cooking on the Vitamin D Content in Fish, Eggs, and Wild Mushrooms. J. Food Compost. Anal. 1999, 12(3), 153–160. DOI: 10.1006/jfca.1999.0828.
  • Rangel-Castro, J. I.; Staffas, A.; Danell, E.; The Ergocalciferol Content of Dried Pigmented and Albino Cantharellus Cibarius Fruit Bodies. Mycological Research. 2002, 1061, 70–73. DOI:10.1017/S0953756201005299.
  • Renken, S. A.; Warthesen, J. J. Vitamin D Stability in Milk. J. Food Sci. 1993, 58(3), 552–555. DOI: 10.1111/j.1365-2621.1993.tb04322.x.
  • Min, D. B.; Boff, J. M. Chemistry and Reaction of Singlet Oxygen in Foods. Compr. Rev. Food Sci. Food Saf. 2002, 1(2), 58–72. DOI: 10.1111/j.1541-4337.2002.tb00007.x.
  • Ovesen, L.; Brot, C.; Jakobsen, J. Food Contents and Biological Activity of 25-Hydroxyvitamin D: A Vitamin D Metabolite to Be Reckoned With? Ann. Nutr. Metab. 2003, 47(3–4), 107–113. DOI: 10.1159/000070031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.