4,928
Views
25
CrossRef citations to date
0
Altmetric
Review

Functional and food application of plant proteins – a review

, ORCID Icon & ORCID Icon

References

  • Aydar, E. F.; Tutuncu, S.; Ozcelik, B. Plant-based Milk Substitutes: Bioactive Compounds, Conventional and Novel Processes, Bioavailability Studies, and Health Effects. J. Funct. Foods. 2020, 70, 103975. DOI: 10.1016/j.jff.2020.103975.
  • McClements, D. J.; Newman, E.; McClements, I. F. Plant‐based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Compr. Rev. Food Sci. Food Saf. 2019, 18(6), 2047–2067. DOI: 10.1111/1541-4337.12505.
  • Vanga, S. K.; Raghavan, V. How Well Do Plant Based Alternatives Fare Nutritionally Compared to Cow’s Milk? J. Food Sci. Technol. 2018, 55(1), 10–20. DOI: 10.1007/s13197-017-2915-y.
  • Ismail, I.; Hwang, Y.-H.; Joo, S.-T. Meat Analog as Future Food: A Review. J. Anim. Sci. Technol. 2020, 62(2), 111–120. DOI: 10.5187/jast.2020.62.2.111.
  • Pilolli, R.; Nitride, C.; Gillard, N.; Huet, A.-C.; van Poucke, C.; De Loose, M.; Tranquet, O.; Larré, C.; Adel-Patient, K.; Bernard, H.; et al. Critical Review on Proteotypic Peptide Marker Tracing for Six Allergenic Ingredients in Incurred Foods by Mass Spectrometry. Food Res. Int. 2020, 128, 108747. DOI: 10.1016/j.foodres.2019.108747.
  • Schuppan, D.; Gisbert-Schuppan, K. Wheat, Gluten and ATI: An Overview. In Wheat Syndromes: How Wheat, Gluten and ATI Cause Inflammation, IBS and Autoimmune Diseases; Schuppan, D., Gisbert-Schuppan, K., Eds.; Springer International Publishing: Cham, 2019; pp 5–10.
  • Pasha, I.; Saeed, F.; Sultan, M. T.; Batool, R.; Aziz, M.; Ahmed, W. Wheat Allergy and Intolerence; Recent Updates and Perspectives. Crit. Rev. Food Sci. Nutr. 2016, 56(1), 13–24. DOI: 10.1080/10408398.2012.659818.
  • Singh, J.; Skerritt, J. H. Chromosomal Control of Albumins and Globulins in Wheat Grain Assessed Using Different Fractionation Procedures. J. Cereal Sci. 2001, 33(2), 163–181.
  • Schwietzke, S.; Kim, Y.; Ximenes, E.; Mosier, N.; Ladisch, M. Ethanol Production from Maize. In Molecular Genetic Approaches to Maize Improvement; Kriz, A.L., Larkins, B.A., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp 347–364.
  • Larkins, B. A.;. Chapter 12 - Proteins of the Kernel. In Corn, Third ed.; Serna-Saldivar, S.O., Ed.; AACC International Press: Oxford, 2019; pp 319–336.
  • Yu, W.; Tan, X.; Zou, W.; Hu, Z.; Fox, G. P.; Gidley, M. J.; Gilbert, R. G. Relationships between Protein Content, Starch Molecular Structure and Grain Size in Barley. Carbohydr. Polym. 2017, 155, 271–279. DOI: 10.1016/j.carbpol.2016.08.078.
  • Lexhaller, B.; Tompos, C.; Scherf, K. A. Comparative Analysis of Prolamin and Glutelin Fractions from Wheat, Rye, and Barley with Five Sandwich ELISA Test Kits. Anal. Bioanal. Chem. 2016, 408(22), 6093–6104. DOI: 10.1007/s00216-016-9721-7.
  • Eggert, K.; Wieser, H.; Pawelzik, E. The Influence of Fusarium Infection and Growing Location on the Quantitative Protein Composition of (Part II) Naked Barley (Hordeum Vulgare Nudum). Eur. Food Res. Technol. 2010, 230(6), 893–902. DOI: 10.1007/s00217-010-1234-6.
  • Nawaz, M. A.; Fukai, S.; Bhandari, B. Effect of Alkali Treatment on the Milled Grain Surface Protein and Physicochemical Properties of Two Contrasting Rice Varieties. J. Cereal Sci. 2016, 72, 16–23. DOI: 10.1016/j.jcs.2016.09.009.
  • Amagliani, L.; O’Regan, J.; Kelly, A. L.; O’Mahony, J. A. Composition and Protein Profile Analysis of Rice Protein Ingredients. J. Food Compost. Anal. 2017, 59, 18–26. DOI: 10.1016/j.jfca.2016.12.026.
  • Tang, Y.; Yerke, A.; Sang, S. Oats. In Whole Grains Their Bioactives: Composition Health; Johnson, J., Wallace, T.C., Eds.; John Wiley & Sons Ltd: Hoboken, NJ 07030, USA, 2019; pp 45–61.
  • Capouchova, I.; Petr, J.; Tlaskalova-Hogenova, H.; Michalik, I.; Famera, O.; Urminska, D.; Tuckova, L.; Knoblochova, H.; Borovska, D. Protein Fractions of Oats and Possibilities of Oat Utilisation for Patients with Coeliac Disease. Czech J. Food Sci.-UZPI (Czech Republic). 2004.
  • Nikolopoulou, D.; Grigorakis, K.; Stasini, M.; Alexis, M. N.; Iliadis, K. Differences in Chemical Composition of Field Pea (Pisum Sativum) Cultivars: Effects of Cultivation Area and Year. Food Chem. 2007, 103(3), 847–852. DOI: 10.1016/j.foodchem.2006.09.035.
  • Chavan, U. D.; McKenzie, D. B.; Shahidi, F. Protein Classification of Beach Pea (Lathyrus Maritimus L.). Food Chem. 2001, 75(2), 145–153. DOI: 10.1016/S0308-8146(01)00122-4.
  • Singh, S.; Patel, S.; Litoriya, N.; Gandhi, K.; Faldu, P.; Patel, K. Comparative Efficiency of Conventional and NIR Based Technique for Proximate Composition of Pigeon Pea, Soybean and Rice Cultivars. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7(1), 773–782. DOI: 10.20546/ijcmas.2018.701.094.
  • Ciabotti, S.; Silva, A.; Juhasz, A. C. P.; Mendonça, C. D.; Tavano, O. L.; Mandarino, J. M. G.; ConÇAlves, C. A. A. Chemical Composition, Protein Profile, and Isoflavones Content in Soybean Genotypes with Different Seed Coat Colors. Embrapa Soja-Artigo Em Periódico Indexado (ALICE). 2016.
  • Lucas, M. M.; Stoddard, F.; Annicchiarico, P.; Frias, J.; Martinez-Villaluenga, C.; Sussmann, D.; Duranti, M.; Seger, A.; Zander, P.; Pueyo, J. The Future of Lupin as a Protein Crop in Europe. Front. Plant Sci. 2015, 6, 705. DOI: 10.3389/fpls.2015.00705.
  • Singla, P.; Sharma, S.; Singh, S. Amino Acid Composition, Protein Fractions and Electrophoretic Analysis of Seed Storage Proteins in Lupins. Indian J. Agric. Chem. 2017, 30(1), 33–40. DOI: 10.5958/0974-4479.2017.00005.3.
  • Khazaei, H.; Subedi, M.; Nickerson, M.; Martínez-Villaluenga, C.; Frias, J.; Vandenberg, A. Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods. 2019, 8(9), 391. DOI: 10.3390/foods8090391.
  • Sulieman, M. A.; Hassan, A. B.; Osman, G. A.; El Tyeb, M. M.; El Khalil, E. A. I.; El Tinay, A. H.; Babiker, E. E. Changes in Total Protein Digestibility, Fractions Content and Structure during Cooking of Lentil Cultivars. Pak. J. Nutr. 2008, 7(6), 801–805. DOI: 10.3923/pjn.2008.801.805.
  • de Oliveira Sousa, A. G.; Fernandes, D. C.; Alves, A. M.; de Freitas, J. B.; Naves, M. M. V. Nutritional Quality and Protein Value of Exotic Almonds and Nut from the Brazilian Savanna Compared to Peanut. Food Res. Int. 2011, 44(7), 2319–2325. DOI: 10.1016/j.foodres.2011.02.013.
  • Yada, S.; Lapsley, K.; Huang, G. A Review of Composition Studies of Cultivated Almonds: Macronutrients and Micronutrients. J. Food Compost. Anal. 2011, 24(4–5), 469–480. DOI: 10.1016/j.jfca.2011.01.007.
  • Liu, C.-M.; Peng, Q.; Zhong, J.-Z.; Liu, W.; Zhong, Y.-J.; Wang, F. Molecular and Functional Properties of Protein Fractions and Isolate from Cashew Nut (Anacardium Occidentale L.). Molecules. 2018, 23(2), 393.
  • Venkatachalam, M.; Monaghan, E. K.; Kshirsagar, H. H.; Robotham, J. M.; O’Donnell, S. E.; Gerber, M. S.; Roux, K. H.; Sathe, S. K. Effects of Processing on Immunoreactivity of Cashew Nut (Anacardium Occidentale L.) Seed Flour Proteins. J. Agric. Food Chem. 2008, 56(19), 8998–9005. DOI: 10.1021/jf801199q.
  • Mao, X.; Hua, Y. Composition, Structure and Functional Properties of Protein Concentrates and Isolates Produced from Walnut (Juglans Regia L.). Int. J. Mol. Sci. 2012, 13(2), 1561–1581. DOI: 10.3390/ijms13021561.
  • Mao, X.; Hua, Y.; Chen, G. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans Regia L.) Proteins and Protein Fractionations. Int. J. Mol. Sci. 2014, 15(2), 2003–2014. DOI: 10.3390/ijms15022003.
  • Terzo, S.; Baldassano, S.; Caldara, G. F.; Ferrantelli, V.; Lo Dico, G.; Mulè, F.; Amato, A. Health Benefits of Pistachios Consumption. Nat. Prod. Res. 2019, 33(5), 715–726. DOI: 10.1080/14786419.2017.1408093.
  • Zahedi, Y.; Ghanbarzadeh, B.; Sedaghat, N. Physical Properties of Edible Emulsified Films Based on Pistachio Globulin Protein and Fatty Acids. J. Food Eng. 2010, 100(1), 102–108. DOI: 10.1016/j.jfoodeng.2010.03.033.
  • González-Pérez, S.;. 12 - Sunflower Proteins. In Sunflower; Martínez-Force, E., Dunford, N.T., Salas, J.J., Eds.; AOCS Press: Urbana, USA, 2015; pp 331–393.
  • Alireza, S.;. Differential Proteomics Analysis in Sunflower (Helianthus Annuus L.). Biotechnology. 2014, 13(5), 245–247. DOI: 10.3923/biotech.2014.245.247.
  • Wanasundara, J. P. D.; Tan, S.; Alashi, A. M.; Pudel, F.; Blanchard, C. Chapter 18 - Proteins From Canola/Rapeseed: Current Status. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: San Diego, 2017; pp 285–304.
  • Tan, S. H.; Mailer, R. J.; Blanchard, C. L.; Agboola, S. O. Canola Proteins for Human Consumption: Extraction, Profile, and Functional Properties. J. Food Sci. 2011, 76(1), R16–R28. DOI: 10.1111/j.1750-3841.2010.01930.x.
  • Van Loon, L. J. C.; Kruijshoop, M.; Verhagen, H.; Saris, W. H. M.; Wagenmakers, A. J. M. Ingestion of Protein Hydrolysate and Amino Acid–carbohydrate Mixtures Increases Postexercise Plasma Insulin Responses in Men. J. Nutr. 2000, 130(10), 2508–2513. DOI: 10.1017/S0007114512002309.
  • Keeney, D. R.;. Protein and Amino Acid Composition of Maize Grain as Influenced by Variety and Fertility. J. Sci. Food Agric. 1970, 21(4), 182–184. DOI: 10.1002/jsfa.2740210404.
  • Lange, M.; Vincze, E.; Wieser, H.; Schjoerring, J. K.; Holm, P. B. Suppression of C-Hordein Synthesis in Barley by Antisense Constructs Results in a More Balanced Amino Acid Composition. J. Agric. Food Chem. 2007, 55(15), 6074–6081. DOI: 10.1021/jf0709505.
  • Song, Y. S.; Frias, J.; Martinez-Villaluenga, C.; Vidal-Valdeverde, C.; De Mejia, E. G. Immunoreactivity Reduction of Soybean Meal by Fermentation, Effect on Amino Acid Composition and Antigenicity of Commercial Soy Products. Food Chem. 2008, 108(2), 571–581. DOI: 10.1016/j.foodchem.2007.11.013.
  • Lqari, H.; Vioque, J.; Pedroche, J.; Millán, F. Lupinus Angustifolius Protein Isolates: Chemical Composition, Functional Properties and Protein Characterization. Food Chem. 2002, 76(3), 349–356. DOI: 10.1016/S0308-8146(01)00285-0.
  • Zia-Ul-Haq, M.; Ahmad, S.; Shad, M. A.; Iqbal, S.; Qayum, M.; Ahmad, A.; Luthria, D. L.; Amarowicz, R. Compositional Studies of Lentil (Lens Culinaris Medik.) Cultivars Commonly Grown in Pakistan. Pak. J. Bot. 2011, 43(3), 1563–1567.
  • Adu, O. B.; Ogundeko, T. O.; Ogunrinola, O. O.; Saibu, G. M.; Elemo, B. O. The Effect of Thermal Processing on Protein Quality and Free Amino Acid Profile of Terminalia Catappa (Indian Almond) Seed. J. Food Sci. Technol. 2015, 52(7), 4637–4641. DOI: 10.1007/s13197-014-1490-8.
  • Aremu, M. O.; Ogunlade, I.; Olonisakin, A. Fatty Acid and Amino Acid Composition of Protein Concentrate from Cashew Nut (Anarcadium Occidentale) Grown in Nasarawa State, Nigeria. Pak. J. Nutr. 2007, 6(5), 419–423. DOI: 10.3923/pjn.2007.419.423.
  • Sze-Tao, K. W. C.; Sathe, S. K. Walnuts (Juglans Regia L): Proximate Composition, Protein Solubility, Protein Amino Acid Composition and Protein in Vitro Digestibility. J. Sci. Food Agric. 2000, 80(9), 1393–1401. DOI: 10.1002/1097-0010(200007)80:9<1393::AID-JSFA653>3.0.CO;2-F.
  • Chung, K. H.; Shin, K. O.; Hwang, H. J.; Choi, K.-S. Chemical Composition of Nuts and Seeds Sold in Korea. Nutr. Res. Pract. 2013, 7(2), 82–88. DOI: 10.4162/nrp.2013.7.2.82.
  • Akande, K. E.;. Proximate and Amino Acid Analyses of Full-fat Sunflower (Helianthus Annuus L.) Seed Meal. Singapore Journal of Scientific Research. 2011, 1(2), 179–183. DOI: 10.3923/sjsres.2011.179.183.
  • Braman, W. L.; Hatfield, E. E.; Owens, F. N.; Rincker, J. D. Waxy Corn and Nitrogen Sources for Finishing Lambs and Steers Fed All-concentrate Rations. J. Anim. Sci. 1973, 37(4), 1010–1017. DOI: 10.2527/jas1973.3741010x.
  • Nadathur, S. R.; Wanasundara, J. P. D.; Scanlin, L. Chapter 1 - Proteins in the Diet: Challenges in Feeding the Global Population. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: San Diego, 2017; pp 1–19.
  • Shewry, P. R.; Halford, N. G. Cereal Seed Storage Proteins: Structures, Properties and Role in Grain Utilization. J. Exp. Bot. 2002, 53(370), 947–958. DOI: 10.1093/jexbot/53.370.947.
  • Hoogenkamp, H.; Kumagai, H.; Wanasundara, J. P. D. Chapter 3 - Rice Protein and Rice Protein Products. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: San Diego, 2017; pp 47–65.
  • Klupsaite, D.; Gražina, J.; Legume: Composition, Protein Extraction and Functional Properties. A Review. Chem. Technol. 2015, 66.
  • Guerrieri, N.; Cavaletto, M. 8 - Cereals Proteins. In Proteins in Food Processing, Second ed.; Yada, R.Y., Ed.; Woodhead Publishing: Sawston, United Kingdom, 2018; pp 223–244.
  • Klose, C.; Arendt, E. K. Proteins in Oats; Their Synthesis and Changes during Germination: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52(7), 629–639. DOI: 10.1080/10408398.2010.504902.
  • Venkatachalam, M.; Roux, K. H.; Sathe, S. K. Biochemical Characterization of Soluble Proteins in Pecan [Carya Illinoinensis (Wangenh.) K. Koch]. J. Agric. Food Chem. 2008, 56(17), 8103–8110. DOI: 10.1021/jf801268k.
  • Kshirsagar, H. H.; Fajer, P.; Sharma, G. M.; Roux, K. H.; Sathe, S. K. Biochemical and Spectroscopic Characterization of Almond and Cashew Nut Seed 11S Legumins, Amandin and Anacardein. J. Agric. Food Chem. 2011, 59(1), 386–393. DOI: 10.1021/jf1030899.
  • González-Pérez, S.; Vereijken, J. M.; Merck, K. B.; van Koningsveld, G. A.; Gruppen, H.; Voragen, A. G. J. Conformational States of Sunflower (Helianthus Annuus) Helianthinin: Effect of Heat and pH. J. Agric. Food Chem. 2004, 52(22), 6770–6778. DOI: 10.1021/jf049612j.
  • FAO Food Outlook BIANNUAL REPORT ON GLOBAL FOOD MARKETS; May 2019, 2019.
  • Rosentrater, K. A.; Evers, A. D. Chapter 1 - Introduction to Cereals and Pseudocereals and Their Production. In Kent’s Technology of Cereals, Fifth ed.; Rosentrater, K.A., Evers, A.D., Eds.; Woodhead Publishing: Sawston, United Kingdom, 2018; pp 1–76.
  • Perdon, A. A.; Holopainen-Mantila, U. 4 - Cereal Grains and Other Ingredients. In Breakfast Cereals and How They are Made, Third ed.; Perdon, A.A., Schonauer, S.L., Poutanen, K.S., Eds.; AACC International Press: Oxford, 2020; pp 73–96.
  • Wrigley, C. W.;. An Overview of the Family of Cereal Grains Prominent in World Agriculture. In Encyclopedia of Food Grains, Second ed.; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, 2016; pp 73–85.
  • FAO. Codex Alimentarius - Cereals, Pulses, Legumes and Vegetable Proteins; Food and Agriculture Organization of the United Nations: Rome, Italy, 2007; p 116.
  • Nawaz, M. A.; Tan, M.; Øiseth, S.; Buckow, R. An Emerging Segment of Functional Legume-Based Beverages: A Review. Food Rev. Int. 2020, 1–39. doi:10.1080/87559129.2020.1762641.
  • Nikodijevic, C. J.; Probst, Y. C.; Batterham, M. J.; Tapsell, L. C.; Neale, E. P. Nut Consumption in a Representative Survey of Australians: A Secondary Analysis of the 2011–2012 National Nutrition and Physical Activity Survey. Public Health Nutrit. 2020, 23(18), 1–11.
  • Jain, T.;. Fatty Acid Composition of Oilseed Crops: A Review. In Emerging Technologies in Food Science: Focus on the Developing World; Thakur, M., Modi, V.K., Eds.; Springer Singapore: Singapore, 2020; pp 147–153.
  • Son, A. R.;. Variation in Energy and Nutrient Composition of Oilseed Meals from Different Countries. Korean J. Poult. Sci. 2020, 47(2), 107–114. DOI: 10.5536/KJPS.2020.47.2.107.
  • Gorissen, S. H. M.; Crombag, J. J. R.; Senden, J. M. G.; Waterval, W. A. H.; Bierau, J.; Verdijk, L. B.; Van Loon, L. J. C. Protein Content and Amino Acid Composition of Commercially Available Plant-based Protein Isolates. Amino Acids. 2018, 50(12), 1685–1695. DOI: 10.1007/s00726-018-2640-5.
  • Mariotti, F.;. 35 - Plant Protein, Animal Protein, and Protein Quality. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Mariotti, F., Ed.; Academic Press: London, United Kingdom, 2017; pp 621–642.
  • Venkatachalam, M.; Sathe, S. K. Chemical Composition of Selected Edible Nut Seeds. J. Agric. Food Chem. 2006, 54(13), 4705–4714. DOI: 10.1021/jf0606959.
  • Marinangeli, C. P. F.; House, J. D. Potential Impact of the Digestible Indispensable Amino Acid Score as a Measure of Protein Quality on Dietary Regulations and Health. Nutr. Rev. 2017, 75(8), 658–667. DOI: 10.1093/nutrit/nux025.
  • Boye, J.; Wijesinha-Bettoni, R.; Burlingame, B. Protein Quality Evaluation Twenty Years after the Introduction of the Protein Digestibility Corrected Amino Acid Score Method. Br. J. Nutr. 2012, 108(S2), S183–S211.
  • Genoni, A.; Craddock, J. C.; Strutt, E. F. Limitations of the Digestible Indispensable Amino Acid Score (DIAAS) and Choice of Statistical Reporting. Comment on “A Comparison of Dietary Protein Digestibility, Based on DIAAS Scoring, in Vegetarian and Non-vegetarian Athletes. Nutrients 2019, 11, 3106”. Nutrients. 2020, 12(4), 1183.
  • Reilly, L. M.; von Schaumburg, P. C.; Hoke, J. M.; Davenport, G. M.; Utterback, P. L.; Parsons, C. M.; de Godoy, M. R. C. Macronutrient Composition, True Metabolizable Energy and Amino Acid Digestibility, and Indispensable Amino Acid Scoring of Pulse Ingredients for Use in Canine and Feline Diets. J. Anim. Sci. 2020, 98(6), 6. DOI: 10.1093/jas/skaa149.
  • FAO Report of an FAO Expert Consultation: Dietary Protein Quality Evaluation in Human Nutrition; 2013.
  • Han, F.; Han, F.; Wang, Y.; Fan, L.; Song, G.; Chen, X.; Jiang, P.; Miao, H.; Han, Y. Digestible Indispensable Amino Acid Scores of Nine Cooked Cereal Grains. Br. J. Nutr. 2019, 121(1), 30–41. DOI: 10.1017/S0007114518003033.
  • Mathai, J. K.; Liu, Y.; Stein, H. H. Values for Digestible Indispensable Amino Acid Scores (DIAAS) for Some Dairy and Plant Proteins May Better Describe Protein Quality than Values Calculated Using the Concept for Protein Digestibility-corrected Amino Acid Scores (PDCAAS). Br. J. Nutr. 2017, 117(4), 490–499. DOI: 10.1017/S0007114517000125.
  • Nosworthy, M. G.; Neufeld, J.; Frohlich, P.; Young, G.; Malcolmson, L.; House, J. D. Determination of the Protein Quality of Cooked Canadian Pulses. Food Sci. Nutr. 2017, 5(4), 896–903. DOI: 10.1002/fsn3.473.
  • Wolfe, R. R.; Rutherfurd, S. M.; Kim, I. Y.; Moughan, P. J. Protein Quality as Determined by the Digestible Indispensable Amino Acid Score: Evaluation of Factors Underlying the Calculation. Nutr. Rev. 2016, 74(9), 584–599. DOI: 10.1093/nutrit/nuw022.
  • Sánchez, A.; Vázquez, A. Bioactive Peptides: A Review. Food Qual. Saf. 2017, 1(1), 29–46. DOI: 10.1093/fqs/fyx006.
  • Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients. 2018, 10(11), 1738. DOI: 10.3390/nu10111738.
  • Grancieri, M.; Martino, H. S. D.; Gonzalez De Mejia, E. Chia Seed (Salvia Hispanica L.) As A Source of Proteins and Bioactive Peptides with Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18(2), 480–499. DOI: 10.1111/1541-4337.12423.
  • Ozuna, C.; León-Galván, M. F. Cucurbitaceae Seed Protein Hydrolysates as a Potential Source of Bioactive Peptides with Functional Properties. Biomed Res. Int. 2017, 2017, 16. DOI: 10.1155/2017/2121878.
  • Malaguti, M.; Dinelli, G.; Leoncini, E.; Bregola, V.; Bosi, S.; Cicero, A. F. G.; Hrelia, S. Bioactive Peptides in Cereals and Legumes: Agronomical, Biochemical and Clinical Aspects. Int. J. Mol. Sci. 2014, 15(11), 21120–21135. DOI: 10.3390/ijms151121120.
  • Cavazos, A.; Gonzalez De Mejia, E. Identification of Bioactive Peptides from Cereal Storage Proteins and Their Potential Role in Prevention of Chronic Diseases. Compr. Rev. Food Sci. Food Saf. 2013, 12(4), 364–380. DOI: 10.1111/1541-4337.12017.
  • Ren, Y.; Liang, K.; Jin, Y.; Zhang, M.; Chen, Y.; Wu, H.; Lai, F. Identification and Characterization of Two Novel α-glucosidase Inhibitory Oligopeptides from Hemp (Cannabis Sativa L.) Seed Protein. J. Funct. Foods. 2016, 26, 439–450. DOI: 10.1016/j.jff.2016.07.024.
  • Zhang, H.; Wang, J.; Liu, Y.; Sun, B. Peptides Derived from Oats Improve Insulin Sensitivity. J. Biomed. Sci. 2015, 4, 1.
  • Wang, J.; Du, K.; Fang, L.; Liu, C.; Min, W.; Liu, J. Evaluation of the Antidiabetic Activity of Hydrolyzed Peptides Derived from Juglans Mandshurica Maxim. Fruits in Insulin‐resistant HepG2 Cells and Type 2 Diabetic Mice. J. Food Biochem. 2018, 42(3), e12518. DOI: 10.1111/jfbc.12518.
  • Wang, J.; Wu, T.; Fang, L.; Liu, C.; Liu, X.; Li, H.; Shi, J.; Li, M.; Min, W. Anti-diabetic Effect by Walnut (Juglans Mandshurica Maxim.)-derived Peptide LPLLR through Inhibiting α-glucosidase and α-amylase, and Alleviating Insulin Resistance of Hepatic HepG2 Cells. J. Funct. Foods. 2020, 69, 103944. DOI: 10.1016/j.jff.2020.103944.
  • Freitas, C. S.; Vericimo, M. A.; Da Silva, M. L.; Da Costa, G. C. V.; Pereira, P. R.; Paschoalin, V. M. F.; Del Aguila, E. M. Encrypted Antimicrobial and Antitumoral Peptides Recovered from a Protein-rich Soybean (Glycine Max) By-product. J. Funct. Foods. 2019, 54, 187–198. DOI: 10.1016/j.jff.2019.01.024.
  • Shidal, C.; Inaba, J.-I.; Yaddanapudi, K.; Davis, K. R. The Soy-derived Peptide Lunasin Inhibits Invasive Potential of Melanoma Initiating Cells. Oncotarget. 2017, 8(15), 25525. DOI: 10.18632/oncotarget.16066.
  • Ren, G.; Zhu, Y.; Shi, Z.; Li, J. Detection of Lunasin in Quinoa (Chenopodium Quinoa Willd.) And the in Vitro Evaluation of Its Antioxidant and Anti‐inflammatory Activities. J. Sci. Food Agric. 2017, 97(12), 4110–4116. DOI: 10.1002/jsfa.8278.
  • Vilcacundo, R.; Martínez-Villaluenga, C.; Hernández-Ledesma, B. Release of Dipeptidyl Peptidase IV, α-amylase and α-glucosidase Inhibitory Peptides from Quinoa (Chenopodium Quinoa Willd.) During in Vitro Simulated Gastrointestinal Digestion. J. Funct. Foods. 2017, 35, 531–539. DOI: 10.1016/j.jff.2017.06.024.
  • Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Effect of Processing on Conformational Changes of Food Proteins Related to Allergenicity. Trends Food Sci. Technol. 2016, 49, 24–34. DOI: 10.1016/j.tifs.2016.01.001.
  • Shewry, P. R.; Beaudoin, F.; Jenkins, J.; Griffiths-Jones, S.; Mills, E. N. C. Plant Protein Families and Their Relationships to Food Allergy. Biochem. Soc. Trans. 2002, 30(6), 906–910. DOI: 10.1042/bst0300906.
  • Budseekoad, S.; Takahashi Yupanqui, C.; Alashi, A. M.; Aluko, R. E.; Youravong, W. Anti-allergic Activity of Mung Bean (Vigna Radiata (L.) Wilczek) Protein Hydrolysates Produced by Enzymatic Hydrolysis Using Non-gastrointestinal and Gastrointestinal Enzymes. J. Food Biochem. 2019, 43(1), e12674. DOI: 10.1111/jfbc.12674.
  • Rainer, H.; Jean-Michel, W.; Herve, B.; Anne-Kathrin, P. Cytotoxic and Allergenic Potential of Bioactive Proteins and Peptides. Curr. Pharm. Des. 2007, 13(9), 897–920. DOI: 10.2174/138161207780414232.
  • Pandey, K. B.; Rizvi, S. I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2(5), 270–278. DOI: 10.4161/oxim.2.5.9498.
  • Clemente, A.; Arques, M. C.; Dalmais, M.; Le Signor, C.; Chinoy, C.; Olias, R.; Rayner, T.; Isaac, P. G.; Lawson, D. M.; Bendahmane, A.; et al. Correction: Eliminating Anti-Nutritional Plant Food Proteins: The Case of Seed Protease Inhibitors in Pea. PLOS ONE. 2015, 10(9), e0138039. DOI: 10.1371/journal.pone.0138039.
  • Sarwar Gilani, G.; Wu Xiao, C.; Cockell, K. A. Impact of Antinutritional Factors in Food Proteins on the Digestibility of Protein and the Bioavailability of Amino Acids and on Protein Quality. Br. J. Nutr. 2012, 108(S2), S315–S332. DOI: 10.1017/S0007114512002371.
  • Geiselhart, S.; Hoffmann-Sommergruber, K.; Bublin, M. Tree Nut Allergens. Mol. Immunol. 2018, 100, 71–81. DOI: 10.1016/j.molimm.2018.03.011.
  • Tatham, A. S.; Shewry, P. R. Allergens to Wheat and Related Cereals. Clin. Exp. Allergy. 2008, 38(11), 1712–1726.
  • Weinberger, T.; Sicherer, S. Current Perspectives on Tree Nut Allergy: A Review. J. Asthma Allergy 2018, 11, 41–51. DOI: 10.2147/JAA.S141636.
  • Schalk, K.; Lexhaller, B.; Koehler, P.; Scherf, K. A.; Sestak, K. Isolation and Characterization of Gluten Protein Types from Wheat, Rye, Barley and Oats for Use as Reference Materials. PloS One. 2017, 12(2), e0172819–e0172819. DOI: 10.1371/journal.pone.0172819.
  • García-Molina, M. D.; Giménez, M. J.; Sánchez-León, S.; Barro, F. Gluten Free Wheat: Are We There? Nutrients. 2019, 11(3), 487. DOI: 10.3390/nu11030487.
  • Barro, F.; Iehisa, J. C. M.; Giménez, M. J.; García‐Molina, M. D.; Ozuna, C. V.; Comino, I.; Sousa, C.; Gil‐Humanes, J. Targeting of Prolamins by RNA I in Bread Wheat: Effectiveness of Seven Silencing‐fragment Combinations for Obtaining Lines Devoid of Coeliac Disease Epitopes from Highly Immunogenic Gliadins. Plant Biotechnol. J. 2016, 14(3), 986–996. DOI: 10.1111/pbi.12455.
  • Gil-Humanes, J.; Pistón, F.; Giménez, M. J.; Martín, A.; Barro, F.; Alvarez, M. L. The Introgression of RNAi Silencing of γ-gliadins into Commercial Lines of Bread Wheat Changes the Mixing and Technological Properties of the Dough. PLoS ONE. 2012, 7(9), e45937. DOI: 10.1371/journal.pone.0045937.
  • Day, L.;. Proteins from Land Plants – Potential Resources for Human Nutrition and Food Security. Trends Food Sci. Technol. 2013, 32(1), 25–42. DOI: 10.1016/j.tifs.2013.05.005.
  • Matthews, B. W.;. Hydrophobic Interactions in Proteins. eLS. 2001. DOI: 10.1038/npg.els.0002975.
  • Totosaus, A.; Montejano, J. G.; Salazar, J. A.; Guerrero, I. A Review of Physical and Chemical Protein-gel Induction. Int. J. Food Sci. Technol. 2002, 37(6), 589–601. DOI: 10.1046/j.1365-2621.2002.00623.x.
  • Mensink, M. A.; Frijlink, H. W.; van der Voort Maarschalk, K.; Hinrichs, W. L. J. How Sugars Protect Proteins in the Solid State and during Drying (Review): Mechanisms of Stabilization in Relation to Stress Conditions. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. DOI: 10.1016/j.ejpb.2017.01.024.
  • Kitabatake, N.; Tahara, M.; Doi, E. Thermal Denaturation of Soybean Protein at Low Water Contents. Agric Biol Chem. 1990, 54(9), 2205–2212.
  • Shao, -Y.-Y.; Lin, K.-H.; Kao, Y.-J. Modification of Foaming Properties of Commercial Soy Protein Isolates and Concentrates by Heat Treatments. J. Food Qual. 2016, 39(6), 695–706. DOI: 10.1111/jfq.12241.
  • Sorgentini, D. A.; Wagner, J. R.; Anon, M. C. Effects of Thermal Treatment of Soy Protein Isolate on the Characteristics and Structure-Function Relationship of Soluble and Insoluble Fractions. J. Agric. Food Chem. 1995, 43(9), 2471–2479. DOI: 10.1021/jf00057a029.
  • López de Ogara, M. C.; Delgado De Layño, M.; Pilosof, A. M.; Macchi, R. A. Functional Properties of Soy Protein Isolates as Affected by Heat Treatment during Isoelectric Precipitation. J. Am. Oil Chem. Soc. 1992, 69(2), 184–187. DOI: 10.1007/BF02540573.
  • Jiang, J.; Xiong, Y. L.; Chen, J. pH Shifting Alters Solubility Characteristics and Thermal Stability of Soy Protein Isolate and Its Globulin Fractions in Different pH, Salt Concentration, and Temperature Conditions. J. Agric. Food Chem. 2010, 58(13), 8035–8042. DOI: 10.1021/jf101045b.
  • López, D. N.; Ingrassia, R.; Busti, P.; Wagner, J.; Boeris, V.; Spelzini, D. Effects of Extraction pH of Chia Protein Isolates on Functional Properties. LWT. 2018, 97, 523–529. DOI: 10.1016/j.lwt.2018.07.036.
  • Shand, P. J.; Ya, H.; Pietrasik, Z.; Wanasundara, P. K. J. P. D. Physicochemical and Textural Properties of Heat-induced Pea Protein Isolate Gels. Food Chem. 2007, 102(4), 1119–1130. DOI: 10.1016/j.foodchem.2006.06.060.
  • Mäkinen, O. E.; Zannini, E.; Arendt, E. K. Modifying the Cold Gelation Properties of Quinoa Protein Isolate: Influence of Heat-Denaturation pH in the Alkaline Range. Plant Foods Human Nutr. 2015, 70(3), 250–256. DOI: 10.1007/s11130-015-0487-4.
  • Chango, A.; Villaume, C.; Bau, H. M.; Nicolas, J. P.; Méjean, L. Fractionation by Thermal Coagulation of Lupin Proteins: Physicochemical Characteristics. Food Res. Int. 1995, 28(1), 91–99. DOI: 10.1016/0963-9969(95)93337-T.
  • Ma, Z.; Boye, J. I.; Simpson, B. K.; Prasher, S. O.; Monpetit, D.; Malcolmson, L. Thermal Processing Effects on the Functional Properties and Microstructure of Lentil, Chickpea, and Pea Flours. Food Res. Int. 2011, 44(8), 2534–2544. DOI: 10.1016/j.foodres.2010.12.017.
  • Thawornchinsombut, S.; Park, J. W. ROLE OF pH IN SOLUBILITY AND CONFORMATIONAL CHANGES OF PACIFIC WHITING MUSCLE PROTEINS. J. Food Biochem. 2004, 28(2), 135–154. DOI: 10.1111/j.1745-4514.2004.tb00061.x.
  • González-Pérez, S.; Arellano, J. B. 15 - Vegetable Protein Isolates. In Handbook of Hydrocolloids, Second ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: Sawston, United Kingdom, 2009; pp 383–419.
  • Mäkinen, O. E.; Sozer, N.; Ercili-Cura, D.; Poutanen, K. Chapter 6 - Protein from Oat: Structure, Processes, Functionality, and Nutrition. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: San Diego, 2017; pp 105–119.
  • Deleu, L. J.; Lambrecht, M. A.; Van de Vondel, J.; Delcour, J. A. The Impact of Alkaline Conditions on Storage Proteins of Cereals and Pseudo-cereals. Curr. Opin. Food Sci. 2019, 25, 98–103. DOI: 10.1016/j.cofs.2019.02.017.
  • Malekzad, H.; Mirshekari, H.; Sahandi Zangabad, P.; Moosavi Basri, S. M.; Baniasadi, F.; Sharifi Aghdam, M.; Karimi, M.; Hamblin, M. R. Plant Protein-based Hydrophobic Fine and Ultrafine Carrier Particles in Drug Delivery Systems. Crit. Rev. Biotechnol. 2018, 38(1), 47–67. DOI: 10.1080/07388551.2017.1312267.
  • Schwenke, K. D.;. Reflections about the Functional Potential of Legume Proteins A Review. Nahrung/Food. 2001, 45(6), 377–381. DOI: 10.1002/1521-3803(20011001)45:6<377::AID-FOOD377>3.0.CO;2-G.
  • Lam, A. C. Y.; Can Karaca, A.; Tyler, R. T.; Nickerson, M. T. Pea Protein Isolates: Structure, Extraction, and Functionality. Food Rev. Int. 2018, 34(2), 126–147. DOI: 10.1080/87559129.2016.1242135.
  • Burgos-Díaz, C.; Piornos, J. A.; Wandersleben, T.; Ogura, T.; Hernández, X.; Rubilar, M. Emulsifying and Foaming Properties of Different Protein Fractions Obtained from a Novel Lupin Variety AluProt-CGNA® (Lupinus Luteus). J. Food Sci. 2016, 81(7), C1699–C1706. DOI: 10.1111/1750-3841.13350.
  • Mane, S. P.; Johnson, S. K.; Duranti, M.; Pareek, V. K.; Utikar, R. P. Lupin Seed γ-conglutin: Extraction and Purification Methods - A Review. Trends Food Sci. Technol. 2018, 73, 1–11. DOI: 10.1016/j.tifs.2017.12.008.
  • Pérez, S. G.; Vereijken, J. M.; van Koningsveld, G. A.; Gruppen, H.; Voragen, A. G. J. Physicochemical Properties of 2S Albumins and the Corresponding Protein Isolate from Sunflower (Helianthus Annuus). J. Food Sci. 2005, 70(1), C98–C103. DOI: 10.1111/j.1365-2621.2005.tb09029.x.
  • Ustunol, Z. Physical, Chemical, and Processing-Induced Changes in Proteins. In Applied Food Protein Chemistry; Ustunol, Z., Ed.; John Wiley & Sons, Ltd: West Sussex, United Kingdom, 2015; pp 23–46.
  • Lee, K. H.; Ryu, H. S.; Rhee, K. C. Protein Solubility Characteristics of Commercial Soy Protein Products. J. Am. Oil Chem. Soc. 2003, 80(1), 85–90. DOI: 10.1007/s11746-003-0656-6.
  • Jiang, L.; Wang, Z.; Li, Y.; Meng, X.; Sui, X.; Qi, B.; Zhou, L. Relationship between Surface Hydrophobicity and Structure of Soy Protein Isolate Subjected to Different Ionic Strength. Int. J. Food Prop. 2015, 18(5), 1059–1074. DOI: 10.1080/10942912.2013.865057.
  • Xu, H.-N.; Liu, Y.; Zhang, L. Salting-out and Salting-in: Competitive Effects of Salt on the Aggregation Behavior of Soy Protein Particles and Their Emulsifying Properties. Soft Matter. 2015, 11(29), 5926–5932. DOI: 10.1039/C5SM00954E.
  • Yuan, Y. J.; Velev, O. D.; Chen, K.; Campbell, B. E.; Kaler, E. W.; Lenhoff, A. M. Effect of pH and Ca2+-Induced Associations of Soybean Proteins. J. Agric. Food Chem. 2002, 50(17), 4953–4958. DOI: 10.1021/jf025582d.
  • Queirós, R. P.; Saraiva, J. A.; Da Silva, J. A. L. Tailoring Structure and Technological Properties of Plant Proteins Using High Hydrostatic Pressure. Crit. Rev. Food Sci. Nutr. 2018, 58(9), 1538–1556. DOI: 10.1080/10408398.2016.1271770.
  • Li, Y.; Chen, Z.; Mo, H. Effects of Pulsed Electric Fields on Physicochemical Properties of Soybean Protein Isolates. LWT - Food Sci. Technol. 2007, 40(7), 1167–1175. DOI: 10.1016/j.lwt.2006.08.015.
  • Hu, H.; Cheung, I. W. Y.; Pan, S.; Li-Chan, E. C. Y. Effect of High Intensity Ultrasound on Physicochemical and Functional Properties of Aggregated Soybean β-conglycinin and Glycinin. Food Hydrocolloids. 2015, 45, 102–110. DOI: 10.1016/j.foodhyd.2014.11.004.
  • Hu, H.; Wu, J.; Li-Chan, E. C. Y.; Zhu, L.; Zhang, F.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S. Effects of Ultrasound on Structural and Physical Properties of Soy Protein Isolate (SPI) Dispersions. Food Hydrocolloids. 2013, 30(2), 647–655. DOI: 10.1016/j.foodhyd.2012.08.001.
  • Jambrak, A. R.; Lelas, V.; Mason, T. J.; Krešić, G.; Badanjak, M. Physical Properties of Ultrasound Treated Soy Proteins. J. Food Eng. 2009, 93(4), 386–393. DOI: 10.1016/j.jfoodeng.2009.02.001.
  • Jiang, L.; Wang, J.; Li, Y.; Wang, Z.; Liang, J.; Wang, R.; Chen, Y.; Ma, W.; Qi, B.; Zhang, M. Effects of Ultrasound on the Structure and Physical Properties of Black Bean Protein Isolates. Food Res. Int. 2014, 62, 595–601. DOI: 10.1016/j.foodres.2014.04.022.
  • Malik, M. A.; Sharma, H. K.; Saini, C. S. High Intensity Ultrasound Treatment of Protein Isolate Extracted from Dephenolized Sunflower Meal: Effect on Physicochemical and Functional Properties. Ultrason. Sonochem. 2017, 39, 511–519. DOI: 10.1016/j.ultsonch.2017.05.026.
  • Puppo, C.; Chapleau, N.; Speroni, F.; De Lamballerie-anton, M.; Michel, F.; Añón, C.; Anton, M. Physicochemical Modifications of High-Pressure-Treated Soybean Protein Isolates. J. Agric. Food Chem. 2004, 52(6), 1564–1571. DOI: 10.1021/jf034813t.
  • Wang, X.-S.; Tang, C.-H.; Li, B.-S.; Yang, X.-Q.; Li, L.; Ma, C.-Y. Effects of High-pressure Treatment on Some Physicochemical and Functional Properties of Soy Protein Isolates. Food Hydrocolloids. 2008, 22(4), 560–567. DOI: 10.1016/j.foodhyd.2007.01.027.
  • Molina, E.; Papadopoulou, A.; Ledward, D. A. Emulsifying Properties of High Pressure Treated Soy Protein Isolate and 7S and 11S Globulins. Food Hydrocolloids. 2001, 15(3), 263–269. DOI: 10.1016/S0268-005X(01)00023-6.
  • Qin, Z.; Guo, X.; Lin, Y.; Chen, J.; Liao, X.; Hu, X.; Wu, J. Effects of High Hydrostatic Pressure on Physicochemical and Functional Properties of Walnut (Juglans Regia L.) Protein Isolate. J. Sci. Food Agric. 2013, 93(5), 1105–1111. DOI: 10.1002/jsfa.5857.
  • Chapleau, N.; De Lamballerie-anton, M. Improvement of Emulsifying Properties of Lupin Proteins by High Pressure Induced Aggregation. Food Hydrocolloids. 2003, 17(3), 273–280. DOI: 10.1016/S0268-005X(02)00077-2.
  • Khan, N. M.; Mu, T.-H.; Zhang, M.; Chen, J.-W. Effects of High Hydrostatic Pressure on the Physicochemical and Emulsifying Properties of Sweet Potato Protein. Int. J. Food Sci. Technol. 2013, 48(6), 1260–1268. DOI: 10.1111/ijfs.12085.
  • Condés, M. C.; Añón, M. C.; Mauri, A. N. Amaranth Protein Films Prepared with High-pressure Treated Proteins. J. Food Eng. 2015, 166, 38–44. DOI: 10.1016/j.jfoodeng.2015.05.005.
  • Mune Mune, M. A.; Minka, S. R.; Mbome, I. L. Functional Properties of Acetylated and Succinylated Cowpea Protein Concentrate and Effect of Enzymatic Hydrolysis on Solubility. Int. J. Food Sci. Nutr. 2011, 62(4), 310–317. DOI: 10.3109/09637486.2010.538670.
  • Bora, P. S.;. Functional Properties of Native and Succinylated Lentil (Lens Culinaris) Globulins. Food Chem. 2002, 77(2), 171–176. DOI: 10.1016/S0308-8146(01)00332-6.
  • Lawal, O. S.; Adebowale, K. O. Effect of Acetylation and Succinylation on Solubility Profile, Water Absorption Capacity, Oil Absorption Capacity and Emulsifying Properties of Mucuna Bean (Mucuna Pruriens) Protein Concentrate. Nahrung/Food. 2004, 48(2), 129–136. DOI: 10.1002/food.200300384.
  • Lawal, O. S.; Adebowale, K. O.; Adebowale, Y. A. Functional Properties of Native and Chemically Modified Protein Concentrates from Bambarra Groundnut. Food Res. Int. 2007, 40(8), 1003–1011. DOI: 10.1016/j.foodres.2007.05.011.
  • Molina Ortiz, S. E.; Wagner, J. R. Hydrolysates of Native and Modified Soy Protein Isolates: Structural Characteristics, Solubility and Foaming Properties. Food Res. Int. 2002, 35(6), 511–518. DOI: 10.1016/S0963-9969(01)00149-1.
  • Li, D.; Zhao, X.-H. Limited Deamidation of Soybean Protein Isolates by Glutaminase and Its Impacts on the Selected Properties. Int. J. Food Prop. 2012, 15(3), 638–655. DOI: 10.1080/10942912.2010.494760.
  • Krause, J.-P.; Bagger, C.; Schwenke, K. D. Rheological Properties of Modified Lupin Proteins. Nahrung/Food. 2001, 45(6), 412–415. DOI: 10.1002/1521-3803(20011001)45:6<412::AID-FOOD412>3.0.CO;2-J.
  • Speroni, F.; Jung, S.; De Lamballerie, M. Effects of Calcium and Pressure Treatment on Thermal Gelation of Soybean Protein. J. Food Sci. 2010, 75(1), E30–E38. DOI: 10.1111/j.1750-3841.2009.01390.x.
  • Wouters, A. G. B.; Rombouts, I.; Fierens, E.; Brijs, K.; Delcour, J. A. Relevance of the Functional Properties of Enzymatic Plant Protein Hydrolysates in Food Systems. Compr. Rev. Food Sci. Food Saf. 2016, 15(4), 786–800. DOI: 10.1111/1541-4337.12209.
  • Zhao, H.; Li, W.; Qin, F.; Chen, J. Calcium Sulphate-induced Soya Bean Protein Tofu-type Gels: Influence of Denaturation and Particle Size. Int. J. Food Sci. Technol. 2016, 51(3), 731–741. DOI: 10.1111/ijfs.13010.
  • Kohyama, K.; Murata, M.; Tani, F.; Sano, Y.; Doi, E. Effects of Protein Composition on Gelation of Mixtures Containing Soybean 7S and 11S Globulins. Biosci., Biotechnol., Biochem. 1995, 59(2), 240–245. DOI: 10.1271/bbb.59.240.
  • James, A. T.; Yang, A. Influence of Globulin Subunit Composition of Soybean Proteins on Silken Tofu Quality. 2. Absence of 11SA4 Improves the Effect of Protein Content on Tofu Hardness. Crop Pasture Sci. 2014, 65(3), 268–273. DOI: 10.1071/CP13399.
  • Chen, N.; Zhao, M.; Niepceron, F.; Nicolai, T.; Chassenieux, C. The Effect of the pH on Thermal Aggregation and Gelation of Soy Proteins. Food Hydrocolloids. 2017, 66, 27–36. DOI: 10.1016/j.foodhyd.2016.12.006.
  • Murekatete, N.; Hua, Y.; Chamba, M. V. M.; Djakpo, O.; Zhang, C. Gelation Behavior and Rheological Properties of Salt- or Acid-Induced Soy Proteins Soft Tofu-Type Gels. J. Texture Stud. 2014, 45(1), 62–73. DOI: 10.1111/jtxs.12052.
  • Lopes-da-silva, J. A.; Monteiro, S. R. Gelling and Emulsifying Properties of Soy Protein Hydrolysates in the Presence of a Neutral Polysaccharide. Food Chem. 2019, 294, 216–223. DOI: 10.1016/j.foodchem.2019.05.039.
  • Nehete, J. Y.; Bhambar, R. S.; Narkhede, M. R.; Gawali, S. R. Natural Proteins: Sources, Isolation, Characterization and Applications. Pharmacogn. Rev. 2013, 7(14), 107–116. DOI: 10.4103/0973-7847.120508.
  • Kohyama, K.; Nishinari, K. Rheological Studies on the Gelation Process of Soybean 7 S and 11 S Proteins in the Presence of Glucono-.delta.-lactone. J. Agric. Food Chem. 1993, 41(1), 8–14. DOI: 10.1021/jf00025a003.
  • Wu, C.; Hua, Y.; Chen, Y.; Kong, X.; Zhang, C. Effect of Temperature, Ionic Strength and 11S Ratio on the Rheological Properties of Heat-induced Soy Protein Gels in Relation to Network Proteins Content and Aggregates Size. Food Hydrocolloids. 2017, 66, 389–395. DOI: 10.1016/j.foodhyd.2016.12.007.
  • Renkema, J. M. S.; Knabben, J. H. M.; van Vliet, T. Gel Formation by β-conglycinin and Glycinin and Their Mixtures. Food Hydrocolloids. 2001, 15(4–6), 407–414. DOI: 10.1016/S0268-005X(01)00051-0.
  • Tang, C.-H.; Wu, H.; Chen, Z.; Yang, X.-Q. Formation and Properties of Glycinin-rich and β-conglycinin-rich Soy Protein Isolate Gels Induced by Microbial Transglutaminase. Food Res. Int. 2006, 39(1), 87–97. DOI: 10.1016/j.foodres.2005.06.004.
  • Berghout, J. A. M.; Boom, R. M.; van der Goot, A. J. Understanding the Differences in Gelling Properties between Lupin Protein Isolate and Soy Protein Isolate. Food Hydrocolloids. 2015, 43, 465–472. DOI: 10.1016/j.foodhyd.2014.07.003.
  • Batista, A. P.; Portugal, C. A. M.; Sousa, I.; Crespo, J. G.; Raymundo, A. Accessing Gelling Ability of Vegetable Proteins Using Rheological and Fluorescence Techniques. Int. J. Biol. Macromol. 2005, 36(3), 135–143. DOI: 10.1016/j.ijbiomac.2005.04.003.
  • Sun, X. D.; Arntfield, S. D. Gelation Properties of Salt-extracted Pea Protein Induced by Heat Treatment. Food Res. Int. 2010, 43(2), 509–515. DOI: 10.1016/j.foodres.2009.09.039.
  • Ruiz, G. A.; Xiao, W.; van Boekel, M.; Minor, M.; Stieger, M. Effect of Extraction pH on Heat-induced Aggregation, Gelation and Microstructure of Protein Isolate from Quinoa (Chenopodium Quinoa Willd). Food Chem. 2016, 209, 203–210. DOI: 10.1016/j.foodchem.2016.04.052.
  • Montellano Duran, N.; Spelzini, D.; Boeris, V. Characterization of Acid – Induced Gels of Quinoa Proteins and Carrageenan. LWT. 2019, 108, 39–47. DOI: 10.1016/j.lwt.2019.03.052.
  • Nieto-Nieto, T. V.; Wang, Y. X.; Ozimek, L.; Chen, L. Inulin at Low Concentrations Significantly Improves the Gelling Properties of Oat Protein – A Molecular Mechanism Study. Food Hydrocolloids. 2015, 50, 116–127. DOI: 10.1016/j.foodhyd.2015.03.031.
  • Yang, C.; Wang, Y.; Chen, L. Fabrication, Characterization and Controlled Release Properties of Oat Protein Gels with Percolating Structure Induced by Cold Gelation. Food Hydrocolloids. 2017, 62, 21–34. DOI: 10.1016/j.foodhyd.2016.07.023.
  • Yang, C.; Wang, Y.; Vasanthan, T.; Chen, L. Impacts of pH and Heating Temperature on Formation Mechanisms and Properties of Thermally Induced Canola Protein Gels. Food Hydrocolloids. 2014, 40, 225–236. DOI: 10.1016/j.foodhyd.2014.03.011.
  • Tan, S. H.; Mailer, R. J.; Blanchard, C. L.; Agboola, S. O.; Day, L. Gelling Properties of Protein Fractions and Protein Isolate Extracted from Australian Canola Meal. Food Res. Int. 2014, 62, 819–828. DOI: 10.1016/j.foodres.2014.04.055.
  • Kim, J. H.; Varankovich, N. V.; Stone, A. K.; Nickerson, M. T. Nature of Protein-protein Interactions during the Gelation of Canola Protein Isolate Networks. Food Res. Int. 2016, 89, 408–414. DOI: 10.1016/j.foodres.2016.08.018.
  • Pinterits, A.; Arntfield, S. D. Improvement of Canola Protein Gelation Properties through Enzymatic Modification with Transglutaminase. LWT - Food Sci. Technol. 2008, 41(1), 128–138. DOI: 10.1016/j.lwt.2007.01.011.
  • Gruener, L.; Ismond, M. A. H. Effects of Acetylation and Succinylation on the Functional Properties of the Canola 12S Globulin. Food Chem. 1997, 60(4), 513–520. DOI: 10.1016/S0308-8146(97)00016-2.
  • Uruakpa, F. O.; Arntfield, S. D. Rheological Characteristics of Commercial Canola Protein isolate–κ-carrageenan Systems. Food Hydrocolloids. 2004, 18(3), 419–427. DOI: 10.1016/j.foodhyd.2003.07.001.
  • Zhou, J.-Z.; Zhang, H.; Gao, L.; Wang, L.; Qian, H.-F. Influence of pH and Ionic Strength on Heat-induced Formation and Rheological Properties of Cottonseed Protein Gels. Food Bioprod. Process. 2015, 96, 27–34. DOI: 10.1016/j.fbp.2015.06.004.
  • Coorey, R.; Tjoe, A.; Jayasena, V. Gelling Properties of Chia Seed and Flour. J. Food Sci. 2014, 79(5), E859–E866. DOI: 10.1111/1750-3841.12444.
  • Damodaran, S.;. Protein Stabilization of Emulsions and Foams. J. Food Sci. 2005, 70(3), R54–R66. DOI: 10.1111/j.1365-2621.2005.tb07150.x.
  • Murray, B. S.;. Stabilization of Bubbles and Foams. Curr. Opin. Colloid Interface Sci. 2007, 12(4–5), 232–241. DOI: 10.1016/j.cocis.2007.07.009.
  • Alleoni, A. C. C.;. Albumen Protein and Functional Properties of Gelation and Foaming. Sci. Agricola. 2006, 63(3), 291–298. DOI: 10.1590/S0103-90162006000300013.
  • Piornos, J. A.; Burgos-Díaz, C.; Ogura, T.; Morales, E.; Rubilar, M.; Maureira-Butler, I.; Salvo-Garrido, H. Functional and Physicochemical Properties of A Protein Isolate from AluProt-CGNA: A Novel Protein-rich Lupin Variety (Lupinus Luteus). Food Res. Int. 2015, 76, 719–724. DOI: 10.1016/j.foodres.2015.07.013.
  • Cano-Medina, A.; Jiménez-Islas, H.; Dendooven, L.; Herrera, R. P.; González-Alatorre, G.; Escamilla-Silva, E. M. Emulsifying and Foaming Capacity and Emulsion and Foam Stability of Sesame Protein Concentrates. Food Res. Int. 2011, 44(3), 684–692. DOI: 10.1016/j.foodres.2010.12.015.
  • Wierenga, P. A.; Gruppen, H. New Views on Foams from Protein Solutions. Curr. Opin. Colloid Interface Sci. 2010, 15(5), 365–373. DOI: 10.1016/j.cocis.2010.05.017.
  • Amagliani, L.; Schmitt, C. Globular Plant Protein Aggregates for Stabilization of Food Foams and Emulsions. Trends Food Sci. Technol. 2017, 67, 248–259. DOI: 10.1016/j.tifs.2017.07.013.
  • Martínez, K. D.; Carrera Sánchez, C.; Rodríguez Patino, J. M.; Pilosof, A. M. R. Interfacial and Foaming Properties of Soy Protein and Their Hydrolysates. Food Hydrocolloids. 2009, 23(8), 2149–2157. DOI: 10.1016/j.foodhyd.2009.03.015.
  • Were, L.; Hettiarachchy, N. S.; Kalapathy, U. Modified Soy Proteins with Improved Foaming and Water Hydration Properties. J. Food Sci. 1997, 62(4), 821–824. DOI: 10.1111/j.1365-2621.1997.tb15463.x.
  • Zeng, M.; Adhikari, B.; He, Z.; Qin, F.; Huang, X.; Chen, J. Improving the Foaming Properties of Soy Protein Isolate through Partial Enzymatic Hydrolysis. Drying Technol. 2013, 31(13–14), 1545–1552. DOI: 10.1080/07373937.2013.829490.
  • de Oliveira, C. F.; Corrêa, A. P. F.; Coletto, D.; Daroit, D. J.; Cladera-Olivera, F.; Brandelli, A. Soy Protein Hydrolysis with Microbial Protease to Improve Antioxidant and Functional Properties. J. Food Sci. Technol. 2015, 52(5), 2668–2678. DOI: 10.1007/s13197-014-1317-7.
  • Vioque, J.; Sánchez-Vioque, R.; Clemente, A.; Pedroche, J.; Millán, F. Partially Hydrolyzed Rapeseed Protein Isolates with Improved Functional Properties. J. Am. Oil Chem. Soc. 2000, 77(4), 447–450. DOI: 10.1007/s11746-000-0072-y.
  • Chabanon, G.; Chevalot, I.; Framboisier, X.; Chenu, S.; Marc, I. Hydrolysis of Rapeseed Protein Isolates: Kinetics, Characterization and Functional Properties of Hydrolysates. Process Biochem. 2007, 42(10), 1419–1428.
  • Larré, C.; Mulder, W.; Sánchez-Vioque, R.; Lazko, J.; Bérot, S.; Guéguen, J.; Popineau, Y. Characterisation and Foaming Properties of Hydrolysates Derived from Rapeseed Isolate. Colloids Surf. B. 2006, 49(1), 40–48. DOI: 10.1016/j.colsurfb.2006.02.009.
  • Demirhan, E.; Özbek, B. Influence of Enzymatic Hydrolysis on the Functional Properties of Sesame Cake Protein. Chem. Eng. Commun. 2013, 200(5), 655–666. DOI: 10.1080/00986445.2012.717316.
  • Kanu, P. J.; Kanu, J. B.; Sandy, E. H.; Kandeh, J. B. A.; M.p., M. P.; Huiming, Z. Optimization of Enzymatic Hydrolysis of Defatted Sesame Flour by Different Proteases and Their Effect on the Functional Properties of the Resulting Protein Hydrolysate. Am. J. Food Technol. 2009, 4(6), 226–240. DOI: 10.3923/ajft.2009.226.240.
  • Ren, J.; Song, C.-L.; Zhang, H.-Y.; Kopparapu, N.-K.; Zheng, X.-Q. Effect of Hydrolysis Degree on Structural and Interfacial Properties of Sunflower Protein Isolates. J. Food Process. Preserv. 2017, 41(1), e13092. DOI: 10.1111/jfpp.13092.
  • Rodríguez Patino, J. M.; Miñones Conde, J.; Linares, H. M.; Pedroche Jiménez, J. J.; Carrera Sánchez, C.; Pizones, V.; Rodríguez, F. M. Interfacial and Foaming Properties of Enzyme-induced Hydrolysis of Sunflower Protein Isolate. Food Hydrocolloids. 2007, 21(5–6), 782–793. DOI: 10.1016/j.foodhyd.2006.09.002.
  • Barać, M.; Cabrilo, S.; Pešić, M.; Stanojević, S.; Pavlićević, M.; Maćej, O.; Ristić, N. Functional Properties of Pea (Pisum Sativum, L.) Protein Isolates Modified with Chymosin. Int. J. Mol. Sci. 2011, 12(12), 8372–8387. DOI: 10.3390/ijms12128372.
  • Carp, D. J.; Wagner, J.; Bartholomai, G. B.; Pilosof, A. M. R. Rheological Method for Kinetics of Drainage and Disproportionation of Soy Proteins Foams. J. Food Sci. 1997, 62(6), 1105–1109. DOI: 10.1111/j.1365-2621.1997.tb12223.x.
  • Wang, M.-P.; Chen, X.-W.; Guo, J.; Yang, J.; Wang, J.-M.; Yang, X.-Q. Stabilization of Foam and Emulsion by Subcritical Water-treated Soy Protein: Effect of Aggregation State. Food Hydrocolloids. 2019, 87, 619–628. DOI: 10.1016/j.foodhyd.2018.08.047.
  • Morales, R.; Martínez, K. D.; Pizones Ruiz-Henestrosa, V. M.; Pilosof, A. M. R. Modification of Foaming Properties of Soy Protein Isolate by High Ultrasound Intensity: Particle Size Effect. Ultrason. Sonochem. 2015, 26, 48–55. DOI: 10.1016/j.ultsonch.2015.01.011.
  • Xiong, T.; Xiong, W.; Ge, M.; Xia, J.; Li, B.; Chen, Y. Effect of High Intensity Ultrasound on Structure and Foaming Properties of Pea Protein Isolate. Food Res. Int. 2018, 109, 260–267. DOI: 10.1016/j.foodres.2018.04.044.
  • Martínez-Velasco, A.; Lobato-Calleros, C.; Hernández-Rodríguez, B. E.; Román-Guerrero, A.; Alvarez-Ramirez, J.; Vernon-Carter, E. J. High Intensity Ultrasound Treatment of Faba Bean (Vicia Faba L.) Protein: Effect on Surface Properties, Foaming Ability and Structural Changes. Ultrason. Sonochem. 2018, 44, 97–105. DOI: 10.1016/j.ultsonch.2018.02.007.
  • Chao, D.; Jung, S.; Aluko, R. E. Physicochemical and Functional Properties of High Pressure-treated Isolated Pea Protein. Innovative Food Sci. Emerg. Technol. 2018, 45, 179–185.
  • Baier, A. K.; Knorr, D. Influence of High Isostatic Pressure on Structural and Functional Characteristics of Potato Protein. Food Res. Int. 2015, 77, 753–761. DOI: 10.1016/j.foodres.2015.05.053.
  • Malabat, C.; nchez-Vioque, R. I. S.; Rabiller, C.; Gu guen, J. Emulsifying and Foaming Properties of Native and Chemically Modified Peptides from the 2S and 12S Proteins of Rapeseed (Brassica Napus L.). J. Am. Oil Chem. Soc. 2001, 78(3), 235–242.
  • Kim, S. H.; Kinsella, J. E. Surface Active Properties of Food Proteins: Effects of Reduction of Disulfide Bonds on Film Properties and Foam Stability of Glycinin. J. Food Sci. 1987, 52(1), 128–131. DOI: 10.1111/j.1365-2621.1987.tb13987.x.
  • Zhang, Q.; Li, L.; Lan, Q.; Li, M.; Wu, D.; Chen, H.; Liu, Y.; Lin, D.; Qin, W.; Zhang, Z.; et al. Protein Glycosylation: A Promising Way to Modify the Functional Properties and Extend the Application in Food System. Crit. Rev. Food Sci. Nutr. 2019, 59(15), 2506–2533. DOI: 10.1080/10408398.2018.1507995.
  • Kinsella, J. E.; Shetty, K. J. Chemical Modification for Improving Functional Properties of Plant and Yeast Proteins. In Functionality and Protein Structure, AMERICAN CHEMICAL SOCIETY publications: Washington, DC, 1979; Vol. 92, pp 37–63.
  • Chao, D.; Aluko, R. E. Modification of the Structural, Emulsifying, and Foaming Properties of an Isolated Pea Protein by Thermal Pretreatment. CyTA - J. Food. 2018, 16(1), 357–366. DOI: 10.1080/19476337.2017.1406536.
  • Jamdar, S. N.; Rajalakshmi, V.; Pednekar, M. D.; Juan, F.; Yardi, V.; Sharma, A. Influence of Degree of Hydrolysis on Functional Properties, Antioxidant Activity and ACE Inhibitory Activity of Peanut Protein Hydrolysate. Food Chem. 2010, 121(1), 178–184. DOI: 10.1016/j.foodchem.2009.12.027.
  • Carp, D. J.; Bartholomai, G. B.; Relkin, P.; Pilosof, A. M. R. Effects of Denaturation on Soy Protein–xanthan Interactions: Comparison of a Whipping–rheological and a Bubbling Method. Colloids Surf. B. 2001, 21(1–3), 163–171. DOI: 10.1016/S0927-7765(01)00169-2.
  • Martínez, K. D.; Farías, M. E.; Pilosof, A. M. R. Effects of Soy Protein Hydrolysis and Polysaccharides Addition on Foaming Properties Studied by Cluster Analysis. Food Hydrocolloids. 2011, 25(7), 1667–1676. DOI: 10.1016/j.foodhyd.2011.03.005.
  • McClements, D. J.;. Critical Review of Techniques and Methodologies for Characterization of Emulsion Stability. Crit. Rev. Food Sci. Nutr. 2007, 47(7), 611–649. DOI: 10.1080/10408390701289292.
  • Lam, R. S. H.; Nickerson, M. T. Food Proteins: A Review on Their Emulsifying Properties Using A Structure–function Approach. Food Chem. 2013, 141(2), 975–984. DOI: 10.1016/j.foodchem.2013.04.038.
  • Nawaz, M. A.; Singh, T. K.; Stockmann, R.; Jegasothy, H.; Buckow, R. Quality Attributes of Ultra-High Temperature-Treated Model Beverages Prepared with Faba Bean Protein Concentrates. Foods. 2021, 10(6), 6. DOI: 10.3390/foods10061244.
  • van Vliet, T.; Martin, A. H.; Bos, M. A. Gelation and Interfacial Behaviour of Vegetable Proteins. Curr. Opin. Colloid Interface Sci. 2002, 7(5–6), 462–468. DOI: 10.1016/S1359-0294(02)00078-X.
  • Keerati-u-rai, M.; Corredig, M. Heat-Induced Changes Occurring in Oil/Water Emulsions Stabilized by Soy Glycinin and β-Conglycinin. J. Agric. Food Chem. 2010, 58(16), 9171–9180. DOI: 10.1021/jf101425j.
  • Chove, B. E.; Grandison, A. S.; Lewis, M. J. Emulsifying Properties of Soy Protein Isolate Fractions Obtained by Isoelectric Precipitation. J. Sci. Food Agric. 2001, 81(8), 759–763. DOI: 10.1002/jsfa.877.
  • Pesic, M. B.; Vucelic-Radovic, B. V.; Barac, M. B.; Stanojevic, S. P. The Influence of Genotypic Variation in Protein Composition on Emulsifying Properties of Soy Proteins. J. Am. Oil Chem. Soc. 2005, 82(9), 667–672. DOI: 10.1007/s11746-005-1126-x.
  • Rickert, D. A.; Johnson, L. A.; Murphy, P. A. Functional Properties of Improved Glycinin and β-nglycinin Fractions. J. Food Sci. 2004, 69(4), FCT303–FCT311. DOI: 10.1111/j.1365-2621.2004.tb06332.x.
  • Tang, C.-H.;. Emulsifying Properties of Soy Proteins: A Critical Review with Emphasis on the Role of Conformational Flexibility. Crit. Rev. Food Sci. Nutr. 2017, 57(12), 2636–2679. DOI: 10.1080/10408398.2015.1067594.
  • Jiang, J.; Xiong, Y. L.; Chen, J. Role of β-Conglycinin and Glycinin Subunits in the pH-Shifting-Induced Structural and Physicochemical Changes of Soy Protein Isolate. J. Food Sci. 2011, 76(2), C293–C302. DOI: 10.1111/j.1750-3841.2010.02035.x.
  • Dagorn-Scaviner, C.; Gueguen, J.; Lefebvre, J. Emulsifying Properties of Pea Globulins as Related to Their Adsorption Behaviors. J. Food Sci. 1987, 52(2), 335–341. DOI: 10.1111/j.1365-2621.1987.tb06607.x.
  • Koyoro, H.;. Functional Properties of Pea Globulin Fractions. Cereal Chem. 1987, 64(2), 97–101.
  • Yin, S.-W.; Tang, C.-H.; Wen, Q.-B.; Yang, X.-Q. Functional and Conformational Properties of Phaseolin (Phaseolus Vulgris L.) And Kidney Bean Protein Isolate: A Comparative Study. J. Sci. Food Agric. 2010, 90(4), 599–607. DOI: 10.1002/jsfa.3856.
  • Rangel, A.; Domont, G. B.; Pedrosa, C.; Ferreira, S. T. Functional Properties of Purified Vicilins from Cowpea (Vigna Unguiculata) and Pea (Pisum Sativum) and Cowpea Protein Isolate. J. Agric. Food Chem. 2003, 51(19), 5792–5797. DOI: 10.1021/jf0340052.
  • Cui, Z.; Chen, Y.; Kong, X.; Zhang, C.; Hua, Y. Emulsifying Properties and Oil/Water (O/W) Interface Adsorption Behavior of Heated Soy Proteins: Effects of Heating Concentration, Homogenizer Rotating Speed, and Salt Addition Level. J. Agric. Food Chem. 2014, 62(7), 1634–1642. DOI: 10.1021/jf404464z.
  • Guo, F.; Xiong, Y. L.; Qin, F.; Jian, H.; Huang, X.; Chen, J. Surface Properties of Heat-Induced Soluble Soy Protein Aggregates of Different Molecular Masses. J. Food Sci. 2015, 80(2), C279–C287. DOI: 10.1111/1750-3841.12761.
  • Liu, F.; Tang, C.-H. Soy Glycinin as Food-grade Pickering Stabilizers: Part. I. Structural Characteristics, Emulsifying Properties and Adsorption/arrangement at Interface. Food Hydrocolloids. 2016, 60, 606–619. DOI: 10.1016/j.foodhyd.2015.04.025.
  • Peng, W.; Kong, X.; Chen, Y.; Zhang, C.; Yang, Y.; Hua, Y. Effects of Heat Treatment on the Emulsifying Properties of Pea Proteins. Food Hydrocolloids. 2016, 52, 301–310. DOI: 10.1016/j.foodhyd.2015.06.025.
  • Oliete, B.; Potin, F.; Cases, E.; Saurel, R. Modulation of the Emulsifying Properties of Pea Globulin Soluble Aggregates by Dynamic High-pressure Fluidization. Innovative Food Sci. Emerg. Technol. 2018, 47, 292–300. DOI: 10.1016/j.ifset.2018.03.015.
  • Bandyopadhyay, K.; Misra, G.; Ghosh, S. Preparation and Characterisation of Protein Hydrolysates from Indian Defatted Rice Bran Meal. J. Oleo Sci. 2008, 57(1), 47–52. DOI: 10.5650/jos.57.47.
  • Guan, X.; Yao, H.; Chen, Z.; Shan, L.; Zhang, M. Some Functional Properties of Oat Bran Protein Concentrate Modified by Trypsin. Food Chem. 2007, 101(1), 163–170. DOI: 10.1016/j.foodchem.2006.01.011.
  • Dekkers, B. L.; Boom, R. M.; van der Goot, A. J. Structuring Processes for Meat Analogues. Trends Food Sci. Technol. 2018, 81, 25–36. DOI: 10.1016/j.tifs.2018.08.011.
  • Kyriakopoulou, K.; Dekkers, B.; van der Goot, A. J. Chapter 6 - Plant-Based Meat Analogues. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: London, United Kingdom, 2019; pp 103–126.
  • Osen, R.; Schweiggert-Weisz, U. High-Moisture Extrusion: Meat Analogues. Ref. Module in Food Sci. 2016. DOI: 10.1016/B978-0-08-100596-5.03099-7.
  • Osen, R.; Toelstede, S.; Wild, F.; Eisner, P.; Schweiggert-Weisz, U. High Moisture Extrusion Cooking of Pea Protein Isolates: Raw Material Characteristics, Extruder Responses, and Texture Properties. J. Food Eng. 2014, 127, 67–74. DOI: 10.1016/j.jfoodeng.2013.11.023.
  • Fang, Y.; Zhang, B.; Wei, Y. Effects of the Specific Mechanical Energy on the Physicochemical Properties of Texturized Soy Protein during High-moisture Extrusion Cooking. J. Food Eng. 2014, 121, 32–38. DOI: 10.1016/j.jfoodeng.2013.08.002.
  • Wild, F. Manufacture of Meat Analogues through High Moisture Extrusion. Ref. Module in Food Sci. 2016. DOI:10.1016/B978-0-08-100596-5.03281-9.
  • Pietsch, V. L.; Werner, R.; Karbstein, H. P.; Emin, M. A. High Moisture Extrusion of Wheat Gluten: Relationship between Process Parameters, Protein Polymerization, and Final Product Characteristics. J. Food Eng. 2019, 259, 3–11. DOI: 10.1016/j.jfoodeng.2019.04.006.
  • Roland, W. S. U.; Pouvreau, L.; Curran, J.; van de Velde, F.; de Kok, P. M. T. Flavor Aspects of Pulse Ingredients. Cereal Chemistry Journal. 2017, 94(1), 58–65. DOI: 10.1094/CCHEM-06-16-0161-FI.
  • Zhang, B.; Liu, G.; Ying, D.; Sanguansri, L.; Augustin, M. A. Effect of Extrusion Conditions on the Physico-chemical Properties and in Vitro Protein Digestibility of Canola Meal. Food Res. Int. 2017, 100, 658–664. DOI: 10.1016/j.foodres.2017.07.060.
  • Cheftel, J. C.; Kitagawa, M.; Quéguiner, C. New Protein Texturization Processes by Extrusion Cooking at High Moisture Levels. Food Rev. Int. 1992, 8(2), 235–275. DOI: 10.1080/87559129209540940.
  • Arora, B.; Kamal, S.; Sharma, V. P. Effect of Binding Agents on Quality Characteristics of Mushroom Based Sausage Analogue. J. Food Process. Preserv. 2017, 41(5), e13134. DOI: 10.1111/jfpp.13134.
  • Palanisamy, M.; Töpfl, S.; Aganovic, K.; Berger, R. G. Influence of Iota Carrageenan Addition on the Properties of Soya Protein Meat Analogues. LWT. 2018, 87, 546–552. DOI: 10.1016/j.lwt.2017.09.029.
  • Dekkers, B. L.; Hamoen, R.; Boom, R. M.; van der Goot, A. J. Understanding Fiber Formation in a Concentrated Soy Protein Isolate - Pectin Blend. J. Food Eng. 2018, 222, 84–92. DOI: 10.1016/j.jfoodeng.2017.11.014.
  • Zhang, W.; Li, S.; Zhang, B.; Drago, S. R.; Zhang, J. Relationships between the Gelatinization of Starches and the Textural Properties of Extruded Texturized Soybean Protein-starch Systems. J. Food Eng. 2016, 174, 29–36. DOI: 10.1016/j.jfoodeng.2015.11.011.
  • Lan, Y.; Chen, B.; Rao, J. Pea Protein Isolate–high Methoxyl Pectin Soluble Complexes for Improving Pea Protein Functionality: Effect of pH, Biopolymer Ratio and Concentrations. Food Hydrocolloids. 2018, 80, 245–253. DOI: 10.1016/j.foodhyd.2018.02.021.
  • Li, X.; De Vries, R. Interfacial Stabilization Using Complexes of Plant Proteins and Polysaccharides. Curr. Opin. Food Sci. 2018, 21, 51–56. DOI: 10.1016/j.cofs.2018.05.012.
  • Campbell, C. L.; Wagoner, T. B.; Foegeding, E. A. Designing Foods for Satiety: The Roles of Food Structure and Oral Processing in Satiation and Satiety. Food Struct. 2017, 13, 1–12. DOI: 10.1016/j.foostr.2016.08.002.
  • Espinosa-Ramírez, J.; Garzon, R.; Serna-Saldivar, S. O.; Rosell, C. M. Functional and Nutritional Replacement of Gluten in Gluten-free Yeast-leavened Breads by Using β-conglycinin Concentrate Extracted from Soybean Flour. Food Hydrocolloids. 2018, 84, 353–360. DOI: 10.1016/j.foodhyd.2018.06.021.
  • Mariotti, M.; Pagani, M. A.; Lucisano, M. The Role of Buckwheat and HPMC on the Breadmaking Properties of Some Commercial Gluten-free Bread Mixtures. Food Hydrocolloids. 2013, 30(1), 393–400. DOI: 10.1016/j.foodhyd.2012.07.005.
  • Lucisano, M.; Cappa, C.; Fongaro, L.; Mariotti, M. Characterisation of Gluten-free Pasta through Conventional and Innovative Methods: Evaluation of the Cooking Behaviour. J. Cereal Sci. 2012, 56(3), 667–675. DOI: 10.1016/j.jcs.2012.08.014.
  • Mancebo, C. M.; San Miguel, M. Á.; Martínez, M. M.; Gómez, M. Optimisation of Rheological Properties of Gluten-free Doughs with HPMC, Psyllium and Different Levels of Water. J. Cereal Sci. 2015, 61, 8–15. DOI: 10.1016/j.jcs.2014.10.005.
  • Marston, K.; Khouryieh, H.; Aramouni, F. Effect of Heat Treatment of Sorghum Flour on the Functional Properties of Gluten-free Bread and Cake. LWT - Food Sci. Technol. 2016, 65, 637–644. DOI: 10.1016/j.lwt.2015.08.063.
  • Foschia, M.; Horstmann, S. W.; Arendt, E. K.; Zannini, E. Legumes as Functional Ingredients in Gluten-Free Bakery and Pasta Products. Ann. Rev. Food Sci. Technol. 2017, 8(1), 75–96. DOI: 10.1146/annurev-food-030216-030045.
  • Boukid, F.; Vittadini, E.; Lusuardi, F.; Ganino, T.; Carini, E.; Morreale, F.; Pellegrini, N. Does Cell Wall Integrity in Legumes Flours Modulate Physiochemical Quality and in Vitro Starch Hydrolysis of Gluten-free Bread? J. Funct. Foods. 2019, 59, 110–118. DOI: 10.1016/j.jff.2019.05.034.
  • Sciarini, L. S.; Ribotta, P. D.; León, A. E.; Pérez, G. T. Influence of Gluten-free Flours and Their Mixtures on Batter Properties and Bread Quality. Food Bioprocess. Technol. 2010, 3(4), 577–585. DOI: 10.1007/s11947-008-0098-2.
  • Hoehnel, A.; Axel, C.; Bez, J.; Arendt, E. K.; Zannini, E. Comparative Analysis of Plant-based High-protein Ingredients and Their Impact on Quality of High-protein Bread. J. Cereal Sci. 2019, 89, 102816. DOI: 10.1016/j.jcs.2019.102816.
  • Ziobro, R.; Witczak, T.; Juszczak, L.; Korus, J. Supplementation of Gluten-free Bread with Non-gluten Proteins. Effect on Dough Rheological Properties and Bread Characteristic. Food Hydrocolloids. 2013, 32(2), 213–220. DOI: 10.1016/j.foodhyd.2013.01.006.
  • Aguilar, N.; Albanell, E.; Miñarro, B.; Capellas, M. Chickpea and Tiger Nut Flours as Alternatives to Emulsifier and Shortening in Gluten-free Bread. LWT - Food Sci. Technol. 2015, 62(1), 225–232. DOI: 10.1016/j.lwt.2014.12.045.
  • Miñarro, B.; Albanell, E.; Aguilar, N.; Guamis, B.; Capellas, M.; Martínez, K. D.; Farías, M. E. Effect of Legume Flours on Baking Characteristics of Gluten-free Bread. J. Cereal Sci. 2012, 56(2), 476–481. DOI: 10.1016/j.jcs.2012.04.012.
  • Monthe, O. C.; Grosmaire, L.; Nguimbou, R. M.; Dahdouh, L.; Ricci, J.; Tran, T.; Ndjouenkeu, R. Rheological and Textural Properties of Gluten-free Doughs and Breads Based on Fermented Cassava, Sweet Potato and Sorghum Mixed Flours. LWT. 2019, 101, 575–582. DOI: 10.1016/j.lwt.2018.11.051.
  • Mir, S. A.; Shah, M. A.; Naik, H. R.; Zargar, I. A. Influence of Hydrocolloids on Dough Handling and Technological Properties of Gluten-free Breads. Trends Food Sci. Technol. 2016, 51, 49–57. DOI: 10.1016/j.tifs.2016.03.005.
  • Renzetti, S.; Rosell, C. M. Role of Enzymes in Improving the Functionality of Proteins in Non-wheat Dough Systems. J. Cereal Sci. 2016, 67, 35–45. DOI: 10.1016/j.jcs.2015.09.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.