1,143
Views
47
CrossRef citations to date
0
Altmetric
Review

Nutritional Aspects and Health Benefits of Bioactive Plant Compounds against Infectious Diseases: A Review

, , , , , ORCID Icon, , , , , , , , , , ORCID Icon & ORCID Icon show all

References

  • Adeshina, G. O.; Onaolapo, J. A.; Ehinmidu, J. O.; Odama, L. E. Phytochemical and Antimicrobial Studies of the Ethyl Acetate Extract of Alchornea cordifolia Leaf Found in Abuja, Nigeria. J. Med. Plant Res. 2010, 4, 649–658. DOI: 10.5897/JMPR09.315.
  • Ameyaw, Y.; Duker-Eshun, G.; Mills-Robertson, F. Assessment of Variation in Some Medicinal Plant Species Envisaged of Having the Potential for the Preservation of Herbal Products Using Some Statistical Models. Ethnobot. Leaf. 2005, 2005, 12.
  • Esmael, A.; Hassan, M. G.; Amer, M. M.; Abdelrahman, S.; Hamed, A. M.; Abd-raboh, H. A.; Foda, M. F. Antimicrobial Activity of Certain Natural-Based Plant Oils against the Antibiotic-Resistant Acne Bacteria. Saudi J. Biol. Sci. 2020, 27, 448–455. DOI: 10.1016/j.sjbs.2019.11.006.
  • Jones, K. E.; Patel, N. G.; Levy, M. A.; Storeygard, A.; Balk, D.; Gittleman, J. L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature. 2008, 451, 990–993. DOI: 10.1038/nature06536.
  • Howard, C. R.; Fletcher, N. F. Emerging Virus Diseases: Can We Ever Expect the Unexpected? Emerg. Microbes Infect. 2012, 1, e46. DOI: 10.1038/emi.2012.47.
  • Wiethoelter, A. K.; Beltran-Alcrudo, D.; Kock, R.; Mor, S. M. Global Trends in Infectious Diseases at the Wildlife-Livestock Interface. Proc. Natl. Acad. Sci. U S A. 2015, 112, 9662–9667. DOI: 10.1073/pnas.1422741112.
  • Ganesan, A. The Impact of Natural Products upon Modern Drug Discovery. Curr. Opin. Chem. Biol. 2008, 12, 306–317. DOI: 10.1016/j.cbpa.2008.03.016.
  • Atanasov, A. G.; Waltenberger, B.; Pferschy-Wenzig, E. M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E. H.; et al. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2015, 33, 1582–1614. DOI: 10.1016/j.biotechadv.2015.08.001.
  • Zakaria, A.; Abdel-Motaal, F.; Mahalel, U. Antifungal Activity of Ficus sycomorus L. Extracts against Dermatophytes and Other Associated Fungi Isolated from Camels Ringworm Lesions. J. Biol. Stud. 2018, 1, 116–132.
  • Kubmarawa, D.; Ajoku, G. A.; Enwerem, N. M.; Okorie, D. A. Preliminary Phytochemical and Antimicrobial Screening of 50 Medicinal Plants from Nigeria. Afr. J. Biotechnol. 2007, 6, 1690–1696. DOI: 10.5897/AJB2007.000-2246.
  • Gatsing, D.; Moudji, S. T.; Kuiate, J.-R.; Nji-Nkah, B. F.; Fodouop, S. P.; Njateng, G. S.; Tchakouté, V.; Nkeugouapi, C. F.; Tchouanguep, F. M. In vitro Antibacterial Activity of Alchornea cordifolia Bark Extract against Salmonella Species Causing Typhoid Fevers. Ethiop. Pharm. J. 2008, 26, 83–94. DOI: 10.4314/epj.v26i2.43039.
  • Ogunlana, E. O.; Ramstad, E. Investigations into the Antibacterial Activities of Local Plants. Planta Med. 1975, 27, 354–360. DOI: 10.1055/s-0028-1097814.
  • Ebi, G. C. Antimicrobial Activities of Alchornea cordifolia. Fitoterapia. 2001, 72, 69–72. DOI: 10.1016/s0367-326x(00)00254-9.
  • Hennebelle, T.; Weniger, B.; Joseph, H.; Sahpaz, S.; Bailleul, F. Senna alata. Fitoterapia. 2009, 80, 385–393. DOI: 10.1016/j.fitote.2009.05.008.
  • Owoyale, J. A.; Olatunji, G. A.; Oguntoye, S. O. Antifungal and Antibacterial Activities of an Alcoholic Extract of Senna alata Leaves. J. Appl. Sci. Environ. Mgt. 2005, 9, 105–107. DOI: 10.4314/jasem.v9i3.17362.
  • Doughari, J. H.; Okafor, B. Antimicrobial Activity of Senna alata Linn. East Cent. Afr. J. Pharm. Sci. 2007, 10, 17–21. DOI: 10.4314/ecajps.v10i1.9756.
  • Adedayo, O.; Anderson, W. A.; Moo-Young, M.; Snieckus, V.; Patil, P. A.; Kolawole, D. O. Phytochemistry and Antibacterial Activity of Senna alata Flower. Pharm. Biol. 2001, 39, 408–412. DOI: 10.1076/phbi.39.6.408.5880.
  • Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The Antimicrobial Efficacy of Plant Essential Oil Combinations and Interactions with Food Ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. DOI: 10.1016/j.ijfoodmicro.2008.02.028.
  • Arima, H.; Danno, G. Isolation Of Antimicrobial Compounds From Guava (Psidium guajava L.) and their Structural Elucidation. Biosci. Biotechnol. Biochem. 2002, 66, 1727–1730. DOI: 10.1271/bbb.66.1727.
  • Jaiarj, P.; Khoohaswan, P.; Wongkrajang, Y.; Peungvicha, P.; Suriyawong, P.; Saraya, M. L.; Ruangsomboon, O. Anticough and Antimicrobial Activities of Psidium guajava Linn. Leaf Extract. J. Ethnopharmacol. 1999, 67, 203–212. DOI: 10.1016/s0378-8741(99)00022-7.
  • Pineau, R. M.; Hanson, S. E.; Lyles, J. T.; Quave, C. L. Growth Inhibitory Activity of Callicarpa americana Leaf Extracts against Cutibacterium acnes. Front. Pharmacol. 2019, 10, 1206. DOI: 10.3389/fphar.2019.01206.
  • Nair, R.; Chanda, S. In vitro Antimicrobial Activity of Psidium guajava L. Leaf Extracts against Clinically Important Pathogenic Microbial Strains. Brazilian Journal of Microbiology. 2007, 38, 452–458. DOI: 10.1590/S1517-83822007000300013.
  • Lutterodt, G. D.; Ismail, A.; Basheer, R.; Baharudin, H. M. Antimicrobial Effects of Psidium guajava Extract as One Mechanism of Its Antidiarrhoeal Action. Malays. J. Med. Sci. 1999, 6, 17–20.
  • Mills-Robertson, F. C.; Tay, S. C.; Duker-Eshun, G.; Walana, W.; Badu, K. In vitro Antimicrobial Activity of Ethanolic Fractions of Cryptolepis sanguinolenta. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 16. DOI: 10.1186/1476-0711-11-16.
  • Paulo, A.; Pimentel, M.; Viegas, S.; Pires, I.; Duarte, A.; Cabrita, J.; Gomes, E. T. Cryptolepis sanguinolenta Activity against Diarrhoeal Bacteria. J. Ethnopharmacol. 1994, 44, 73–77. DOI: 10.1016/0378-8741(94)90071-x.
  • Cimanga, K.; De Bruyne, T.; Lasure, A.; Van Poel, B.; Pieters, L.; Claeys, M.; Berghe, D. V.; Kambu, K.; Tona, L.; Vlietinck, A. J. In vitro Biological Activities of Alkaloids from Cryptolepis sanguinolenta. Planta Med. 1996, 62, 22–27. DOI: 10.1055/s-2006-957789.
  • Tackie, A. N.; Sharaf, M. H.; Jr PL., S.; Boye, G. L.; Crouch, R. C.; Martin, G. E. Assignment of the Proton and Carbon NMR Spectra of the Indoloquinoline Alkaloid Cryptolepine. J. Heterocycl. Chem. 1991, 28, 1429–1435. DOI: 10.1002/jhet.5570280540.
  • Addy, M.;. Cryptolepis: An African Traditional Medicine that Provides Hope for Malaria Victims. Herbal Gram. 2003, 60, 54–59.
  • Bierer, D. E.; Fort, D. M.; Mendez, C. D.; Luo, J.; Imbach, P. A.; Dubenko, L. G.; Jolad, S. D.; Gerber, R. E.; Litvak, J.; Lu, Q., et al. Ethnobotanical-Directed Discovery Of The Antihyperglycemic Properties Of Cryptolepine: Its Isolation From Cryptolepis sanguinolenta, Synthesis, and in vitro and in vivo Activities †. J. Med. Chem. 1998, 41, 894–901. DOI: 10.1021/jm9704816.
  • Mills-Robertson, F. C.; Aboagye, F. A.; Duker-Eshun, G.; Kaminta, S.; Agbeve, S. In vitro Antimicrobial Activity of Cryptolepis sanguinolenta (Periplocaceae). Afr. J. Pharm. Pharmacol. 2009, 3, 476–480. DOI: 10.5897/AJPP.9000181.
  • Cimanga, K.; Pieters, L.; Claeys, M.; Berghe, D. V.; Vlietinck, A. Biological Activities of Cryptolepine, an Alkaloid from Cryptolepis sanguinolenta. Planta Med. 1991, 57, A98–A99. DOI: 10.1055/s-2006-960380.
  • Chah, K. F.; Muko, K. N.; Oboegbulem, S. I. Antimicrobial Activity of Methanolic Extract of Solanum torvum Fruit. Fitoterapia. 2000, 71, 187–189. DOI: 10.1016/S0367-326X(99)00139-2.
  • Bari, M. A.; Islam, W.; Khan, A.; Mandal, A. Antibacterial and Antifungal Activity of Solanum yorvum (Solanaceae). Int. J. Agric. Biol. 2010, 12, 386–390.
  • Sivapriya, M.; Dinesha, R.; Harsha, R.; Gowda, S.; Srinivas, L. Antibacterial Activity of Different Extracts of Sundakai (Solanum torvum) Fruit Coat. Int. J. Biol. Chem. 2011, 5, 61–67. DOI: 10.3923/ijbc.2011.61.67.
  • Okigbo, R. N.; Igwe, D. I. Antimicrobial Effects of Piper guineense ‘Uziza’ and Phyllantus amarus ‘Ebe-benizo’ on Candida albicans and Streptococcus faecalis. Acta. Microbiol. Immunol. Hung. 2007, 54, 353–366. DOI: 10.1556/AMicr.54.2007.4.3.
  • Nwinyi, O. C.; Chinedu, S.; Ajani, O. Evaluation of Antibacterial Activity of Pisidium guajava and Gongronema latifolium. J. Med. Plant Res. 2008, 2, 189–192.
  • Konning, G. H.; Agyare, C.; Ennison, B. Antimicrobial Activity of Some Medicinal Plants from Ghana. Fitoterapia. 2004, 75, 65–67. DOI: 10.1016/j.fitote.2003.07.001.
  • Iwu, M. W.; Duncan, A. R.; Okunji, C. O. New Antimicrobials of Plant Origin. In Perspectives on New Crops and New Uses; Eds.; Janick, J. ASHS Press: Alexandria, 1999. 457–462.
  • Doherty, F.; Olaniran, O.; Kanife, U. Antimicrobial Activities of Aframomum melegueta (Alligator pepper). Int. J. Biol. 2010, 2, 126–131. DOI: 10.5539/ijb.v2n2p126.
  • Voukeng, I. K.; Kuete, V.; Dzoyem, J. P.; Fankam, A. G.; Noumedem, J. A.; Kuiate, J. R.; Pages, J. M. Antibacterial and Antibiotic-Potentiation Activities of the Methanol Extract of Some Cameroonian Spices against Gram-Negative Multi-Drug Resistant Phenotypes. BMC Res. Notes. 2012, 5, 299. DOI: 10.1186/1756-0500-5-299.
  • Simon, J.; Koroch, A.; Acquaye, D.; Jefthas, E.; Juliani, R.; Govindasamy, R. Medicinal Crops of Africa. In Issues in New Crops and New Uses; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, 2007; pp 322–331.
  • Otake, S.; Makimura, M.; Kuroki, T.; Nishihara, Y.; Hirasawa, M. Anticaries Effects of Polyphenolic Compounds from Japanese Green Tea. Caries Res. 1991, 25, 438–443. DOI: 10.1159/000261407.
  • Ikigai, H.; Nakae, T.; Hara, Y.; Shimamura, T. Bactericidal Catechins Damage the Lipid Bilayer. Biochim. Biophys. Acta. 1993, 1147, 132–136. DOI: 10.1016/0005-2736(93)90323-r.
  • Edeoga, H. O.; Okwu, D.; Mbaebie, B. Phytochemical Constituents of Some Nigerian Medicinal Plants. Afr. J. Biotechnol. 2005, 4, 685–688. DOI: 10.5897/AJB2005.000-3127.
  • Negi, P. S.;. Plant Extracts for the Control of Bacterial Growth: Efficacy, Stability and Safety Issues for Food Application. Int. J. Food Microbiol. 2012, 156, 7–17. DOI: 10.1016/j.ijfoodmicro.2012.03.006.
  • Cowan, M. M.;. Plant Products as Antimicrobial Agents. Clin Microbiol Rev. 1999, 12, 564–582. DOI: 10.1128/CMR.12.4.564.
  • Nayak, B. S.; Ramdath, D. D.; Marshall, J. R.; Isitor, G. N.; Eversley, M.; Xue, S.; Shi, J. Wound-healing Activity of the Skin of the Common Grape (Vitis vinifera) Variant, Cabernet Sauvignon. Phytother. Res. 2010, 24, 1151–1157. DOI: 10.1002/ptr.2999.
  • Okeke, I. N.; Ogundaini, A. O.; Ogungbamila, F. O.; Lamikanra, A. Antimicrobial Spectrum of Alchornea cordifolia Leaf Extract. Phytother. Res. 1999, 13, 67–69. DOI: 10.1002/(SICI)1099-1573(199902)13:1<67::AID-PTR366>3.0.CO;2-F.
  • Othman, M.; Loh, H. S.; Wiart, C.; Khoo, T. J.; Lim, K. H.; Ting, K. N. Optimal Methods for Evaluating Antimicrobial Activities from Plant Extracts. J. Microbiol. Methods. 2011, 84, 161–166. DOI: 10.1016/j.mimet.2010.11.008.
  • Szewczyk, B.; Bienkowska-Szewczyk, K.; Krol, E. Introduction to Molecular Biology of Influenza A Viruses. Acta Biochim. Pol. 2014, 61, 397–401. DOI: 10.18388/abp.2014_1857.
  • Samji, T. Influenza A: Understanding The Viral Life Cycle. Yale J. Biol. Med. 2009, 82, 153–159.
  • Tong, S.; Zhu, X.; Li, Y.; Shi, M.; Zhang, J.; Bourgeois, M.; Yang, H.; Chen, X.; Recuenco, S.; Gomez, J., et al. New World Bats Harbor Diverse Influenza A Viruses. PLoS Pathog. 2013, 9, e1003657. DOI: 10.1371/journal.ppat.1003657.
  • Wright, P.; Neumann, G.; Kawaoka, Y. Orthomyxoviruses. In Fields Virology, 5th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott-Raven Publishers: Philadelphia, 2007; pp 1691–1740.
  • Smith, G. J.; Vijaykrishna, D.; Bahl, J.; Lycett, S. J.; Worobey, M.; Pybus, O. G.; Ma, S. K.; Cheung, C. L.; Raghwani, J.; Bhatt, S., et al. Origins and Evolutionary Genomics of the 2009 Swine-Origin H1N1 Influenza A Epidemic. Nature.2009, 459, 1122–1125. DOI: 10.1038/nature08182.
  • Wahlgren, J. Influenza A Viruses: An Ecology Review. Infect. Ecol. Epidemiol. 2011, 1, 6004. DOI: 10.3402/iee.v1i0.6004.
  • Houser, K.; Subbarao, K. Influenza Vaccines: Challenges and Solutions. Cell Host Microbe. 2015, 17, 295–300. DOI: 10.1016/j.chom.2015.02.012.
  • Belshe, R. B.; Gruber, W. C.; Mendelman, P. M.; Cho, I.; Reisinger, K.; Block, S. L.; Wittes, J.; Iacuzio, D.; Piedra, P.; Treanor, J., et al. Efficacy of Vaccination with Live Attenuated, Cold-Adapted, Trivalent, Intranasal Influenza Virus Vaccine against a Variant (A/sydney) Not Contained in the Vaccine. J. Pediatr. 2000, 136, 168–175. DOI: 10.1016/s0022-3476(00)70097-7.
  • Osterholm, M. T.; Kelley, N. S.; Sommer, A.; Belongia, E. A. Efficacy and Effectiveness of Influenza Vaccines: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2012, 12, 36–44. DOI: 10.1016/S1473-3099(11)70295-X.
  • Lambert, L. C.; Fauci, A. S. Influenza Vaccines for the Future. N. Engl. J. Med. 2010, 363, 2036–2044. DOI: 10.1056/NEJMra1002842.
  • Paules, C. I.; Subbarao, K. Influenza Vaccination and Prevention of Cardiovascular Disease Mortality–Authors’ Reply. Lancet. 2018, 391, 427–428. DOI: 10.1016/S0140-6736(18)30144-2.
  • Lee, Y. T.; Kim, K. H.; Ko, E. J.; Lee, Y. N.; Kim, M. C.; Kwon, Y. M.; Tang, Y.; Cho, M. K.; Lee, Y. J.; Kang, S. M. New Vaccines Against Influenza Virus. Clin. Exp. Vaccine Res. 2014, 3, 12–28. DOI: 10.7774/cevr.2014.3.1.12.
  • Camilloni, B.; Basileo, M.; Valente, S.; Nunzi, E.; Iorio, A. M. Immunogenicity of Intramuscular MF59-Adjuvanted and Intradermal Administered Influenza Enhanced Vaccines in Subjects Aged over 60: A Literature Review. Hum. Vaccin. Immunother. 2015, 11, 553–563. DOI: 10.1080/21645515.2015.1011562.
  • Nolan, T.; Roy-Ghanta, S.; Montellano, M.; Weckx, L.; Ulloa-Gutierrez, R.; Lazcano-Ponce, E.; Kerdpanich, A.; Safadi, M. A.; Cruz-Valdez, A.; Litao, S., et al. Relative Efficacy of AS03-Adjuvanted Pandemic Influenza A(H1N1) Vaccine in Children: Results of a Controlled, Randomized Efficacy Trial. J. Infect. Dis. 2014, 210, 545–557. DOI: 10.1093/infdis/jiu173.
  • Eyer, L.; Hruska, K. Antiviral Agents Targeting the Influenza Virus: A Review and Publication Analysis. Vet. Med. 2013, 58, 113–185. DOI: 10.17221/6746-VETMED.
  • Guinea, R.; Carrasco, L. Concanamycin A Blocks Influenza Virus Entry Into Cells Under Acidic Conditions. FEBS Lett. 1994, 349, 327–330. DOI: 10.1016/0014-5793(94)00695-4.
  • Zhirnov, O. P.; Klenk, H. D.; Wright, P. F. Aprotinin and Similar Protease Inhibitors as Drugs against Influenza. Antiviral Res. 2011, 92, 27–36. DOI: 10.1016/j.antiviral.2011.07.014.
  • Dudek, S. E.; Luig, C.; Pauli, E. K.; Schubert, U.; Ludwig, S. The Clinically Approved Proteasome Inhibitor PS-341 Efficiently Blocks Influenza A Virus and Vesicular Stomatitis Virus Propagation by Establishing an Antiviral State. J. Virol. 2010, 84, 9439–9451. DOI: 10.1128/JVI.00533-10.
  • Bright, R. A.; Medina, M. J.; Xu, X.; Perez-Oronoz, G.; Wallis, T. R.; Davis, X. M.; Povinelli, L.; Cox, N. J.; Klimov, A. I. Incidence of Adamantane Resistance among Influenza A (H3N2) Viruses Isolated Worldwide from 1994 to 2005: A Cause for Concern. Lancet. 2005, 366, 1175–1181. DOI: 10.1016/S0140-6736(05)67338-2.
  • Ciancio, B. C.; Meerhoff, T. J.; Kramarz, P.; Bonmarin, I.; Borgen, K.; Boucher, C. A.; Buchholz, U.; Buda, S.; Dijkstra, F.; Dudman, S., et al. Oseltamivir-Resistant Influenza A(H1N1) Viruses Detected in Europe during Season 2007–8 Had Epidemiologic and Clinical Characteristics Similar to Co-Circulating Susceptible A(H1N1) Viruses. Euro. Surveill.2009, 14, 19412. DOI: 10.2807/ese.14.46.19412-en.
  • Bloom, J. D.; Gong, L. I.; Baltimore, D. Permissive Secondary Mutations Enable the Evolution of Influenza Oseltamivir Resistance. Science. 2010, 328, 1272–1275. DOI: 10.1126/science.1187816.
  • Hurt, A. C.; Chotpitayasunondh, T.; Cox, N. J.; Daniels, R.; Fry, A. M.; Gubareva, L. V.; Hayden, F. G.; Hui, D. S.; Hungnes, O.; Lackenby, A., et al. Antiviral Resistance during the 2009 Influenza A H1N1 Pandemic: Public Health, Laboratory, and Clinical Perspectives. Lancet Infect. Dis. 2012, 12, 240–248. DOI: 10.1016/S1473-3099(11)70318-8.
  • Samson, M.; Pizzorno, A.; Abed, Y.; Boivin, G. Influenza Virus Resistance to Neuraminidase Inhibitors. Antiviral Res. 2013, 98, 174–185. DOI: 10.1016/j.antiviral.2013.03.014.
  • Storms, A. D.; Gubareva, L. V.; Su, S.; Wheeling, J. T.; Okomo-Adhiambo, M.; Pan, C. Y.; Reisdorf, E.; St George, K.; Myers, R.; Wotton, J. T., et al. Oseltamivir-Resistant Pandemic (H1N1) 2009 Virus Infections, United States, 2010–11. Emerg. Infect. Dis.2012, 18, 308–311. DOI: 10.3201/eid1802.111466.
  • McKimm-Breschkin, J. L. Influenza Neuraminidase Inhibitors: Antiviral Action and Mechanisms of Resistance. Influenza Other Respir. Viruses. 2013, 7, 25–36. DOI: 10.1111/irv.12047.
  • Rousset, D.; Le Goff, J.; Abou-Jaoude, G.; Molina, J. M.; Scemla, A.; Caro, V. Emergence of Successive Mutations in the Neuraminidase of the Pandemic H1N1 Virus Respectively Associated with Oseltamivir Resistance and Reduced Susceptibility to Both Oseltamivir and Zanamivir under Treatment with Neuraminidase Inhibitors. Presented at Options for the Control of Influenza VII., Hong Kong, SAR, China, Sep 3–7, 2010; 198.
  • Parhira, S.; Yang, Z.F.; Zhu, G.Y.; Chen, Q.L.; Zhou, B.X.; Wang, Y.T.; Liu, L.; Bai, L.P.; Jiang, Z.H.; Jin, D.Y. In vitro Anti-Influenza Virus Activities of a New Lignan Glycoside from the Latex of Calotropis Gigantea. PLoS One. 2014, 9, e104544. DOI: 10.1371/journal.pone.0104544.
  • Palamara, A. T.; Nencioni, L.; Aquilano, K.; De Chiara, G.; Hernandez, L.; Cozzolino, F.; Ciriolo, M. R.; Garaci, E. Inhibition of Influenza a Virus Replication by Resveratrol. J. Infect. Dis. 2005, 191, 1719–1729. DOI: 10.1086/429694.
  • McKay, D. L.; Blumberg, J. B. A Review of the Bioactivity of South African Herbal Teas: Rooibos (Aspalathus linearis) and Honeybush (Cyclopia intermedia). Phytother. Res. 2007, 21, 1–16. DOI: 10.1002/ptr.1992.
  • Bramati, L.; Aquilano, F.; Pietta, P. Unfermented Rooibos Tea: Quantitative Characterization of Flavonoids by HPLC-UV and Determination of the Total Antioxidant Activity. J. Agric. Food Chem. 2003, 51, 7472–7474. DOI: 10.1021/jf0347721.
  • Joubert, E.; De Beer, D. Phenolic Content and Antioxidant Activity of Rooibos Food Ingredient Extracts. J. Food Comp. Anal. 2012, 27, 45–51. DOI: 10.1016/j.jfca.2012.03.011.
  • Krafczyk, N.; Glomb, M. A. Characterization of Phenolic Compounds in Rooibos Tea. J. Agric. Food Chem. 2008, 56, 3368–3376. DOI: 10.1021/jf703701n.
  • van der Merwe, J. D.; Joubert, E.; Richards, E. S.; Manley, M.; Snijman, P. W.; Marnewick, J. L.; Gelderblom, W. C. A Comparative Study on the Antimutagenic Properties of Aqueous Extracts of Aspalathus linearis (Rooibos), Different Cyclopia Spp. (Honeybush) and Camellia sinensis Teas. Mutat. Res. 2006, 611, 42–53. DOI: 10.1016/j.mrgentox.2006.06.030.
  • Marnewick, J. L.; van der Westhuizen, F. H.; Joubert, E.; Swanevelder, S.; Swart, P.; Gelderblom, W. C. Chemoprotective Properties of Rooibos (Aspalathus linearis), Honeybush (Cyclopia intermedia) Herbal and Green and Black (Camellia sinensis) Teas against Cancer Promotion Induced by Fumonisin B1 in Rat Liver. Food Chem. Toxicol. 2009, 47, 220–229. DOI: 10.1016/j.fct.2008.11.004.
  • Knipping, K.; Garssen, J.; Van’t Land, B. An Evaluation of the Inhibitory Effects against Rotavirus Infection of Edible Plant Extracts. Virol. J. 2012, 9, 137. DOI: 10.1186/1743-422X-9-137.
  • Hong, I. S.; Lee, H. Y.; Kim, H. P. Anti-Oxidative Effects of Rooibos Tea (Aspalathus linearis) on Immobilization-Induced Oxidative Stress in Rat Brain. PLoS One. 2014, 9, e87061. DOI: 10.1371/journal.pone.0087061.
  • Nakano, M.; Itoh, Y.; Mizuno, T.; Nakashima, H. Polysaccharide from Aspalathus linearis with Strong Anti-HIV Activity. Biosci. Biotechnol. Biochem. 1997, 61, 267–271. DOI: 10.1271/bbb.61.267.
  • Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry. Viruses. 2015, 8, 6. DOI: 10.3390/v8010006.
  • Farzana, M.; Tharique, I.; Arshiya, S. A Review of Ethnomedicine, Phytochemical and Pharmacological Activities of Acacia nilotica (Linn) Willd. J. Pharmacogn. Phytochem. 2014, 3, 84–90.
  • Rajvaidhya, S.; Nagori, B.; Singh, G.; Dubey, B.; Desai, P.; Alok, S.; Jain, S. A. Review on Acacia arabica- An Indian Medicinal Plant. Int. J. Pharm. Sci. Res. 2012, 3, :1995–2005.
  • Raheel, R.; Aslam, M. S.; Asghar, S.; Phytochemical, A. M. Ethnopharmacological Review of Acacia nilotica (Desi kikar) and Taxo-Pharmacology of Genus Acacia. Indian Res. J. Pharm. Sci. 2014, 1, 65–72.
  • Sharma, A. K.; Kumar, A.; Yadav, S. K.; Rahal, A. Studies on Antimicrobial and Immunomodulatory Effects of Hot Aqueous Extract of Acacia nilotica L. Leaves against Common Veterinary Pathogens. Vet. Med. Int 2014, 81, 747042. has been updated. OK?. DOI: 10.1155/2014/747042].
  • Nutan,; Modi, M.; Dezzutti, C. S.; Kulshreshtha, S.; Rawat, A. K.; Srivastava, S. K.; Malhotra, S.; Verma, A.; Ranga, U.; Gupta, S. K. Extracts from Acacia catechu Suppress HIV-1 Replication by Inhibiting the Activities of the Viral Protease and Tat. Virol. J. 2013, 10, 309. DOI: 10.1186/1743-422X-10-309.
  • Parmar, K. A.; Patel, A. N.; Prajapati, S. N.; Patel, R. I. Anti Viral in HEL Cell, HeLa Cell Cultures, Antibacterial and Antioxidant Activity of Acacia arabica Seeds Extracts by the Use of DPPH Free Radical Method. J. Chem. Pharm. Res. 2010, 2, 324–332.
  • Elfahmi, W. H.; Kayser, J.; Jamu:, O. Indonesian Traditional Herbal Medicine Towards Rational Phytopharmacological Use. J. Herb. Med. 2014, 4, 51–73. DOI: 10.1016/j.hermed.2014.01.002.
  • Sazwi, N. N.; Nalina, T.; Abdul Rahim, Z. H. Antioxidant and Cytoprotective Activities of Piper betle, Areca catechu, Uncaria gambir and Betel quid with and without Calcium Hydroxide. BMC Complement. Altern. Med. 2013, 13, 351. DOI: 10.1186/1472-6882-13-351.
  • Vital, P. G.; Rivera, W. L. Antimicrobial Activity and Cytotoxicity of Chromolaena odorata (L. F.) King and Robinson and Uncaria perrottetii (A. Rich) Merr. Extracts. J. Med. Plant Res. 2009, 3, 511–518.
  • Zhang, Q.; Zhao, J. J.; Xu, J.; Feng, F.; Qu, W. Medicinal Uses, Phytochemistry and Pharmacology of the Genus Uncaria. J. Ethnopharmacol. 2015, 173, 48–80. DOI: 10.1016/j.jep.2015.06.011.
  • Campo, J. D.; Amiot, M. J.; Nguyen-The, C. Antimicrobial Effect of Rosemary Extracts. J. Food Prot. 2000, 68, 1359–1368. DOI: 10.4315/0362-028x-63.10.1359.
  • Ahn, J.; Grün, I. U.; Mustapha, A. Effects of Plant Extracts on Microbial Growth, Color Change, and Lipid Oxidation in Cooked Beef. Food Microbiol. 2007, 24, 7–14. DOI: 10.1016/j.fm.2006.04.
  • Klancnik, A.; Piskernik, S.; Jersek, B.; Mozina, S. S. Evaluation of Diffusion and Dilution Methods to Determine the Antibacterial Activity of Plant Extracts. J. Microbiol. Methods. 2010, 81, 121–126. DOI: 10.1016/j.mimet.2010.02.004.
  • Santos, S. A. O.; Martins, C.; Pereira, C.; Silvestre, A. J.; Rocha, S. M. Current Challenges and Perspectives for the Use of Aqueous Plant Extracts in the Management of Bacterial Infections: The Case-Study of Salmonella enterica Serovars. Int. J. Mol. Sci. 2019, 20, 940. DOI: 10.3390/ijms20040940.
  • Ahmad, A.; Kaleem, M.; Ahmed, Z.; Shafiq, H. Therapeutic potential of flavonoids and their mechanism of action against microbial and viral infections-a review. Food Res. Int. 2015, 77, 221–235. DOI: 10.1016/j.foodres.2015.06.021.
  • Khameneh, B.; Iranshahy, M.; Soheili, V.; Bazzaz, B. S. Review on Plant Antimicrobials: A Mechanistic Viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 118. DOI: 10.1186/s13756-019-0559-6.
  • Coppo, E.; Marchese, A. Antibacterial activity of Polyphenols. Curr. Pharm. Biotechnol. 2014, 15, 380–390. DOI: 10.2174/138920101504140825121142.
  • Mosa, R. A.; Nhleko, M. L.; Dladla, T. V.; Opoku, A. R. Antibacterial Activity of Two Triterpenes from Stem Bark of Protorhus longifolia. J. Med. Plant Res. 2014, 8, 686–702. DOI: 10.5897/JMPR2013.5259.
  • Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, B. Saponin-based, Biological-active Surfactants from Plants. In Application and Characterization of Surfactants; Najjar, R, Ed.; InTechOpen: London, UK: 2017; pp 183–205. doi:10.5772/68062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.