955
Views
2
CrossRef citations to date
0
Altmetric
Review

The Use of Novel Technologies in Egg Processing

, ORCID Icon, , ORCID Icon, , & ORCID Icon show all

References

  • Yuceer, M. Emerging and New Non-Thermal Food Preservation Technologies in Egg Processing – Trends and Future Industrial Perspectives - an Overview. In International Poultry Science Congress of WPSA Turkish Branch’2018; Nidge, 2018; Şekeroğlu, A., Ed.; World's Poultry Science Association: Beekbergen, 2018.
  • Wu, J. Eggs and Egg Products Processing. Food Processing 2014, 437–455.
  • Erkmen, O.; Faruk Bozoglu, T.; Techer, C.; Baron, F.; Jan, S. Spoilage of Eggs and Egg Products. In Microorganisms Related to Foods, Foodborne Diseases, and Food Spoilage; Erkmen, O.; Faruk Bozoglu, T., Eds.; John Wiley & Sons: Oxford, 2016; Vol. 1, pp 296-300.
  • Silva, F. V. M.; Gibbs, P. A. Thermal Pasteurization Requirements for the Inactivation of Salmonella in Foods. Food Res. Int. 2012, 45(2), 695–699. DOI: 10.1016/j.foodres.2011.06.018.
  • Yogesh, K.;. Pulsed Electric Field Processing of Egg Products: A Review. J. Food Sci. Technol. 2016, 53(2), 934–945. DOI: 10.1007/s13197-015-2061-3.
  • Mukhopadhyay, S.; Ukuku, D. O. The Role of Emerging Technologies to Ensure the Microbial Safety of Fresh Produce, Milk and Eggs. Curr. Opin. Food Sci. 2018, 19, 145–154. DOI: 10.1016/j.cofs.2018.01.013.
  • Souza, P. M. D.; de Melo, R.; Santos, M. A.; de, A.; Lima, F. R.; Vieira, K. H. Risk Management of Egg and Egg Products: Advanced Methods Applied. In Food Engineering; Coldea, T.E., Ed.; IntechOpen: Rijeka, 2019; pp 81–103.
  • Muredzi, P. Emerging Non Thermal Food Processing Technologies; Cambridge BrickHouse, Inc: Lawrence, MA, 2012.
  • Englmaierová, M.; Tůmová, E.; Charvátová, V.; Skřivan, M. Effects of Laying Hens Housing System on Laying Performance, Egg Quality Characteristics, and Egg Microbial Contamination. Czech J. Anim. Sci. 2014, 59(No. 8), 345–352. DOI: 10.17221/7585-CJAS.
  • Mansour, A. F. A.; Zayed, A. F.; Basha, O. A. A.Contamination of the Shell and Internal Content of Table Eggs with Some Pathogens during Different Storage Periods. Assiut Vet. Med. J. 2015, 61, 8–15.
  • Jalali, M.; Safaei, H.; Shamloo, E.; Mahdavi, M. Microbial Quality,Prevalence of Salmonella and Listeria in Eggs. Int. J. Environ. Health Eng. 2012, 1(1), 48. DOI: 10.4103/2277-9183.105347.
  • Keerthirathne, T. P.; Ross, K.; Fallowfield, H.; Whiley, H. Reducing Risk of Salmonellosis through Egg Decontamination Processes. Int. J. Environ. Res. Public Health 2017, 14(1), 335.
  • Howard, Z. R.; O’Bryan, C. A.; Crandall, P. G.; Ricke, S. C. Salmonella Enteritidis in Shell Eggs: Current Issues and Prospects for Control. Food Res. Int. 2012, 45(2), 755–764. DOI: 10.1016/j.foodres.2011.04.030.
  • Lechevalier, V.; Guérin-Dubiard, C.; Anton, M.; Beaumal, V.; David Briand, E.; Gillard, A.; Le Gouar, Y.; Musikaphun, N.; Tanguy, G.; Pasco, M.; et al. Pasteurisation of Liquid Whole Egg: Optimal Heat Treatments in Relation to Its Functional, Nutritional and Allergenic Properties. J. Food Eng. 2017, 195, 137–149. DOI: 10.1016/j.jfoodeng.2016.10.007.
  • Gomes, M. T. M. S.; Pelegrine, D. H. G. Solubility of Egg White Proteins: Effect of PH and Temperature. Int. J. Food Eng. 2012, 8(3). DOI: 10.1515/1556-3758.2847.
  • Uysal, R. S.; Boyacı, İ. H.; Soykut, E. A.; Ertaş, N. Effects of Heat Treatment Parameters on Liquid Whole Egg Proteins. Food Chem. 2017, 216, 201–208. DOI: 10.1016/j.foodchem.2016.08.050.
  • Neetoo, H.; Chen, H. Application of High Hydrostatic Pressure Technology for Processing and Preservation of Foods. In Progress in Food Preservation; Bhat, R., Alias, A.K., Paliyath, G., Eds.; Wiley Blackwell: Oxford, 2012; pp 247–276.
  • Zhang, Z. H.; Wang, L. H.; Zeng, X. A.; Han, Z.; Brennan, C. S. Non-Thermal Technologies and Its Current and Future Application in the Food Industry: A Review. Int. J. Food Sci. Technol. 2019, 54(1), 1–13. DOI: 10.1111/ijfs.13903.
  • Li, X.; Farid, M. A Review on Recent Development in Non-Conventional Food Sterilization Technologies. J. Food Eng. 2016, 182, 33–45. DOI: 10.1016/j.jfoodeng.2016.02.026.
  • Németh, C.; Dalmadi, I.; Mráz, B.; Friedrich, L.; Zeke, I.; Juhász, R.; Suhajda, Á.; Balla, C. Effect of High Pressure Treatment on Liquid Whole Egg. High Press. Res. 2012, 32, 330–336.
  • Lai, K. M.; Chuang, Y. S.; Chou, Y. C.; Hsu, Y. C.; Cheng, Y. C.; Shi, C. Y.; Chi, H. Y.; Hsu, K. C. Changes in Physicochemical Properties of Egg White and Yolk Proteins from Duck Shell Eggs Due to Hydrostatic Pressure Treatment. Poult. Sci. 2010, 89(4), 729–737. DOI: 10.3382/ps.2009-00244.
  • Tóth, A.; Németh, C.; Juhász, R.; Zeke, I.; Csehi, B.; Bényi, D.; Friedrich, L. Effects of HHP Processing at 400 MPa on Proteins of Liquid Egg Products. Rev. Agric. Rural Dev. 2016, 5, 153–157.
  • Shahbaz, H. M.; Jeong, B.; Kim, J. U.; Ha, N.; Lee, H.; Do, H. S.; Park, J. Application of High Pressure Processing for Prevention of Greenish-Gray Yolks and Improvement of Safety and Shelf-Life of Hard-Cooked Peeled Eggs. Innov. Food Sci. Emerg. Technol. 2018, 45, 10–17. DOI: 10.1016/j.ifset.2017.09.016.
  • Tóth, A.; Németh, C.; Zeke, I.; Penksza, P.; Hidas, K.; Friedrich, L. Effects of Combined HHP and Heat Treatment on Viscosity and Microbiological Safety of Liquid Egg Yolk. J. Hyg. Eng. Des. 2018, 25, 27–30.
  • Monfort, S.; Ramos, S.; Meneses, N.; Knorr, D.; Raso, J.; Álvarez, I. Design Evaluation of a High Hydrostatic Pressure Combined Process for Pasteurization of Liquid Whole Egg. Innov. Food Sci. Emerg. Technol. 2012, 14, 1–10. DOI: 10.1016/j.ifset.2012.01.004.
  • Tóth, A.; Németh, C.; Csáti, R.; Zeke, I.; Hussein, K. N.; Pintér, R.; Friedrich, L.; Pilot, A. Study of Ultrasonication Pre-Treatment and High Pressure Processing Affecting Microbial Inactivation and Color Attributes of Liquid Whole Egg. J. Hyg. Eng. Des. 2018, 23, 21–24.
  • Gabrić, D.; Barba, F.; Roohinejad, S.; Gharibzahedi, S. M. T.; Radojčin, M.; Putnik, P.; Bursać Kovačević, D. Pulsed Electric Fields as an Alternative to Thermal Processing for Preservation of Nutritive and Physicochemical Properties of Beverages: A Review. J. Food Process Eng. 2018, 41(1), e12638.
  • Koubaa, M.; Barba, F. J.; Kovačević, D. B.; Putnik, P.; Santos, M. D.; Queirós, R. P.; Moreira, S. A.; Inácio, R. S.; Fidalgo, L. G.; Saraiva, J. A. Pulsed Electric Field Processing of Fruit Juices. In Fruit Juices - Extraction, Composition, Quality and Analysis; Rajauria, G.; Tiwari, B.K., Eds. Academic Press: Massachussets, 2018; pp. 437–449.
  • Elez-Martínez, P.; Sobrino-López, Á.; Soliva-Fortuny, R.; Martín-Belloso, O. Chapter 4 - Pulsed Electric Field Processing of Fluid Foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Cullen, P.J., Tiwari, B.K., Valdramidis, V.P., Eds.; Academic Press: San Diego, 2012; pp. 63–108.
  • Monfort, S.; Gayán, E.; Raso, J.; Condón, S.; Álvarez, I. Evaluation of Pulsed Electric Fields Technology for Liquid Whole Egg Pasteurization. Food Microbiol. 2010, 27(7), 845–852. DOI: 10.1016/j.fm.2010.05.011.
  • Monfort, S.; Gayán, E.; Saldaña, G.; Puértolas, E.; Condón, S.; Raso, J.; Álvarez, I. Inactivation of Salmonella Typhimurium and Staphylococcus Aureus by Pulsed Electric Fields in Liquid Whole Egg. Innov. Food Sci. Emerg. Technol. 2010, 11(2), 306–313. DOI: 10.1016/j.ifset.2009.11.007.
  • Bazhal, M. I.; Ngadi, M. O.; Raghavan, G. S. V.; Smith, J. P. Inactivation of Escherichia Coli O157: H7in Liquid Whole Egg Using Combined Pulsed Electric Field and Thermal Treatments. LWT - Food Sci. Technol. 2006, 39, 420–426. DOI: 10.1016/j.lwt.2005.02.013.
  • Espina, L.; Monfort, S.; Álvarez, I.; García-Gonzalo, D.; Pagán, R. Combination of Pulsed Electric Fields, Mild Heat and Essential Oils as an Alternative to the Ultrapasteurization of Liquid Whole Egg. Int. J. Food Microbiol. 2014, 189, 119–125. DOI: 10.1016/j.ijfoodmicro.2014.08.002.
  • Monfort, S.; Saldaña, G.; Condón, S.; Raso, J.; Álvarez, I. Inactivation of Salmonella Spp. In Liquid Whole Egg Using Pulsed Electric Fields, Heat, and Additives. Food Microbiol. 2012, 30(2), 393–399. DOI: 10.1016/j.fm.2012.01.004.
  • Kasler, D. R.; Pyatkovskyy, T.; Yousef, A. E.; Sastry, S. K. Effect of Moderate Electric Field Pretreatment in Combination with Ozonation on Inactivation of Escherichia Coli K12 in Intact Shell Eggs. Lwt. 2020, 127, 109338. DOI: 10.1016/j.lwt.2020.109338.
  • Baba, K.; Kajiwara, T.; Watanabe, S.; Katsuki, S.; Sasahara, R.; Inoue, K.  Low-Temperature Pasteurization of Liquid Whole Egg Using Intense Pulsed Electric Fields. IEEJ Trans. Fundam. Mater. 2017, 137(11), 668–673. DOI: 10.1541/ieejfms.137.668.
  • Marco-Molés, R.; Rojas-Graü, M. A.; Hernando, I.; Pérez-Munuera, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Physical Structural Changes in Liquid Whole Egg Treated with High-Intensity Pulsed Electric Fields. J. Food Sci. 2011, 76(2), C257–C264. DOI: 10.1111/j.1750-3841.2010.02016.x.
  • Wu, L.; Zhao, W.; Yang, R.; Chen, X. Effects of Pulsed Electric Fields Processing on Stability of Egg White Proteins. J. Food Eng. 2014, 139, 13–18. DOI: 10.1016/j.jfoodeng.2014.04.008.
  • Wu, L.; Zhao, W.; Yang, R.; Yan, W. Pulsed Electric Field (PEF)-induced Aggregation between Lysozyme, Ovalbumin and Ovotransferrin in Multi-Protein System. Food Chem. 2015, 175, 115–120. DOI: 10.1016/j.foodchem.2014.11.136.
  • Zhao, W.; Yang, R.; Liang, Q.; Zhang, W.; Hua, X.; Tang, Y. Electrochemical Reaction Oxidation of Lecithin under Pulsed Electric Fields (PEF) Processing. J. Agric. Food Chem. 2012, 60(49), 12204–12209. DOI: 10.1021/jf304236h.
  • Priyadarshini, A.; Rajauria, G.; O’Donnell, C. P.; Tiwari, B. K. Emerging Food Processing Technologies and Factors Impacting Their Industrial Adoption. Crit. Rev. Food Sci. Nutr. 2019, 59(19), 3082–3101. DOI: 10.1080/10408398.2018.1483890.
  • Yuceer, M.; Caner, C. Ultrasound; a Novel and Innovative Processing Method for Egg and Egg Products Preservation. J. Chem. Biol. Pharm. Chem. 2018, 1, 1–3.
  • Techathuvanan, C.; D’Souza, D. H. High Intensity Ultrasound for Salmonella Enteritidis Inactivation in Culture and Liquid Whole Eggs. J. Food Sci. 2018, 83(6), 1733–1739. DOI: 10.1111/1750-3841.14185.
  • Huang, E.; Mittal, G. S.; Griffiths, M. W. Inactivation of Salmonella Enteritidis in Liquid Whole Egg Using Combination Treatments of Pulsed Electric Field, High Pressure and Ultrasound. Biosyst. Eng. 2006, 94(3), 403–413. DOI: 10.1016/j.biosystemseng.2006.03.008.
  • Bi, X.; Wang, X.; Chen, Y.; Chen, L.; Xing, Y.; Che, Z. Effects of Combination Treatments of Lysozyme and High Power Ultrasound on the Salmonella Typhimurium Inactivation and Quality of Liquid Whole Egg. Ultrason. Sonochem. 2020, 60, 104763. DOI: 10.1016/j.ultsonch.2019.104763.
  • Sert, D.; Aygun, A.; Torlak, E.; Mercan, E. Effect of Ultrasonic Treatment on Reduction of Escherichia Coli ATCC 25922 and Egg Quality Parameters in Experimentally Contaminated Hens‘ Shell Eggs. J. Sci. Food Agric. 2013, 93(12), 2973–2978. DOI: 10.1002/jsfa.6126.
  • Caner, C.; Yuceer, M. Maintaining Functional Properties of Shell Eggs by Ultrasound Treatment. J. Sci. Food Agric. 2015, 95(14), 2880–2891. DOI: 10.1002/jsfa.7029.
  • Arzeni, C.; Pérez, O. E.; Pilosof, A. M. R. Functionality of Egg White Proteins as Affected by High Intensity Ultrasound. Food Hydrocoll. 2012, 29(2), 308–316. DOI: 10.1016/j.foodhyd.2012.03.009.
  • Stefanović, A.; Jovanović, J.; Dojčinović, M.; Lević, S.; Žuža, M.; Nedović, V.; Knežević-Jugović, Z. Impact of High-Intensity Ultrasound Probe on the Functionality of Egg White Proteins. J. Hyg. Eng. Des, 2014, 6, 215–224.
  • Qi, L.; Zhao, M.; cheng,; Li, Z.; Shen, D. H.; Lu, J. Non-Destructive Testing Technology for Raw Eggs Freshness: A Review. SN Appl. Sci. 2020, 2. DOI: 10.1007/s42452-020-2906-x.
  • Aboonajmi, M.; Akram, A.; Nishizu, T.; Kondo, N.; Setarehdan, S. K.; Rajabipour, A. An Ultrasound Based Technique for the Determination of Poultry Egg Quality. Res. Agric. Eng. 2010, 56(No. 1), 26–32. DOI: 10.17221/18/2009-RAE.
  • Aboonajmi, M.; Setarehdan, S. K.; Akram, A.; Nishizu, T.; Kondo, N. Prediction of Poultry Egg Freshness Using Ultrasound. Int. J. Food Prop. 2014, 17(17), 1889–1899. DOI: 10.1080/10942912.2013.770015.
  • Abida, J.; Rayees, B.; Masoodi, F. A. Pulsed Light Technology: A Novel Method for Food Preservation. Int. Food Res. J. 2014, 21, 839–848.
  • Bhavya, M. L.; Umesh Hebbar, H. Pulsed Light Processing of Foods for Microbial Safety. Food Qual. Saf. 2017, 1(3), 187–201. DOI: 10.1093/fqsafe/fyx017.
  • Cacace, D.; Palmieri, L. High-Intensity Pulsed Light Technology. In Emerging Technologies for Food Processing; Sun, D.-W., Ed.; Elsevier Ltd: London, 2014; pp 239–258.
  • Gavahian, M.; Chu, Y.; Jo, C. Prospective Applications of Cold Plasma for Processing Poultry Products: Benefits, Effects on Quality Attributes, and Limitations. Compr. Rev. Food Sci. Food Saf. 2019, 18(4), 1292–1309. DOI: 10.1111/1541-4337.12460.
  • Chen, D.; Cheng, Y.; Peng, P.; Liu, J.; Wang, Y.; Ma, Y.; Anderson, E.; Chen, C.; Chen, P.; Ruan, R. Effects of Intense Pulsed Light on Cronobacter Sakazakii and Salmonella Surrogate Enterococcus Faecium Inoculated in Different Powdered Foods. Food Chem. 2019, 296, 23–28. DOI: 10.1016/j.foodchem.2019.05.180.
  • Macias-Rodriguez, B.; Yang, W.; Schneider, K.; Rock, C. Pulsed UV Light as a Postprocessing Intervention for Decontamination of Hard-Cooked Peeled Eggs. Int. J. Food Sci. Technol. 2014, 49(11), 2472–2480. DOI: 10.1111/ijfs.12571.
  • Ercan, D.; Demirci, A. Decontamination of Hard-Cooked Eggs by Pulsed UV Processing. 2016. Am. Soc. Agric. Biol. Eng. Annu. Int. Meet. ASABE. 2016, 2016, 1–10.
  • Lasagabaster, A.; Arboleya, J. C.; De Marañón, I. M. Pulsed Light Technology for Surface Decontamination of Eggs: Impact on Salmonella Inactivation and Egg Quality. Innov. Food Sci. Emerg. Technol. 2011, 12(2), 124–128. DOI: 10.1016/j.ifset.2011.01.007.
  • Keklik, N. M.; Demirci, A.; Patterson, P. H.; Puri, V. M. Pulsed UV Light Inactivation of Salmonella Enteritidis on Eggshells and Its Effects on Egg Quality. J. Food Prot. 2010, 73(8), 1408–1415. DOI: 10.4315/0362-028X-73.8.1408.
  • Holck, A. L.; Liland, K. H.; Drømtorp, S. M.; Carlehö, G. M.; McLeod, A. Comparison of UV-C and Pulsed UV Light Treatments for Reduction of Salmonella, Listeria Monocytogenes, and Enterohemorrhagic Escherichia Coli on Eggs. J. Food Prot. 2018, 81(1), 6–16. DOI: 10.4315/0362-028X.JFP-17-128.
  • Ouyang, B.; Demirci, A.; Patterson, P. H. Inactivation of Escherichia Coli and Salmonella in Liquid Egg White by Pulsed UV Light and Its Effects on Quality. J. Food Process Eng. 2020, 43(5), 1–12. DOI: 10.1111/jfpe.13243.
  • Manzocco, L.; Panozzo, A.; Nicoli, M. C. Effect of Pulsed Light on Selected Properties of Egg White. Innov. Food Sci. Emerg. Technol. 2013, 18, 183–189. DOI: 10.1016/j.ifset.2013.02.008.
  • Afshari, R.; Non-Thermal, H. H. Plasma as a New Food Preservation Method, Its Present and Future Prospect. J. Paramed. Sci. 2014, 5, 116–120.
  • Nisha, R. B.; Narayanan, R. Review on Cold Plasma Technology: The Future of Food Preservation. Int. J. Chem. Stud. 2019, 7, 4427–4433.
  • Thirumdas, R.; Sarangapani, C.; Annapure, U. S. Cold Plasma: A Novel Non-Thermal Technology for Food Processing. Food Biophys. 2014, 10(1), 1–11. DOI: 10.1007/s11483-014-9382-z.
  • Bourke, P.; Ziuzina, D.; Han, L.; Cullen, P. J.; Gilmore, B. F. Microbiological Interactions with Cold Plasma. J. Appl. Microbiol. 2017, 123(2), 308–324. DOI: 10.1111/jam.13429.
  • Dasan, B. G.; Yildirim, T.; Boyaci, I. H. Surface Decontamination of Eggshells by Using Non-Thermal Atmospheric Plasma. Int. J. Food Microbiol. 2018, 266, 267–273. DOI: 10.1016/j.ijfoodmicro.2017.12.021.
  • Ragni, L.; Berardinelli, A.; Vannini, L.; Montanari, C.; Sirri, F.; Guerzoni, M. E.; Guarnieri, A. Non-Thermal Atmospheric Gas Plasma Device for Surface Decontamination of Shell Eggs. J. Food Eng. 2010, 100(1), 125–132. DOI: 10.1016/j.jfoodeng.2010.03.036.
  • Wan, Z.; Chen, Y.; Pankaj, S. K.; Keener, K. M. High Voltage Atmospheric Cold Plasma Treatment of Refrigerated Chicken Eggs for Control of Salmonella Enteritidis Contamination on Egg Shell. LWT - Food Sci. Technol. 2017, 76, 124–130. DOI: 10.1016/j.lwt.2016.10.051.
  • Cui, H.; Ma, C.; Li, C.; Lin, L. Enhancing the Antibacterial Activity of Thyme Oil against Salmonella on Eggshell by Plasma-Assisted Process. Food Control. 2016, 70, 183–190. DOI: 10.1016/j.foodcont.2016.05.056.
  • Chawla, A. S.; Kasler, D. R.; Sastry, S. K.; Yousef, A. E. Microbial Decontamination of Food Using Ozone. In Microbial Decontamination in the Food Industry. In Novel Methods and Applications; Demirci, A., Ngadi, M.O., Eds.; Woodhead Publishing Limited: Cambridge, 2012; pp 495–532.
  • Prabha, V.; Deb Barma, R.; Singh, R.; Madan, A. Ozone Technology in Food Processing: A Review. Trends Biosci. 2015, 8, 4031–4047.
  • Perry, J. J.; Yousef, A. E. Decontamination of Raw Foods Using Ozone-Based Sanitization Techniques. Annu. Rev. Food Sci. Technol. 2011, 2(1), 281–298. DOI: 10.1146/annurev-food-022510-133637.
  • Yüceer, M.; Caner, C. The Effects of Ozone, Ultrasound and Coating with Shellac and Lysozyme–Chitosan on Fresh Egg during Storage at Ambient Temperature. Part II: Microbial Quality, Eggshell Breaking Strength and FT-NIR Spectral Analysis. Int. J. Food Sci. Technol. 2020, 55(4), 1629–1636. DOI: 10.1111/ijfs.14422.
  • Yüceer, M.; Caner, C. The Effects of Ozone, Ultrasound and Coating with Shellac and Lysozyme–Chitosan on Fresh Egg during Storage at Ambient Temperature – Part 1: Interior Quality Changes. Int. J. Food Sci. Technol. 2020, 55(1), 259–266. DOI: 10.1111/ijfs.14301.
  • Donner, A. Investigation of In-Package Ozonation: The Effectiveness of Ozone to Inactive Salmonella Enteritidis on Raw, Shell Eggs. J. Purdue Undergrad. Res. 2011, 1, 10–15. DOI: 10.5703/jpur.01.1.2.
  • Yüceer, M.; Aday, M. S.; Caner, C. Ozone Treatment of Shell Eggs to Preserve Functional Quality and Enhance Shelf Life during Storage. J. Sci. Food Agric. 2016, 96(8), 2755–2763. DOI: 10.1002/jsfa.7440.
  • Fuhrmann, H.; Rupp, N.; Büchner, A.; Braun, P. The Effect of Gaseous Ozone Treatment on Egg Components. J. Sci. Food Agric. 2010, 90(4), 593–598. DOI: 10.1002/jsfa.3853.
  • Maxkwee, E. N.; Perry, J. J.; Lee, K.  Flavor Appearance of Whole Shell Eggs Made Safe with Ozone Pasteurization. Food Sci. Nutr. 2014, 2(5), 578–584. DOI: 10.1002/fsn3.134.
  • Zhu, Y.; Vanga, S. K.; Wang, J.; Raghavan, V. Impact of Food Processing on the Structural and Allergenic Properties of Egg White. Trends Food Sci. Technol. 2018, 78, 188–196. DOI: 10.1016/j.tifs.2018.06.005.
  • Ma, X.; Liang, R.; Xing, Q.; Lozano-Ojalvo, D. Can Food Processing Produce Hypoallergenic Egg? J. Food Sci. 2020, 85(9), 2635–2644. DOI: 10.1111/1750-3841.15360.
  • Li, Y.; Zhang, S.; Jiang, P.; Zhong, L.; Lin, S.; Sun, N. Exploration of Structure-Activity Relationship between IgG1 and IgE Binding Ability and Spatial Conformation in Ovomucoid with Pulsed Electric Field Treatment. Lwt. 2021, 141, 110891. DOI: 10.1016/j.lwt.2021.110891.
  • Yang, W.; Tu, Z.; Wang, H.; Zhang, L.; Gao, Y.; Li, X.; Tian, M. Immunogenic and Structural Properties of Ovalbumin Treated by Pulsed Electric Fields. Int. J. Food Prop. 2018, 20(sup3), S3164–S3176. DOI: 10.1080/10942912.2017.1396479.
  • Yang, W. H.; Tu, Z. C.; Wang, H.; Li, X.; Tian, M. High-Intensity Ultrasound Enhances the Immunoglobulin (Ig)g and IgE Binding of Ovalbumin. J. Sci. Food Agric. 2017, 97(9), 2714–2720. DOI: 10.1002/jsfa.8095.
  • Zhang, Y.; Wang, W.; Zhou, R.; Yang, J.; Sheng, W.; Guo, J.; Wang, S. Effects of Heating, Autoclaving and Ultra-High Pressure on the Solubility, Immunoreactivity and Structure of Major Allergens in Egg. Food Agric. Immunol. 2018, 29(1), 412–423. DOI: 10.1080/09540105.2017.1387520.
  • Liu, Y. F.; Oey, I.; Bremer, P.; Silcock, P.; Carne, A.; McConnell, M. Pulsed Electric Fields Treatment at Different PH Enhances the Antioxidant and Anti-Inflammatory Activity of Ovomucin-Depleted Egg White. Food Chem. 2019, 276, 164–173. DOI: 10.1016/j.foodchem.2018.10.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.