207
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular Mechanisms of Biologically Active Compounds from Propolis in Breast Cancer: State of the Art and Future Directions

, , &

References

  • Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D. M.; Pineros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer. 2019, 144(8), 1941–1953. DOI: 10.1002/ijc.31937.
  • Smith, R. A.; Andrews, K. S.; Brooks, D.; Fedewa, S. A.; Manassaram-Baptiste, D.; Saslow, D.; Wender, R. C. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 2019, 69(3), 184–210. DOI: 10.3322/caac.21557.
  • Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics,2020. CA Cancer J. Clin. 2020, 70(1), 7–30. DOI: 10.3322/caac.21590.
  • Wesolowski, R.; Ramaswamy, B. Gene expression profiling: changing face of breast cancer classification and management. Gene Expr. 2011, 15(3), 105–115. DOI: 10.3727/105221611X13176664479241.
  • Polyak, K. Breast cancer: origins and evolution. J. Clin. Invest. 2007, 117(11), 3155–3163. DOI: 10.1172/JCI33295.
  • Pan, M. H.; Chiou, Y. S.; Chen, L. H.; Ho, C. T. Breast cancer chemoprevention by dietary natural phenolic compounds: specific epigenetic related molecular targets. Mol. Nutr. Food Res. 2015, 59(1), 21–35. DOI: 10.1002/mnfr.201400515.
  • Frion-Herrera, Y.; Diaz-Garcia, A.; Ruiz-Fuentes, J.; Rodriguez-Sanchez, H.; Sforcin, J. M. The cytotoxic effects of propolis on breast cancer cells involve PI3K/Akt and ERK1/2 pathways, mitochondrial membrane potential, and reactive oxygen species generation. Inflammopharmacology. 2019, 27(5), 1081–1089. DOI: 10.1007/s10787-018-0492-y.
  • Kang, G. Y.; Lee, E. R.; Kim, J. H.; Jung, J. W.; Lim, J.; Kim, S. K.; Cho, S. G.; Kim, K. P. Downregulation of PLK-1 expression in kaempferol-induced apoptosis of MCF-7 cells. Eur. J. Pharmacol. 2009, 611(1–3), 17–21. DOI: 10.1016/j.ejphar.2009.03.068.
  • Puranik, N. V.; Srivastava, P.; Bhatt, G.; John Mary, D. J. S.; Limaye, A. M.; Sivaraman, J. Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERalpha) by various parameters and molecular modelling approach. Sci. Rep. 2019, 9(1), 7450. DOI: 10.1038/s41598-019-43768-5.
  • Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci. 2018, 208, 123–130. DOI: 10.1016/j.lfs.2018.07.027.
  • Yang, B.; Huang, J.; Xiang, T.; Yin, X.; Luo, X.; Huang, J.; Luo, F.; Li, H.; Li, H.; Ren, G. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10, epithelial to mesenchymal transition, and PI3K/Akt signaling pathway. J. Appl. Toxicol. 2014, 34(1), 105–112. DOI: 10.1002/jat.2941.
  • Watanabe, M. A.; Amarante, M. K.; Conti, B. J.; Sforcin, J. M. Cytotoxic constituents of propolis inducing anticancer effects: a review. J. Pharm. Pharmacol. 2011, 63(11), 1378–1386. DOI: 10.1111/j.2042-7158.2011.01331.x.
  • Li, X.; Zhou, N.; Wang, J.; Liu, Z.; Wang, X.; Zhang, Q.; Liu, Q.; Gao, L.; Wang, R. Quercetin suppresses breast cancer stem cells (CD44(+)/CD24(-)) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci. 2018, 196, 56–62. DOI: 10.1016/j.lfs.2018.01.014.
  • Liu, D.; You, P.; Luo, Y.; Yang, M.; Liu, Y. Galangin Induces Apoptosis in MCF-7 Human Breast Cancer Cells Through Mitochondrial Pathway and Phosphatidylinositol 3-Kinase/Akt Inhibition. Pharmacology. 2018, 102(1–2), 58–66. DOI: 10.1159/000489564.
  • Wu, H. T.; Lin, J.; Liu, Y. E.; Chen, H. F.; Hsu, K. W.; Lin, S. H.; Peng, K. Y.; Lin, K. J.; Hsieh, C. C.; Chen, D. R. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine. 2021, 81, 153437. DOI: 10.1016/j.phymed.2020.153437.
  • Kabala-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R.; Jastrzebska-Stojko, Z.; Stojko, R.; Wojtyczka, R. D.; Stojko, J. Comparison of Two Components of Propolis: Caffeic Acid (CA) and Caffeic Acid Phenethyl Ester (CAPE) Induce Apoptosis and Cell Cycle Arrest of Breast Cancer Cells MDA-MB-231. Molecules. 2017, 22(9), 1554. DOI: 10.3390/molecules22091554.
  • Kabala-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R.; Iriti, M.; Wojtyczka, R. D.; Buszman, E.; Stojko, J. Flavonoids, bioactive components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells MDA-MB-231 and MCF-7 - a comparative study. Cell. Mol. Biol. (Noisy-le-grand). 2018, 64(8), 1–10. DOI: 10.14715/cmb/2018.64.8.1.
  • Tseng, T. H.; Chien, M. H.; Lin, W. L.; Wen, Y. C.; Chow, J. M.; Chen, C. K.; Kuo, T. C.; Lee, W. J. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21(WAF1/CIP1) expression. Environ. Toxicol. 2017, 32(2), 434–444. DOI: 10.1002/tox.22247.
  • Popolo, A.; Piccinelli, A. L.; Morello, S.; Sorrentino, R.; Osmany, C. R.; Rastrelli, L.; Pinto, A. Cytotoxic activity of nemorosone in human MCF-7 breast cancer cells. Can. J. Physiol. Pharmacol. 2011, 89(1), 50–57. DOI: 10.1139/Y10-100.
  • Assumpcao, J. H. M.; Takeda, A. A. S.; Sforcin, J. M.; Rainho, C. A. Effects of Propolis and Phenolic Acids on Triple-Negative Breast Cancer Cell Lines: Potential Involvement of Epigenetic Mechanisms. Molecules. 2020, 25(6), 1289. DOI: 10.3390/molecules25061289.
  • Dong, X.; Zhang, J.; Yang, F.; Wu, J.; Cai, R.; Wang, T.; Zhang, J. Effect of luteolin on the methylation status of the OPCML gene and cell growth in breast cancer cells. Exp. Ther. Med. 2018, 16(4), 3186–3194. DOI: 10.3892/etm.2018.6526.
  • Motawi, T. K.; Abdelazim, S. A.; Darwish, H. A.; Elbaz, E. M.; Shouman, S. A. Could Caffeic Acid Phenethyl Ester Expand the Antitumor Effect of Tamoxifen in Breast Carcinoma? Nutr. Cancer. 2016, 68(3), 435–445. DOI: 10.1080/01635581.2016.1153669.
  • Xu, Z.; Zhao, D.; Zheng, X.; Huang, B.; Xia, X.; Pan, X. Quercetin exerts bidirectional regulation effects on the efficacy of tamoxifen in estrogen receptor-positive breast cancer therapy: An in vitro study. Environ. Toxicol. 2020, 35(11), 1179–1193. DOI: 10.1002/tox.22983.
  • Kuropatnicki, A. K.; Szliszka, E.; Krol, W. Historical aspects of propolis research in modern times. Evid. Based Complement. Alternat. Med. 2013, 2013, 964149. DOI: 10.1155/2013/964149.
  • Medic-Saric, M.; Rastija, V.; Bojic, M.; Males, Z. From functional food to medicinal product: systematic approach in analysis of polyphenolics from propolis and wine. Nutr. J. 2009, 8(1), 33. DOI: 10.1186/1475-2891-8-33.
  • Bender, C.; Graziano, S. Evaluation of the antioxidant activity of foods in human cells. Nutrafoods. 2015, 14(2), 1–7. DOI: 10.1007/s13749-015-0016-y.
  • Carreño, A. L.; Alday, E.; Quintero, J.; Pérez, L.; Valencia, D.; Robles-Zepeda, R.; Valdez-Ortega, J.; Hernandez, J.; Velazquez, C. Protective effect of Caffeic Acid Phenethyl Ester (CAPE) against oxidative stress. J. Funct. Foods. 2017, 29, 179–184. DOI: 10.1016/j.jff.2016.12.008.
  • Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Front. Pharmacol. 2017, 8, 412. DOI: 10.3389/fphar.2017.00412.
  • Huang, S.; Zhang, C. P.; Wang, K.; Li, G. Q.; Hu, F. L. Recent advances in the chemical composition of propolis. Molecules. 2014, 19(12), 19610–19632. DOI: 10.3390/molecules191219610.
  • Sforcin, J. M. Biological Properties and The rapeutic Applications of Propolis. Phytother Res. 2016, 30(6), 894–905. DOI: 10.1002/ptr.5605.
  • Perou, C. M.; Sorlie, T.; Eisen, M. B.; van de Rijn, M.; Jeffrey, S. S.; Rees, C. A.; Pollack, J. R.; Ross, D. T.; Johnsen, H.; Akslen, L. A., et al. Molecular portraits of human breast tumours. Nature. 2000, 406(6797), 747–752.
  • Sorlie, T.; Perou, C. M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M. B.; van de Rijn, M.; Jeffrey, S. S., et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U. S. A. 2001, 98(19), 10869–10874.
  • Loi, S.; Haibe-Kains, B.; Desmedt, C.; Lallemand, F.; Tutt, A. M.; Gillet, C.; Ellis, P.; Harris, A.; Bergh, J.; Foekens, J. A., et al. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J. Clin. Oncol. 2007, 25(10), 1239–1246.
  • Goldhirsch, A.; Wood, W. C.; Coates, A. S.; Gelber, R. D.; Thurlimann, B.; Senn, H. J.; Panel, M. Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. 2011, 22(8), 1736–1747. DOI: 10.1093/annonc/mdr304.
  • Voduc, K. D.; Cheang, M. C.; Tyldesley, S.; Gelmon, K.; Nielsen, T. O.; Kennecke, H. Breast cancer subtypes and the risk of local and regional relapse. J. Clin. Oncol. 2010, 28(10), 1684–1691. DOI: 10.1200/JCO.2009.24.9284.
  • Howlader, N.; Cronin, K. A.; Kurian, A. W.; Andridge, R. Differences in Breast Cancer Survival by Molecular Subtypes in the United States. Cancer Epidemiol. Biomarkers Prev. 2018, 27(6), 619–626. DOI: 10.1158/1055-9965.EPI-17-0627.
  • Hennigs, A.; Riedel, F.; Gondos, A.; Sinn, P.; Schirmacher, P.; Marme, F.; Jager, D.; Kauczor, H. U.; Stieber, A.; Lindel, K., et al. Prognosis of breast cancer molecular subtypes in routine clinical care: A large prospective cohort study. BMC cancer. 2016, 16(1), 734.
  • Harbeck, N.; Gnant, M. Breast cancer. Lancet. 2017, 389(10074), 1134–1150. DOI: 10.1016/S0140-6736(16)31891-8.
  • McDonald, E. S.; Clark, A. S.; Tchou, J.; Zhang, P.; Freedman, G. M. Clinical Diagnosis and Management of Breast Cancer. J. Nucl. Med. 2016, 57(Suppl 1), 9S–16S. DOI: 10.2967/jnumed.115.157834.
  • Hassan, M. S.; Ansari, J.; Spooner, D.; Hussain, S. A. Chemotherapy for breast cancer (Review). Oncol. Rep. 2010, 24(5), 1121–1131. DOI: 10.3892/or_00000963.
  • Tao, J. J.; Visvanathan, K.; Wolff, A. C. Long term side effects of adjuvant chemotherapy in patients with early breast cancer. Breast. 2015, 24(Suppl 2), S149–53. DOI: 10.1016/j.breast.2015.07.035.
  • Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69(1), 7–34. DOI: 10.3322/caac.21551.
  • Harris, L.; Fritsche, H.; Mennel, R.; Norton, L.; Ravdin, P.; Taube, S.; Somerfield, M. R.; Hayes, D. F.; Bast, R. C., Jr. American Society of Clinical, O., American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J. Clin. Oncol. 2007, 25(33), 5287–5312. DOI: 10.1200/JCO.2007.14.2364.
  • Allred, D. C.; Carlson, R. W.; Berry, D. A.; Burstein, H. J.; Edge, S. B.; Goldstein, L. J.; Gown, A.; Hammond, M. E.; Iglehart, J. D.; Moench, S., et al. NCCN Task Force Report: Estrogen Receptor and Progesterone Receptor Testing in Breast Cancer by Immunohistochemistry. J Natl Compr Canc Netw. 2009, 7(Suppl 6), S1–S21. quiz S22-3, doi:10.6004/jnccn.2009.0079.
  • Dowsett, M.; Nielsen, T. O.; A’Hern, R.; Bartlett, J.; Coombes, R. C.; Cuzick, J.; Ellis, M.; Henry, N. L.; Hugh, J. C.; Lively, T., et al. Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J. Natl. Cancer Inst. 2011, 103(22), 1656–1664.
  • Harris, L. N.; Ismaila, N.; McShane, L. M.; Hayes, D. F. Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women With Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Summary. J Oncol Pract. 2016, 12(4), 384–389. DOI: 10.1200/JOP.2016.010868.
  • El Hachem, G.; Gombos, A.; Awada, A. Recent advances in understanding breast cancer and emerging therapies with a focus on luminal and triple-negative breast cancer. F1000Res. 2019, 8, 591. DOI: 10.12688/f1000research.17542.1.
  • Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front. Oncol. 2014, 4, 64. DOI: 10.3389/fonc.2014.00064.
  • Presti, D.; Quaquarini, E. The PI3K/AKT/mTOR and CDK4/6 Pathways in Endocrine Resistant HR+/HER2- Metastatic Breast Cancer: Biological Mechanisms and New Treatments. Cancers (Basel). 2019, 11(9), 1242. DOI: 10.3390/cancers11091242.
  • Sherr, C. J.; Beach, D.; Shapiro, G. I. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discov. 2016, 6(4), 353–367. DOI: 10.1158/2159-8290.CD-15-0894.
  • Dent, R.; Trudeau, M.; Pritchard, K. I.; Hanna, W. M.; Kahn, H. K.; Sawka, C. A.; Lickley, L. A.; Rawlinson, E.; Sun, P.; Narod, S. A. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13(15 Pt 1), 4429–4434. DOI: 10.1158/1078-0432.CCR-06-3045.
  • DeSantis, C. E.; Ma, J.; Gaudet, M. M.; Newman, L. A.; Miller, K. D.; Goding Sauer, A.; Jemal, A.; Siegel, R. L. Breast cancer statistics, 2019. CA Cancer J. Clin. 2019, 69(6), 438–451. DOI: 10.3322/caac.21583.
  • Azim, H. A.; Ghosn, M.; Oualla, K.; Kassem, L. Personalized treatment in metastatic triple-negative breast cancer: The outlook in 2020. Breast J. 2019.
  • Lyons, T. G. Targeted Therapies for Triple-Negative Breast Cancer. Curr Treat Options Oncol. 2019, 20(11), 82. DOI: 10.1007/s11864-019-0682-x.
  • McCann, K. E.; Hurvitz, S. A.; McAndrew, N. Advances in Targeted Therapies for Triple-Negative Breast Cancer. Drugs. 2019, 79(11), 1217–1230. DOI: 10.1007/s40265-019-01155-4.
  • Bankova, V. Recent trends and important developments in propolis research. Evid. Based Complement. Alternat. Med. 2005, 2(1), 29–32. DOI: 10.1093/ecam/neh059.
  • Simone-Finstrom, M.; Spivak, M. Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie. 2010, 41(3), 295–311. DOI: 10.1051/apido/2010016.
  • Bankova, V.; Bertelli, D.; Borba, R.; Conti, B. J.; Da Silva Cunha, I. B.; Danert, C.; Nogueira Eberlin, M.; Falcão, S. I.; Isla, M. I.; Nieva Moreno, M. I., et al. Standard methods for Apis mellifera propolis research. J. Apic. Res. 2016, 58(2), 1–49.
  • Bankova, V. Chemical diversity of propolis and the problem of standardization. J. Ethnopharmacol. 2005, 100(1–2), 114–117. DOI: 10.1016/j.jep.2005.05.004.
  • Blicharska, N.; Seidel, V. Chemical Diversity and Biological Activity of African Propolis. Prog Chem Org Nat Prod. 2019, 109, 415–450. DOI: 10.1007/978-3-030-12858-6_3.
  • Cuesta-Rubio, O.; Piccinelli, A. L.; Rastrelli, L. Tropical propolis: advances in chemical components and botanical origin. Med. Plants. 2012, 209–240.
  • Alday, E.; Navarro-Navarro, M.; Garibay-Escobar, A.; Robles-Zepeda, R.; Hernandez, J.; Velazquez, C. Advances in Pharmacological Activities and Chemical Composition of Propolis Produced in Americas. In Beekeeping and Bee Conservation - Advances in Research; InTech, 2016; pp 99–151.
  • Ozdal, T.; Sari-Kaplan, G.; Mutlu-Altundag, E.; Boyacioglu, D.; Capanoglu, E. Evaluation of Turkish propolis for its chemical composition, antioxidant capacity, anti-proliferative effect on several human breast cancer cell lines and proliferative effect on fibroblasts and mouse mesenchymal stem cell line. J. Apic. Res. 2018, 57(5), 627–638. DOI: 10.1080/00218839.2018.1494888.
  • Popova, M.; Trusheva, B.; Khismatullin, R.; Gavrilova, N.; Legotkina, G.; Lyapunov, J.; Bankova, V. The triple botanical origin of Russian propolis from the Perm Region, its phenolic content and antimicrobial activity. Nat. prod. communicat. 2013, 8(5), 617–620. DOI: 10.1177/1934578X1300800519.
  • Bankova, V.; Boudourova-Krasteva, G.; Sforcin, J. M.; Frete, X.; Kujumgiev, A.; Maimoni-Rodella, R.; Popov, S. Phytochemical evidence for the plant origin of Brazilian propolis from Sao Paulo state. Z Naturforsch C J Biosci. 1999, 54(5–6), 401–405. DOI: 10.1515/znc-1999-5-616.
  • Cuesta-Rubio, O.; Velez-Castro, H.; Frontana-Uribe, B. A.; Cardenas, J. Nemorosone, the major constituent of floral resins of Clusia rosea. Phytochemistry. 2001, 57(2), 279–283. DOI: 10.1016/S0031-9422(00)00510-0.
  • Cuesta-Rubio, O.; Frontana-Uribe, B. A.; Ramirez-Apan, T.; Cardenas, J. Polyisoprenylated benzophenones in cuban propolis; biological activity of nemorosone. Z Naturforsch C J Biosci. 2002, 57(3–4), 372–378. DOI: 10.1515/znc-2002-3-429.
  • Cuesta-Rubio, O.; Piccinelli, A. L.; Fernandez, M. C.; Hernandez, I. M.; Rosado, A.; Rastrelli, L. Chemical characterization of Cuban propolis by HPLC-PDA, HPLC-MS, and NMR: the brown, red, and yellow Cuban varieties of propolis. J. Agric. Food Chem. 2007, 55(18), 7502–7509. DOI: 10.1021/jf071296w.
  • Hernandez, I. M.; Fernandez, M. C.; Cuesta-Rubio, O.; Piccinelli, A. L.; Rastrelli, L. Polyprenylated benzophenone derivatives from Cuban propolis. J. Nat. Prod. 2005, 68(6), 931–934. DOI: 10.1021/np0495884.
  • Trusheva, B.; Popova, M.; Naydenski, H.; Tsvetkova, I.; Gregorio Rodriguez, J.; Bankova, V. New polyisoprenylated benzophenones from Venezuelan propolis. Fitoterapia. 2004, 75(7–8), 683–689. DOI: 10.1016/j.fitote.2004.08.001.
  • Trusheva, B.; Popova, M.; Bankova, V.; Simova, S.; Marcucci, M. C.; Miorin, P. L.; Da Rocha Pasin, F.; Tsvetkova, I. Bioactive constituents of brazilian red propolis. Evid. Based Complement. Alternat. Med. 2006, 3(2), 249–254. DOI: 10.1093/ecam/nel006.
  • Alencar, S. M.; Oldoni, T. L.; Castro, M. L.; Cabral, I. S.; Costa-Neto, C. M.; Cury, J. A.; Rosalen, P. L.; Ikegaki, M. Chemical composition and biological activity of a new type of Brazilian propolis: red propolis. J. Ethnopharmacol. 2007, 113(2), 278–283. DOI: 10.1016/j.jep.2007.06.005.
  • Lotti, C.; Campo Fernandez, M.; Piccinelli, A. L.; Cuesta-Rubio, O.; Marquez Hernandez, I.; Rastrelli, L. Chemical constituents of red Mexican propolis. J. Agric. Food Chem. 2010, 58(4), 2209–2213. DOI: 10.1021/jf100070w.
  • Piccinelli, A. L.; Campo Fernandez, M.; Cuesta-Rubio, O.; Marquez Hernandez, I.; De Simone, F.; Rastrelli, L. Isoflavonoids isolated from Cuban propolis. J. Agric. Food Chem. 2005, 53(23), 9010–9016. DOI: 10.1021/jf0518756.
  • Kamiya, T.; Nishihara, H.; Hara, H.; Adachi, T. Ethanol extract of Brazilian red propolis induces apoptosis in human breast cancer MCF-7 cells through endoplasmic reticulum stress. J. Agric. Food Chem. 2012, 60(44), 11065–11070. DOI: 10.1021/jf303004n.
  • Popova, M. P.; Graikou, K.; Chinou, I.; Bankova, V. S. GC-MS profiling of diterpene compounds in Mediterranean propolis from Greece. J. Agric. Food Chem. 2010, 58(5), 3167–3176. DOI: 10.1021/jf903841k.
  • Popova, M.; Trusheva, B.; Cutajar, S.; Antonova, D.; Mifsud, D.; Farrugia, C.; Bankova, V. Identification of the plant origin of the botanical biomarkers of Mediterranean type propolis. Nat. Prod. Commun. 2012, 7(5), 569–570.
  • Graikou, K.; Popova, M.; Gortzi, O.; Bankova, V.; Chinou, I. Characterization and biological evaluation of selected Mediterranean propolis samples. Is it a new type? LWT - Food Sci. Technol. 2016, 65, 261–267. DOI: 10.1016/j.lwt.2015.08.025.
  • El-Guendouz, S.; Lyoussi, B.; Miguel, M. G. Insight on Propolis from Mediterranean Countries: Chemical Composition, Biological Activities and Application Fields. Chem. Biodivers. 2019, 16(7), e1900094. DOI: 10.1002/cbdv.201900094.
  • Kumazawa, S.; Nakamura, J.; Murase, M.; Miyagawa, M.; Ahn, M. R.; Fukumoto, S. Plant origin of Okinawan propolis: honeybee behavior observation and phytochemical analysis. Naturwissenschaften. 2008, 95(8), 781–786. DOI: 10.1007/s00114-008-0383-y.
  • Trusheva, B.; Popova, M.; Koendhori, E. B.; Tsvetkova, I.; Naydenski, C.; Bankova, V. Indonesian propolis: chemical composition, biological activity and botanical origin. Nat. Prod. Res. 2011, 25(6), 606–613. DOI: 10.1080/14786419.2010.488235.
  • Kardar, M. N.; Zhang, T.; Coxon, G. D.; Watson, D. G.; Fearnley, J.; Seidel, V. Characterisation of triterpenes and new phenolic lipids in Cameroonian propolis. Phytochemistry. 2014, 106, 156–163. DOI: 10.1016/j.phytochem.2014.07.016.
  • Zhang, T.; Omar, R.; Siheri, W.; Al Mutairi, S.; Clements, C.; Fearnley, J.; Edrada-Ebel, R.; Watson, D. Chromatographic analysis with different detectors in the chemical characterisation and dereplication of African propolis. Talanta. 2014, 120, 181–190. DOI: 10.1016/j.talanta.2013.11.094.
  • Ngenge, T.; Carol, D.; Emmanuel, T.; Vernyuy, T.; Joseph, M.; Popova, M.; Bankova, V. Chemical constituents and anti-ulcer activity of propolis from the North-West region of Cameroon. Res. J. Phytochemistry. 2016, 10(2), 45–57. DOI: 10.3923/rjphyto.2016.45.57.
  • Burdock, G. A. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36(4), 347–363. DOI: 10.1016/S0278-6915(97)00145-2.
  • Sforcin, J. M.; Bankova, V. Propolis: is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133(2), 253–260. DOI: 10.1016/j.jep.2010.10.032.
  • Braakhuis, A. Evidence on the Health Benefits of Supplemental Propolis. Nutrients. 2019, 11(11), 2705. DOI: 10.3390/nu11112705.
  • Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid. Based Complement. Alternat. Med. 2015, 2015, 206439. DOI: 10.1155/2015/206439.
  • Robles-Zepeda, R. E.; Martínez, J. H.; Garibay Escobar, A.; Valencia Rivera, D. E.; Velazquez-Contreras, C. A. Botanical Origin and Biological Activity of Propolis. Med. Plants, Biodiversity Drugs. 2012.
  • Sawicka, D.; Car, H.; Borawska, M. H.; Niklinski, J. The anticancer activity of propolis. Folia Histochem. Cytobiol. 2012, 50(1), 25–37. DOI: 10.5603/FHC.2012.0004.
  • Georgieva, K.; Trusheva, B.; Uzunova, V.; Stoyanova, T.; Valcheva, V.; Popova, M.; Tzoneva, R.; Bankova, V. New cycloartane triterpenes from bioactive extract of propolis from Pitcairn Island. Fitoterapia. 2018, 128, 233–241. DOI: 10.1016/j.fitote.2018.05.024.
  • Thirugnanasampandan, R.; Raveendran, S. B.; Jayakumar, R. Analysis of chemical composition and bioactive property evaluation of Indian propolis. Asian Pac. J. Trop. Biomed. 2012, 2(8), 651–654. DOI: 10.1016/S2221-1691(12)60114-2.
  • Rzepecka-Stojko, A.; Kabala-Dzik, A.; Mozdzierz, A.; Kubina, R.; Wojtyczka, R. D.; Stojko, R.; Dziedzic, A.; Jastrzebska-Stojko, Z.; Jurzak, M.; Buszman, E., et al. Caffeic Acid phenethyl ester and ethanol extract of propolis induce the complementary cytotoxic effect on triple-negative breast cancer cell lines. Molecules. 2015, 20(5), 9242–9262.
  • Badria, F.; Fathy, H.; Fatehe, A.; Elimam, D.; Ghazy, M. Evaluate the cytotoxic activity of honey, propolis, and bee venom from different localities in Egypt against liver, breast, and colorectal cancer. J. Apither. 2017, 2(1), 1–4. DOI: 10.5455/ja.20170203075953.
  • Hernandez, J.; Goycoolea, F. M.; Quintero, J.; Acosta, A.; Castaneda, M.; Dominguez, Z.; Robles, R.; Vazquez-Moreno, L.; Velazquez, E. F.; Astiazaran, H., et al. Sonoran propolis: chemical composition and antiproliferative activity on cancer cell lines. Planta Med. 2007, 73(14), 1469–1474.
  • Valencia, D.; Alday, E.; Robles-Zepeda, R.; Garibay-Escobar, A.; Galvez-Ruiz, J. C.; Salas-Reyes, M.; Jiménez-Estrada, M.; Velazquez-Contreras, E.; Hernandez, J.; Velazquez, C. Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food Chem. 2012, 131(2), 645–651. DOI: 10.1016/j.foodchem.2011.08.086.
  • Xuan, H.; Li, Z.; Yan, H.; Sang, Q.; Wang, K.; He, Q.; Wang, Y.; Hu, F. Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells. Evid. Based Complement. Alternat. Med. 2014, 2014, 280120. DOI: 10.1155/2014/280120.
  • Misir, S.; Aliyazicioglu, Y.; Demir, S.; Turan, I.; Hepokur, C. Effect of Turkish Propolis on miRNA Expression, Cell Cycle, and Apoptosis in Human Breast Cancer (MCF-7) Cells. Nutr. Cancer. 2020, 72(1), 133–145. DOI: 10.1080/01635581.2019.1616100.
  • Inoue, K.; Saito, M.; Kanai, T.; Kawata, T.; Shigematsu, N.; Uno, T.; Isobe, K.; Liu, C.-H.; Ito, H. Anti-tumor effects of water-soluble propolis on a mouse sarcoma cell line in vivo and in vitro. Am. J. Chin. Med. 2008, 36, 625–634. DOI: 10.1142/S0192415X0800603X.
  • Seyhan, M. F.; Yilmaz, E.; Timirci-Kahraman, O.; Saygili, N.; Kisakesen, H. I.; Gazioglu, S.; Goren, A. C.; Eronat, A. P.; Begum Ceviz, A.; Ozturk, T., et al. Different propolis samples, phenolic content, and breast cancer cell lines: Variable cytotoxicity ranging from ineffective to potent. IUBMB life. 2019, 71(5), 619–631.
  • Popolo, A.; Piccinelli, L. A.; Morello, S.; Cuesta-Rubio, O.; Sorrentino, R.; Rastrelli, L.; Pinto, A. Antiproliferative activity of brown Cuban propolis extract on human breast cancer cells. Nat. Prod. Commun. 2009, 4(12), 1711–1716.
  • Noureddine, H.; Hage-Sleiman, R.; Wehbi, B.; Fayyad-Kazan, H.; Hayar, S.; Traboulssi, M.; Alyamani, O. A.; Faour, W. H.; ElMakhour, Y. Chemical characterization and cytotoxic activity evaluation of Lebanese propolis. Biomed. Pharmacother. 2017, 95, 298–307. DOI: 10.1016/j.biopha.2017.08.067.
  • Conti, B. J.; Santiago, K. B.; Bufalo, M. C.; Herrera, Y. F.; Alday, E.; Velazquez, C.; Hernandez, J.; Sforcin, J. M. Modulatory effects of propolis samples from Latin America (Brazil, Cuba and Mexico) on cytokine production by human monocytes. J. Pharm. Pharmacol. 2015, 67(10), 1431–1438. DOI: 10.1111/jphp.12431.
  • Karimian, A.; Ahmadi, Y.; Yousefi, B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016, 42, 63–71. DOI: 10.1016/j.dnarep.2016.04.008.
  • Abbastabar, M.; Kheyrollah, M.; Azizian, K.; Bagherlou, N.; Tehrani, S. S.; Maniati, M.; Karimian, A. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein. DNA Repair (Amst). 2018, 69, 63–72. DOI: 10.1016/j.dnarep.2018.07.008.
  • Hafner, A.; Bulyk, M. L.; Jambhekar, A.; Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 2019, 20(4), 199–210. DOI: 10.1038/s41580-019-0110-x.
  • Tartik, M.; Darendelioglu, E.; Aykutoglu, G.; Baydas, G. Turkish propolis supresses MCF-7 cell death induced by homocysteine. Biomed. Pharmacother. 2016, 82, 704–712. DOI: 10.1016/j.biopha.2016.06.013.
  • Zingue, S.; Cisilotto, J.; Fogang, R. C. M.; Tchoupang, E. N.; Ndinteh, D. T.; Tchuenguem Fohouo, N. F.; Njamen, D.; Creczynski-Pasa, T. B. The antimammary tumor effects of ethanolic extract of propolis from Adamawa region (Cameroon) are by apoptosis via reactive oxygen species-mediated mitochondrial pathway. Environ. Toxicol. 2021, 36(5), 861–873. DOI: 10.1002/tox.23089.
  • Chang, H.; Wang, Y.; Yin, X.; Liu, X.; Xuan, H. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy. BMC Complement. Altern. Med. 2017, 17(1), 471. DOI: 10.1186/s12906-017-1984-9.
  • Popova, M.; Trusheva, B.; Bankova, V. Propolis of stingless bees: A phytochemist’s guide through the jungle of tropical biodiversity. Phytomedicine. 2019, 153098. doi:10.1016/j.phymed.2019.153098.
  • Shanahan, M.; Spivak, M. Resin Use by Stingless Bees: A Review. Insects. 2021, 12(8), 719. DOI: 10.3390/insects12080719.
  • Amalia, E.; Diantini, A.; Subarnas, A. Water‑soluble propolis and bee pollen of Trigona spp from South Sulawesi Indonesia induce apoptosis in the human breast cancer MCF‑7 cell line. Oncol. Letters. 2020, 20(5), 1. DOI: 10.3892/ol.2020.12137.
  • Iqbal, M.; Fan, T. P.; Watson, D.; Alenezi, S.; Saleh, K.; Sahlan, M. Preliminary studies: The potential anti-angiogenic activities of two Sulawesi Island (Indonesia) propolis and their chemical characterization. Heliyon. 2019, 5(7), e01978. DOI: 10.1016/j.heliyon.2019.e01978.
  • Nugitrangson, P.; Puthong, S.; Iempridee, T.; Pimtong, W.; Pornpakakul, S.; Chanchao, C. In vitro and in vivo characterization of the anticancer activity of Thai stingless bee (Tetragonula laeviceps) cerumen. Experiment. Biol. Med. 2016, 241(2), 166–176. DOI: 10.1177/1535370215600102.
  • Kustiawan, P. M.; Phuwapraisirisan, P.; Puthong, S.; Palaga, T.; Arung, E. T.; Chanchao, C. Propolis from the Stingless Bee Trigona incisa from East Kalimantan, Indonesia, Induces In Vitro Cytotoxicity and Apoptosis in Cancer Cell lines. Asian Pac. J. Cancer Prev. 2015, 16(15), 6581–6589. DOI: 10.7314/APJCP.2015.16.15.6581.
  • Kustiawan, P. M.; Puthong, S.; Arung, E. T.; Chanchao, C. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pac. J. Trop. Biomed. 2014, 4(7), 549–556. DOI: 10.12980/APJTB.4.2014APJTB-2013-0039.
  • Choudhari, M. K.; Haghniaz, R.; Rajwade, J. M.; Paknikar, K. M. Anticancer activity of Indian stingless bee propolis: an in vitro study. Evid. Based Complement. Altern. Med. 2013, 2013.
  • Da Cunha, M. G.; Franchin, M.; Galvão, L.; de Ruiz, A.; de Carvalho, J. E.; Ikegaki, M.; de Alencar, S. M.; Koo, H.; Rosalen, P. L. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. BMC Complementary Altern. Med. 2013, 13(1), 1–9. DOI: 10.1186/1472-6882-13-23.
  • Umthong, S.; Phuwapraisirisan, P.; Puthong, S.; Chanchao, C. In vitro antiproliferative activity of partially purified Trigona laeviceps propolis from Thailand on human cancer cell lines. BMC Complementary Altern. Med. 2011, 11(1), 1–8. DOI: 10.1186/1472-6882-11-37.
  • Imai, M.; Yokoe, H.; Tsubuki, M.; Takahashi, N. Growth Inhibition of Human Breast and Prostate Cancer Cells by Cinnamic Acid Derivatives and Their Mechanism of Action. Biol. Pharm. Bull. 2019, 42(7), 1134–1139. DOI: 10.1248/bpb.b18-01002.
  • Kabala-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R.; Wojtyczka, R. D.; Buszman, E.; Stojko, J. Caffeic Acid Versus Caffeic Acid Phenethyl Ester in the Treatment of Breast Cancer MCF-7 Cells: Migration Rate Inhibition. Integr. Cancer Ther. 2018, 17(4), 1247–1259. DOI: 10.1177/1534735418801521.
  • Kabala-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R.; Jastrzebska-Stojko, Z.; Stojko, R.; Wojtyczka, R. D.; Stojko, J. Migration Rate Inhibition of Breast Cancer Cells Treated by Caffeic Acid and Caffeic Acid Phenethyl Ester: An In Vitro Comparison Study. Nutrients. 2017, 9(10), 1144. DOI: 10.3390/nu9101144.
  • Omene, C. O.; Wu, J.; Frenkel, K. Caffeic Acid Phenethyl Ester (CAPE) derived from propolis, a honeybee product, inhibits growth of breast cancer stem cells. Invest. New Drugs. 2012, 30(4), 1279–1288. DOI: 10.1007/s10637-011-9667-8.
  • Beauregard, A. P.; Harquail, J.; Lassalle-Claux, G.; Belbraouet, M.; Jean-Francois, J.; Touaibia, M.; Robichaud, G. A. CAPE Analogs Induce Growth Arrest and Apoptosis in Breast Cancer Cells. Molecules. 2015, 20(7), 12576–12589. DOI: 10.3390/molecules200712576.
  • Wu, J.; Omene, C.; Karkoszka, J.; Bosland, M.; Eckard, J.; Klein, C. B.; Frenkel, K. Caffeic acid phenethyl ester (CAPE), derived from a honeybee product propolis, exhibits a diversity of anti-tumor effects in pre-clinical models of human breast cancer. Cancer Lett. 2011, 308(1), 43–53. DOI: 10.1016/j.canlet.2011.04.012.
  • Watabe, M.; Hishikawa, K.; Takayanagi, A.; Shimizu, N.; Nakaki, T. Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells. J. Biol. Chem. 2004, 279(7), 6017–6026. DOI: 10.1074/jbc.M306040200.
  • Yi, X.; Zuo, J.; Tan, C.; Xian, S.; Luo, C.; Chen, S.; Yu, L.; Luo, Y. Kaempferol, a Flavonoid Compound from Gynura Medica Induced Apoptosis and Growth Inhibition in Mcf-7 Breast Cancer Cell. Afr. J. Tradit. Complement. Altern. Med. 2016, 13(4), 210–215. DOI: 10.21010/ajtcam.v13i4.27.
  • Liao, W.; Chen, L.; Ma, X.; Jiao, R.; Li, X.; Wang, Y. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur. J. Med. Chem. 2016, 114, 24–32. DOI: 10.1016/j.ejmech.2016.02.045.
  • Ahmed, H.; Moawad, A.; Owis, A.; AbouZid, S.; Ahmed, O. Flavonoids of Calligonum polygonoides and their cytotoxicity. Pharm. Biol. 2016, 54(10), 2119–2126. DOI: 10.3109/13880209.2016.1146778.
  • Zhu, L.; Xue, L. Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncol Res. 2019, 27(6), 629–634. DOI: 10.3727/096504018X15228018559434.
  • Ayob, Z.; Mohd Bohari, S. P.; Abd Samad, A.; Jamil, S. Cytotoxic Activities against Breast Cancer Cells of Local Justicia gendarussa Crude Extracts. Evid. Based Complement. Alternat. Med. 2014, 2014, 732980. DOI: 10.1155/2014/732980.
  • Choi, E. J.; Ahn, W. S. Kaempferol induced the apoptosis via cell cycle arrest in human breast cancer MDA-MB-453 cells. Nutr. Res. Pract. 2008, 2(4), 322–325. DOI: 10.4162/nrp.2008.2.4.322.
  • Hu, G.; Liu, H.; Wang, M.; Peng, W.; Motif Containing, I. Q. GTPase-Activating Protein 3 (IQGAP3) Inhibits Kaempferol-Induced Apoptosis in Breast Cancer Cells by Extracellular Signal-Regulated Kinases 1/2 (ERK1/2) Signaling Activation. Med. Sci. Monit. 2019, 25, 7666–7674. DOI: 10.12659/MSM.915642.
  • Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J. V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 2005, 280(7), 5636–5645. DOI: 10.1074/jbc.M408177200.
  • Li, S.; Yan, T.; Deng, R.; Jiang, X.; Xiong, H.; Wang, Y.; Yu, Q.; Wang, X.; Chen, C.; Zhu, Y. Low dose of kaempferol suppresses the migration and invasion of triple-negative breast cancer cells by downregulating the activities of RhoA and Rac1. Onco. Targets Ther. 2017, 10, 4809–4819. DOI: 10.2147/OTT.S140886.
  • Li, C.; Zhao, Y.; Yang, D.; Yu, Y.; Guo, H.; Zhao, Z.; Zhang, B.; Yin, X. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochem. Cell Biol. 2015, 93(1), 16–27. DOI: 10.1139/bcb-2014-0067.
  • Phromnoi, K.; Yodkeeree, S.; Anuchapreeda, S.; Limtrakul, P. Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacol. Sin. 2009, 30(8), 1169–1176. DOI: 10.1038/aps.2009.107.
  • Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R. E.; Tabrizian, K.; Taghdisi, S. M.; Sadegh, S. E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G., et al. Anticancer and apoptosisinducing effects of quercetin in vitro and in vivo. Oncol. Rep. 2017, 38(2), 819–828.
  • Ediriweera, M. K.; Tennekoon, K. H.; Samarakoon, S. R.; Thabrew, I.; de Silva, E. D. Protective Effects of Six Selected Dietary Compounds against Leptin-Induced Proliferation of Oestrogen Receptor Positive (MCF-7) Breast Cancer Cells. Med. (Basel). 2017, 4(3).
  • Ranganathan, S.; Halagowder, D.; Sivasithambaram, N. D.; Singh, P. K. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells. PloS one. 2015, 10(10), e0141370. DOI: 10.1371/journal.pone.0141370.
  • Xintaropoulou, C.; Ward, C.; Wise, A.; Marston, H.; Turnbull, A.; Langdon, S. P. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget. 2015, 6(28), 25677–25695. DOI: 10.18632/oncotarget.4499.
  • Zhang, H.; Zhang, M.; Yu, L.; Zhao, Y.; He, N.; Yang, X. Antitumor activities of quercetin and quercetin-5ʹ,8-disulfonate in human colon and breast cancer cell lines. Food Chem. Toxicol. 2012, 50(5), 1589–1599. DOI: 10.1016/j.fct.2012.01.025.
  • Duo, J.; Ying, G. G.; Wang, G. W.; Zhang, L. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation. Mol. Med. Rep. 2012, 5(6), 1453–1456. DOI: 10.3892/mmr.2012.845.
  • Rahimifard, M.; Sadeghi, F.; Asadi-Samani, M.; Nejati-Koshki, K. Effect of quercetin on secretion and gene expression of leptin in breast cancer. J Tradit Chin Med. 2017, 37(3), 321–325. DOI: 10.1016/S0254-6272(17)30067-5.
  • Balabhadrapathruni, S.; Thomas, T. J.; Yurkow, E. J.; Amenta, P. S.; Thomas, T. Effects of genistein and structurally related phytoestrogens on cell cycle kinetics and apoptosis in MDA-MB-468 human breast cancer cells. Oncol. Rep. 2000, 7(1), 3–12.
  • Srivastava, S.; Somasagara, R. R.; Hegde, M.; Nishana, M.; Tadi, S. K.; Srivastava, M.; Choudhary, B.; Raghavan, S. C. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis. Sci. Rep. 2016, 6(1), 24049. DOI: 10.1038/srep24049.
  • Wu, Q.; Needs, P. W.; Lu, Y.; Kroon, P. A.; Ren, D.; Yang, X. Different antitumor effects of quercetin, quercetin-3ʹ-sulfate and quercetin-3-glucuronide in human breast cancer MCF-7 cells. Food Funct. 2018, 9(3), 1736–1746. DOI: 10.1039/C7FO01964E.
  • Tao, S. F.; He, H. F.; Chen, Q. Quercetin inhibits proliferation and invasion acts by up-regulating miR-146a in human breast cancer cells. Mol. Cell. Biochem. 2015, 402(1–2), 93–100. DOI: 10.1007/s11010-014-2317-7.
  • Dhumale, S. S.; Waghela, B. N.; Pathak, C. Quercetin protects necrotic insult and promotes apoptosis by attenuating the expression of RAGE and its ligand HMGB1 in human breast adenocarcinoma cells. IUBMB life. 2015, 67(5), 361–373. DOI: 10.1002/iub.1379.
  • Deng, X. H.; Song, H. Y.; Zhou, Y. F.; Yuan, G. Y.; Zheng, F. J. Effects of quercetin on the proliferation of breast cancer cells and expression of survivin in vitro. Exp. Ther. Med. 2013, 6(5), 1155–1158. DOI: 10.3892/etm.2013.1285.
  • Chou, C. C.; Yang, J. S.; Lu, H. F.; Ip, S. W.; Lo, C.; Wu, C. C.; Lin, J. P.; Tang, N. Y.; Chung, J. G.; Chou, M. J., et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch. Pharm. Res. 2010, 33(8), 1181–1191.
  • Choi, J. A.; Kim, J. Y.; Lee, J. Y.; Kang, C. M.; Kwon, H. J.; Yoo, Y. D.; Kim, T. W.; Lee, Y. S.; Lee, S. J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int. j. oncol. 2001, 19(4), 837–844. DOI: 10.3892/ijo.19.4.837.
  • Nguyen, L. T.; Lee, Y. H.; Sharma, A. R.; Park, J. B.; Jagga, S.; Sharma, G.; Lee, S. S.; Nam, J. S. Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. Korean J. Physiol. Pharmacol. 2017, 21(2), 205–213. DOI: 10.4196/kjpp.2017.21.2.205.
  • Chien, S. Y.; Wu, Y. C.; Chung, J. G.; Yang, J. S.; Lu, H. F.; Tsou, M. F.; Wood, W. G.; Kuo, S. J.; Chen, D. R. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum. Exp. Toxicol. 2009, 28(8), 493–503. DOI: 10.1177/0960327109107002.
  • Choi, E. J.; Bae, S. M.; Ahn, W. S. Antiproliferative effects of quercetin through cell cycle arrest and apoptosis in human breast cancer MDA-MB-453 cells. Arch. Pharm. Res. 2008, 31(10), 1281–1285. DOI: 10.1007/s12272-001-2107-0.
  • Seo, H. S.; Ku, J. M.; Choi, H. S.; Choi, Y. K.; Woo, J. K.; Kim, M.; Kim, I.; Na, C. H.; Hur, H.; Jang, B. H., et al. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol. Rep. 2016, 36(1), 31–42.
  • Noolu, B.; Gogulothu, R.; Bhat, M.; Qadri, S. S.; Reddy, V. S.; Reddy, G. B.; Ismail, A. In Vivo Inhibition of Proteasome Activity and Tumour Growth by Murraya koenigii Leaf Extract in Breast Cancer Xenografts and by Its Active Flavonoids in Breast Cancer Cells. Anti Cancer Agents Med. Chem. 2016, 16(12), 1605–1614. DOI: 10.2174/1871520616666160520112210.
  • Rivera Rivera, A.; Castillo-Pichardo, L.; Gerena, Y.; Dharmawardhane, S.; Tan, M. Anti-Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Cascade. PloS one. 2016, 11(6), e0157251. DOI: 10.1371/journal.pone.0157251.
  • Srinivasan, A.; Thangavel, C.; Liu, Y.; Shoyele, S.; Den, R. B.; Selvakumar, P.; Lakshmikuttyamma, A. Quercetin regulates beta-catenin signaling and reduces the migration of triple negative breast cancer. Mol. Carcinog. 2016, 55(5), 743–756. DOI: 10.1002/mc.22318.
  • Song, W.; Yan, C. Y.; Zhou, Q. Q.; Zhen, L. L. Galangin potentiates human breast cancer to apoptosis induced by TRAIL through activating AMPK. Biomed. Pharmacother. 2017, 89, 845–856. DOI: 10.1016/j.biopha.2017.01.062.
  • Murray, T. J.; Yang, X.; Sherr, D. H. Growth of a human mammary tumor cell line is blocked by galangin, a naturally occurring bioflavonoid, and is accompanied by down-regulation of cyclins D3, E, and A. Breast Cancer Res. 2006, 8(2), R17. DOI: 10.1186/bcr1391.
  • Samarghandian, S.; Azimi-Nezhad, M.; Borji, A.; Hasanzadeh, M.; Jabbari, F.; Farkhondeh, T.; Samini, M. Inhibitory and Cytotoxic Activities of Chrysin on Human Breast Adenocarcinoma Cells by Induction of Apoptosis. Pharmacogn. Mag. 2016, 12(Suppl 4), S436–S440. DOI: 10.4103/0973-1296.191453.
  • Rasouli, S.; Zarghami, N. Synergistic Growth Inhibitory Effects of Chrysin and Metformin Combination on Breast Cancer Cells through hTERT and Cyclin D1 Suppression. Asian Pac. J. Cancer Prev. 2018, 19(4), 977–982. DOI: 10.22034/APJCP.2018.19.4.977.
  • Javan Maasomi, Z.; Pilehvar Soltanahmadi, Y.; Dadashpour, M.; Alipour, S.; Abolhasani, S.; Zarghami, N. Synergistic Anticancer Effects of Silibinin and Chrysin in T47D Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2017, 18(5), 1283–1287. DOI: 10.22034/APJCP.2017.18.5.1283.
  • Mahin, M.; Ali, A.; Elahe, K.; Naser, A.; Elahe, K.; Shaahin, S.; Nader, S.; Naser, A. Synthesis of a copolymer carrier for anticancer drug luteolin for targeting human breast cancer cells. J Tradit Chin Med. 2019, 39(4), 474–481.
  • Mira, A.; Shimizu, K. In vitro Cytotoxic Activities and Molecular Mechanisms of Angelica shikokiana Extract and its Isolated Compounds. Pharmacogn. Mag. 2015, 11(Suppl 4), S564–9. DOI: 10.4103/0973-1296.172962.
  • Lin, C. H.; Chang, C. Y.; Lee, K. R.; Lin, H. J.; Chen, T. H.; Wan, L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC cancer. 2015, 15(1), 958. DOI: 10.1186/s12885-015-1965-7.
  • Huang, L.; Jin, K.; Lan, H. Luteolin inhibits cell cycle progression and induces apoptosis of breast cancer cells through downregulation of human telomerase reverse transcriptase. Oncol. Letters. 2019, 17(4), 3842–3850. DOI: 10.3892/ol.2019.10052.
  • Cao, D.; Zhu, G. Y.; Lu, Y.; Yang, A.; Chen, D.; Huang, H. J.; Peng, S. X.; Chen, L. W.; Li, Y. W. Luteolin suppresses epithelial-mesenchymal transition and migration of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Biomed. Pharmacother. 2020, 129, 110462. DOI: 10.1016/j.biopha.2020.110462.
  • Gao, G.; Ge, R.; Li, Y.; Liu, S. Luteolin exhibits anti-breast cancer property through up-regulating miR-203. Artif. Cells Nanomed. Biotechnol. 2019, 47(1), 3265–3271. DOI: 10.1080/21691401.2019.1646749.
  • Park, S. H.; Ham, S.; Kwon, T. H.; Kim, M. S.; Lee, D. H.; Kang, J. W.; Oh, S. R.; Yoon, D. Y. Luteolin induces cell cycle arrest and apoptosis through extrinsic and intrinsic signaling pathways in MCF-7 breast cancer cells. J Environ Pathol Toxicol Oncol. 2014, 33(3), 219–231. DOI: 10.1615/JEnvironPatholToxicolOncol.2014010923.
  • Magura, J.; Moodley, R.; Mackraj, I. The effect of hesperidin and luteolin isolated from Eriocephalus africanus on apoptosis, cell cycle and miRNA expression in MCF-7. J. biomol. struct. dyn. 2020, 1–10. doi:10.1080/07391102.2020.1833757.
  • Lee, E. J.; Oh, S. Y.; Sung, M. K. Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells. Food Chem. Toxicol. 2012, 50(11), 4136–4143. DOI: 10.1016/j.fct.2012.08.025.
  • Dong, X.; Zheng, T.; Zhang, Z.; Bai, X.; Li, H.; Zhang, J. [Luteolin reverses OPCML methylation to inhibit proliferation of breast cancer MDA-MB-231 cells]. Nan fang yi ke da xue xue bao = J. South. Med. Univ. 2020, 40(4), 550–555. DOI: 10.12122/j.issn.1673-4254.2020.04.16.
  • Monti, E.; Marras, E.; Prini, P.; Gariboldi, M. B. Luteolin impairs hypoxia adaptation and progression in human breast and colon cancer cells. Eur. J. Pharmacol. 2020, 881, 173210. DOI: 10.1016/j.ejphar.2020.173210.
  • Lee, J.; Park, S. H.; Lee, J.; Chun, H.; Choi, M. K.; Yoon, J. H.; Pham, T. H.; Kim, K. H.; Kwon, T.; Ryu, H. W., et al. Differential effects of luteolin and its glycosides on invasion and apoptosis in MDA-MB-231 triple-negative breast cancer cells. EXCLI J. 2019, 18, 750–763. DOI: 10.17179/excli2019-1459.
  • Feng, J.; Zheng, T.; Hou, Z.; Lv, C.; Xue, A.; Han, T.; Han, B.; Sun, X.; Wei, Y. Luteolin, an aryl hydrocarbon receptor ligand, suppresses tumor metastasis in vitro and in vivo. Oncol. Rep. 2020, 44(5), 2231–2240. DOI: 10.3892/or.2020.7781.
  • Sun, D. W.; Zhang, H. D.; Mao, L.; Mao, C. F.; Chen, W.; Cui, M.; Ma, R.; Cao, H. X.; Jing, C. W.; Wang, Z., et al. Luteolin Inhibits Breast Cancer Development and Progression In Vitro and In Vivo by Suppressing Notch Signaling and Regulating MiRNAs. Cellular Physiol. Biochem. 2015, 37(5), 1693–1711.
  • Jiang, Y.; Xie, K. P.; Huo, H. N.; Wang, L. M.; Zou, W.; Xie, M. J. [Inhibitory effect of luteolin on the angiogenesis of chick chorioallantoic membrane and invasion of breast cancer cells via downregulation of AEG-1 and MMP-2]. Sheng Li Xue Bao. 2013, 65(5), 513–518.
  • Lin, D.; Kuang, G.; Wan, J.; Zhang, X.; Li, H.; Gong, X.; Li, H. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of beta-catenin expression. Oncol. Rep. 2017, 37(2), 895–902. DOI: 10.3892/or.2016.5311.
  • Sordon, S.; Poplonski, J.; Milczarek, M.; Stachowicz, M.; Tronina, T.; Kucharska, A. Z.; Wietrzyk, J.; Huszcza, E. Structure-Antioxidant-Antiproliferative Activity Relationships of Natural C7 and C7-C8 Hydroxylated Flavones and Flavanones. Antioxidants (Basel). 2019, 8(7). DOI: 10.3390/antiox8070210.
  • Grigalius, I.; Petrikaite, V. Relationship between Antioxidant and Anticancer Activity of Trihydroxyflavones. Molecules. 2017, 22(12), 2169. DOI: 10.3390/molecules22122169.
  • Bai, H.; Jin, H.; Yang, F.; Zhu, H.; Cai, J. Apigenin induced MCF-7 cell apoptosis-associated reactive oxygen species. Scanning. 2014, 36(6), 622–631. DOI: 10.1002/sca.21170.
  • Vrhovac Madunic, I.; Madunic, J.; Antunovic, M.; Paradzik, M.; Garaj-Vrhovac, V.; Breljak, D.; Marijanovic, I.; Gajski, G. Apigenin, a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2018, 391(5), 537–550. DOI: 10.1007/s00210-018-1486-4.
  • Scherbakov, A. M.; Andreeva, O. E. Apigenin Inhibits Growth of Breast Cancer Cells: The Role of ERalpha and HER2/neu. Acta Naturae. 2015, 7(3), 133–139. DOI: 10.32607/20758251-2015-7-3-133-139.
  • Shendge, A. K.; Chaudhuri, D.; Basu, T.; Mandal, N. A natural flavonoid, apigenin isolated from Clerodendrum viscosum leaves, induces G2/M phase cell cycle arrest and apoptosis in MCF-7 cells through the regulation of p53 and caspase-cascade pathway. Clin. Trans. Oncol. 2021, 23(4), 718–730. DOI: 10.1007/s12094-020-02461-0.
  • Cao, X.; Liu, B.; Cao, W.; Zhang, W.; Zhang, F.; Zhao, H.; Meng, R.; Zhang, L.; Niu, R.; Hao, X., et al. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells. Chin. J. Cancer Res. 2013, 25(2), 212–222.
  • Chen, W. Y.; Hsieh, Y. A.; Tsai, C. I.; Kang, Y. F.; Chang, F. R.; Wu, Y. C.; Wu, C. C. Protoapigenone, a natural derivative of apigenin, induces mitogen-activated protein kinase-dependent apoptosis in human breast cancer cells associated with induction of oxidative stress and inhibition of glutathione S-transferase pi. Invest. New Drugs. 2011, 29(6), 1347–1359. DOI: 10.1007/s10637-010-9497-0.
  • Sinha, S.; Patel, S.; Athar, M.; Vora, J.; Chhabria, M. T.; Jha, P. C.; Shrivastava, N. Structure-based identification of novel sirtuin inhibitors against triple negative breast cancer: An in silico and in vitro study. Int. J. Biol. Macromol. 2019, 140, 454–468. DOI: 10.1016/j.ijbiomac.2019.08.061.
  • Seo, H. S.; Ku, J. M.; Choi, H. S.; Woo, J. K.; Jang, B. H.; Shin, Y. C.; Ko, S. G. Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells. Anticancer Res. 2014, 34(6), 2869–2882.
  • Choi, E. J.; Kim, G. H. Apigenin Induces Apoptosis through a Mitochondria/Caspase-Pathway in Human Breast Cancer MDA-MB-453 Cells. J. Clin. Biochem. Nutr. 2009, 44(3), 260–265. DOI: 10.3164/jcbn.08-230.
  • Seo, H. S.; Ku, J. M.; Choi, H. S.; Woo, J. K.; Jang, B. H.; Go, H.; Shin, Y. C.; Ko, S. G. Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells. Mol. Med. Rep. 2015, 12(2), 2977–2984. DOI: 10.3892/mmr.2015.3698.
  • Seo, H. S.; Jo, J. K.; Ku, J. M.; Choi, H. S.; Choi, Y. K.; Woo, J. K.; Kim, H. I.; Kang, S. Y.; Lee, K. M.; Nam, K. W., et al. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells. Biosci. Rep. 2015, 35(6). doi:10.1042/BSR20150165.
  • Ittiudomrak, T.; Puthong, S.; Palaga, T.; Roytrakul, S.; Chanchao, C. α-Mangostin and apigenin induced the necrotic death of BT474 breast cancer cells with autophagy and inflammation. Asian Pac. J. Trop. Biomed. 2018, 8(11), 519. DOI: 10.4103/2221-1691.245956.
  • Mak, P.; Leung, Y. K.; Tang, W. Y.; Harwood, C.; Ho, S. M. Apigenin suppresses cancer cell growth through ERbeta. Neoplasia. 2006, 8(11), 896–904. DOI: 10.1593/neo.06538.
  • Chen, D.; Landis-Piwowar, K. R.; Chen, M. S.; Dou, Q. P. Inhibition of proteasome activity by the dietary flavonoid apigenin is associated with growth inhibition in cultured breast cancer cells and xenografts. Breast Cancer Res. 2007, 9(6), R80. DOI: 10.1186/bcr1797.
  • Way, T. D.; Kao, M. C.; Lin, J. K. Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activation in HER2/neu-overexpressing breast cancer cells. FEBS Lett. 2005, 579(1), 145–152. DOI: 10.1016/j.febslet.2004.11.061.
  • Way, T. D.; Kao, M. C.; Lin, J. K. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem. 2004, 279(6), 4479–4489. DOI: 10.1074/jbc.M305529200.
  • Harrison, M. E.; Power Coombs, M. R.; Delaney, L. M.; Hoskin, D. W. Exposure of breast cancer cells to a subcytotoxic dose of apigenin causes growth inhibition, oxidative stress, and hypophosphorylation of Akt. Exp. Mol. Pathol. 2014, 97(2), 211–217. DOI: 10.1016/j.yexmp.2014.07.006.
  • Yin, F.; Giuliano, A. E.; Law, R. E.; Van Herle, A. J. Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res. 2001, 21(1A), 413–420.
  • Lee, H. H.; Jung, J.; Moon, A.; Kang, H.; Cho, H. Antitumor and Anti-Invasive Effect of Apigenin on Human Breast Carcinoma through Suppression of IL-6 Expression. Int. J. Mol. Sci. 2019, 20(13).
  • Li, Y. W.; Xu, J.; Zhu, G. Y.; Huang, Z. J.; Lu, Y.; Li, X. Q.; Wang, N.; Zhang, F. X. Apigenin suppresses the stem cell-like properties of triple-negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov. 2018, 4(1), 105. DOI: 10.1038/s41420-018-0124-8.
  • Saleh, A.; ElFayoumi, H. M.; Youns, M.; Barakat, W. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2019, 392(2), 165–175. DOI: 10.1007/s00210-018-1579-0.
  • Basu, P.; Meza, E.; Bergel, M.; Maier, C. Estrogenic, Antiestrogenic and Antiproliferative Activities of Euphorbia bicolor (Euphorbiaceae) Latex Extracts and Its Phytochemicals. Nutrients. 2019, 12(1), 59. DOI: 10.3390/nu12010059.
  • Elsayed, H. E.; Ebrahim, H. Y.; Mohyeldin, M. M.; Siddique, A. B.; Kamal, A. M.; Haggag, E. G.; El Sayed, K. A. Rutin as A Novel c-Met Inhibitory Lead for The Control of Triple Negative Breast Malignancies. Nutr. Cancer. 2017, 69(8), 1256–1271. DOI: 10.1080/01635581.2017.1367936.
  • Deepika, M. S.; Thangam, R.; Sheena, T. S.; Vimala, R. T. V.; Sivasubramanian, S.; Jeganathan, K.; Thirumurugan, R. Dual drug loaded PLGA nanospheres for synergistic efficacy in breast cancer therapy. Mater. sci. eng. C Mater. biol. appl. 2019, 103, 109716. DOI: 10.1016/j.msec.2019.05.001.
  • Iriti, M.; Kubina, R.; Cochis, A.; Sorrentino, R.; Varoni, E. M.; Kabala-Dzik, A.; Azzimonti, B.; Dziedzic, A.; Rimondini, L.; Wojtyczka, R. D. Rutin, a Quercetin Glycoside, Restores Chemosensitivity in Human Breast Cancer Cells. Phytother Res. 2017, 31(10), 1529–1538. DOI: 10.1002/ptr.5878.
  • Diaz-Carballo, D.; Freista Hler, M.; Malak, S.; Bardenheuer, W.; Reusch, H. P. Mucronulatol from Caribbean propolis exerts cytotoxic effects on human tumor cell lines. Int J Clin Pharmacol Ther. 2008, 46(5), 226–235. DOI: 10.5414/CPP46226.
  • Attari, F.; Keighobadi, F.; Abdollahi, M.; Arefian, E.; Lotfizadeh, R.; Sepehri, H.; Moridi Farimani, M. Inhibitory effect of flavonoid xanthomicrol on triple-negative breast tumor via regulation of cancer-associated microRNAs. Phytother Res. 2020, 35(4), 1967–1982. DOI: 10.1002/ptr.6940.
  • Wadhwa, R.; Nigam, N.; Bhargava, P.; Dhanjal, J. K.; Goyal, S.; Grover, A.; Sundar, D.; Ishida, Y.; Terao, K.; Kaul, S. C. Molecular Characterization and Enhancement of Anticancer Activity of Caffeic Acid Phenethyl Ester by gamma Cyclodextrin. J. Cancer. 2016, 7(13), 1755–1771. DOI: 10.7150/jca.15170.
  • Omene, C.; Kalac, M.; Wu, J.; Marchi, E.; Frenkel, K.; O’Connor, O. A. Propolis and its Active Component, Caffeic Acid Phenethyl Ester (CAPE), Modulate Breast Cancer Therapeutic Targets via an Epigenetically Mediated Mechanism of Action. J. Cancer Sci. Ther. 2013, 5(10), 334–342.
  • Fraser, S. P.; Hemsley, F.; Djamgoz, M. B. A. Caffeic acid phenethyl ester: Inhibition of metastatic cell behaviours via voltage-gated sodium channel in human breast cancer in vitro. Int. J. Biochem. Cell Biol. 2016, 71, 111–118. DOI: 10.1016/j.biocel.2015.12.012.
  • Balc-Okcanoğlu, T.; Yilma-Susluer, S.; Kayabasi, C.; Ozme-Yelken, B.; Biray-Avci, C.; Gunduz, C. The effect of caffeic acid phenethyl ester on cell cycle control gene expressions in breast cancer cells. Mol. Biol. Res. Commun. 2021, 10(1), 39–43. DOI: 10.22099/mbrc.2020.38811.1563.
  • Jung, B. I.; Kim, M. S.; Kim, H. A.; Kim, D.; Yang, J.; Her, S.; Song, Y. S. Caffeic acid phenethyl ester, a component of beehive propolis, is a novel selective estrogen receptor modulator. Phytother Res. 2010, 24(2), 295–300. DOI: 10.1002/ptr.2966.
  • Kim, B. W.; Lee, E. R.; Min, H. M.; Jeong, H. S.; Ahn, J. Y.; Kim, J. H.; Choi, H. Y.; Choi, H.; Kim, E. Y.; Park, S. P., et al. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biol. Ther. 2008, 7(7), 1080–1089.
  • Hung, H. Inhibition of estrogen receptor alpha expression and function in MCF-7 cells by kaempferol. J. Cell. Physiol. 2004, 198(2), 197–208. DOI: 10.1002/jcp.10398.
  • Azevedo, C.; Correia-Branco, A.; Araujo, J. R.; Guimaraes, J. T.; Keating, E.; Martel, F. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr. Cancer. 2015, 67(3), 504–513. DOI: 10.1080/01635581.2015.1002625.
  • Khorsandi, L.; Orazizadeh, M.; Niazvand, F.; Abbaspour, M. R.; Mansouri, E.; Khodadadi, A. Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells. Bratisl Lek Listy. 2017, 118(2), 123–128. DOI: 10.4149/BLL_2017_025.
  • Yang, W.; Cui, M.; Lee, J.; Gong, W.; Wang, S.; Fu, J.; Wu, G.; Yan, K. Heat shock protein inhibitor, quercetin, as a novel adjuvant agent to improve radiofrequency ablation-induced tumor destruction and its molecular mechanism. Chin. J. Cancer Res. 2016, 28(1), 19–28. DOI: 10.3978/j.issn.1000-9604.2016.02.06.
  • Chen, F. P.; Chien, M. H. Phytoestrogens induce apoptosis through a mitochondria/caspase pathway in human breast cancer cells. Climacteric. 2014, 17(4), 385–392. DOI: 10.3109/13697137.2013.869671.
  • Lee, Y. K.; Park, S. Y.; Kim, Y. M.; Lee, W. S.; Park, O. J. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp. Mol. Med. 2009, 41(3), 201–207. DOI: 10.3858/emm.2009.41.3.023.
  • Seo, H. S.; Choi, H. S.; Choi, H. S.; Choi, Y. K.; Um, J. Y.; Choi, I.; Shin, Y. C.; Ko, S. G. Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factor-kappaB signaling in HER2-overexpressing breast cancer cells. Anticancer Res. 2011, 31(10), 3301–3313.
  • Chen, F. P.; Chien, M. H. Effects of phytoestrogens on the activity and growth of primary breast cancer cells ex vivo. J Obstet Gynaecol Res. 2019, 45(7), 1352–1362. DOI: 10.1111/jog.13982.
  • Kıyga, E.; Şengelen, A.; Adıgüzel, Z.; Önay Uçar, E. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells. Mol. Biol. Rep. 2020, 47(7), 4957–4967. DOI: 10.1007/s11033-020-05641-x.
  • Waite, K. A.; Sinden, M. R.; Eng, C. Phytoestrogen exposure elevates PTEN levels. Hum. Mol. Genet. 2005, 14(11), 1457–1463. DOI: 10.1093/hmg/ddi155.
  • Hwang, E. Y.; Huh, J. W.; Choi, M. M.; Choi, S. Y.; Hong, H. N.; Cho, S. W. Inhibitory effects of gallic acid and quercetin on UDP-glucose dehydrogenase activity. FEBS Lett. 2008, 582(27), 3793–3797. DOI: 10.1016/j.febslet.2008.10.010.
  • Li, L. J.; Li, G. W.; Xie, Y. [Regulatory effects of glabridin and quercetin on energy metabolism of breast cancer cells]. Zhongguo Zhong Yao Za Zhi. 2019, 44(17), 3786–3791. DOI: 10.19540/j.cnki.cjcmm.20190505.401.
  • Sharma, R.; Gatchie, L.; Williams, I. S.; Jain, S. K.; Vishwakarma, R. A.; Chaudhuri, B.; Bharate, S. B. Glycyrrhiza glabra extract and quercetin reverses cisplatin resistance in triple-negative MDA-MB-468 breast cancer cells via inhibition of cytochrome P450 1B1 enzyme. Bioorg. Med. Chem. Lett. 2017, 27(24), 5400–5403. DOI: 10.1016/j.bmcl.2017.11.013.
  • Conklin, C. M.; Bechberger, J. F.; MacFabe, D.; Guthrie, N.; Kurowska, E. M.; Naus, C. C. Genistein and quercetin increase connexin43 and suppress growth of breast cancer cells. Carcinogenesis. 2007, 28(1), 93–100. DOI: 10.1093/carcin/bgl106.
  • Hanikoglu, A.; Kucuksayan, E.; Hanikoglu, F.; Ozben, T.; Menounou, G.; Sansone, A.; Chatgilialoglu, C.; Di Bella, G.; Ferreri, C. Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes. Can. J. Physiol. Pharmacol. 2020, 98(3), 131–138. DOI: 10.1139/cjpp-2019-0352.
  • Wang, R.; Yang, L.; Li, S.; Ye, D.; Yang, L.; Liu, Q.; Zhao, Z.; Cai, Q.; Tan, J.; Li, X. Quercetin Inhibits Breast Cancer Stem Cells via Downregulation of Aldehyde Dehydrogenase 1A1 (ALDH1A1), Chemokine Receptor Type 4 (CXCR4), Mucin 1 (MUC1), and Epithelial Cell Adhesion Molecule (EpCAM). Med. Sci. Monit. 2018, 24, 412–420. DOI: 10.12659/MSM.908022.
  • Lee, Y. K.; Park, O. J. Regulation of mutual inhibitory activities between AMPK and Akt with quercetin in MCF-7 breast cancer cells. Oncol. Rep. 2010, 24(6), 1493–1497. DOI: 10.3892/or_00001010.
  • Li, Y.; Li, R.; Zeng, Z.; Li, S.; Luo, S.; Wu, J.; Zhou, C.; Xu, D. Prediction of the mechanisms of Xiaoai Jiedu Recipe in the treatment of breast cancer: A comprehensive approach study with experimental validation. J. Ethnopharmacol. 2020, 252, 112603. DOI: 10.1016/j.jep.2020.112603.
  • Castillo-Pichardo, L.; Dharmawardhane, S. F. Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr. Cancer. 2012, 64(7), 1058–1069. DOI: 10.1080/01635581.2012.716898.
  • van Zanden, J. J.; Geraets, L.; Wortelboer, H. M.; van Bladeren, P. J.; Rietjens, I. M.; Cnubben, N. H. Structural requirements for the flavonoid-mediated modulation of glutathione S-transferase P1-1 and GS-X pump activity in MCF7 breast cancer cells. Biochem Pharmacol. 2004, 67(8), 1607–1617. DOI: 10.1016/j.bcp.2003.12.032.
  • Ciolino, H. P.; Yeh, G. C. The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor. Br. j. cancer. 1999, 79(9–10), 1340–1346. DOI: 10.1038/sj.bjc.6690216.
  • Aryappalli, P.; Shabbiri, K.; Masad, R. J.; Al-Marri, R. H.; Haneefa, S. M.; Mohamed, Y. A.; Arafat, K.; Attoub, S.; Cabral-Marques, O.; Ramadi, K. B., et al. Inhibition of Tyrosine-Phosphorylated STAT3 in Human Breast and Lung Cancer Cells by Manuka Honey is Mediated by Selective Antagonism of the IL-6 Receptor. Int. J. Mol. Sci. 2019, 20(18), 4340.
  • Hong, T. B.; Rahumatullah, A.; Yogarajah, T.; Ahmad, M.; Yin, K. B. Potential effects of chrysin on MDA-MB-231 cells. Int. J. Mol. Sci. 2010, 11(3), 1057–1069. DOI: 10.3390/ijms11031057.
  • Sun, L. P.; Chen, A. L.; Hung, H. C.; Chien, Y. H.; Huang, J. S.; Huang, C. Y.; Chen, Y. W.; Chen, C. N. Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. J. Agric. Food Chem. 2012, 60(47), 11748–11758. DOI: 10.1021/jf303261r.
  • Eatemadi, A.; Daraee, H.; Aiyelabegan, H. T.; Negahdari, B.; Rajeian, B.; Zarghami, N. Synthesis and Characterization of Chrysin-loaded PCL-PEG-PCL nanoparticle and its effect on breast cancer cell line. Biomed. Pharmacother. 2016, 84, 1915–1922. DOI: 10.1016/j.biopha.2016.10.095.
  • Hong, J.; Fristiohady, A.; Nguyen, C. H.; Milovanovic, D.; Huttary, N.; Krieger, S.; Hong, J.; Geleff, S.; Birner, P.; Jager, W., et al. Apigenin and Luteolin Attenuate the Breaching of MDA-MB231 Breast Cancer Spheroids Through the Lymph Endothelial Barrier in Vitro. Front. Pharmacol. 2018, 9, 220. DOI: 10.3389/fphar.2018.00220.
  • Li, F.; Ye, L.; Lin, S. M.; Leung, L. K. Dietary flavones and flavonones display differential effects on aromatase (CYP19) transcription in the breast cancer cells MCF-7. Mol. Cell. Endocrinol. 2011, 344(1–2), 51–58. DOI: 10.1016/j.mce.2011.06.024.
  • Jin, X. Y.; Ren, C. S. [Effect and mechanism of apigenin on VEGF expression in human breast cancer cells]. Zhonghua Zhong Liu Za Zhi. 2007, 29(7), 495–499.
  • Choi, E. J.; Kim, G. H. Apigenin causes G(2)/M arrest associated with the modulation of p21(Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells. J. Nutr. Biochem. 2009, 20(4), 285–290. DOI: 10.1016/j.jnutbio.2008.03.005.
  • Scherbakov, A. M.; Shestakova, E. A.; Galeeva, K. E.; Bogush, T. A. [BRCA1 and Estrogen Receptor alpha Expression Regulation in Breast Cancer Cells]. Mol Biol (Mosk). 2019, 53(3), 502–512. DOI: 10.1134/S0026893319030166.
  • Schindler, R.; Mentlein, R. Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. J. Nutr. 2006, 136(6), 1477–1482. DOI: 10.1093/jn/136.6.1477.
  • Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12(1), 3–20. DOI: 10.1002/1878-0261.12155.
  • Changavi, A. A.; Shashikala, A.; Ramji, A. S. Epidermal Growth Factor Receptor Expression in Triple Negative and Nontriple Negative Breast Carcinomas. J. Lab. Physicians. 2015, 7(2), 79–83. DOI: 10.4103/0974-2727.163129.
  • Shostak, K.; Chariot, A. EGFR and NF-kappaB: partners in cancer. Trends Mol. Med. 2015, 21(6), 385–393. DOI: 10.1016/j.molmed.2015.04.001.
  • Huang, Q.; Li, S.; Zhang, L.; Qiao, X.; Zhang, Y.; Zhao, X.; Xiao, G.; Li, Z. CAPE-pNO2 Inhibited the Growth and Metastasis of Triple-Negative Breast Cancer via the EGFR/STAT3/Akt/E-Cadherin Signaling Pathway. Front. Oncol. 2019, 9, 461. DOI: 10.3389/fonc.2019.00461.
  • Shi, Y.; Qin, N.; Zhou, Q.; Chen, Y.; Huang, S.; Chen, B.; Shen, G.; Jia, H. Role of IQGAP3 in metastasis and epithelial-mesenchymal transition in human hepatocellular carcinoma. J. Transl. Med. 2017, 15(1), 176. DOI: 10.1186/s12967-017-1275-8.
  • Kumar, D.; Hassan, M. K.; Pattnaik, N.; Mohapatra, N.; Dixit, M.; Coleman, W. B. Reduced expression of IQGAP2 and higher expression of IQGAP3 correlates with poor prognosis in cancers. PloS one. 2017, 12(10), e0186977. DOI: 10.1371/journal.pone.0186977.
  • Lee, G. A.; Choi, K. C.; Hwang, K. A. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ. Toxicol. Pharmacol. 2017, 49, 48–57. DOI: 10.1016/j.etap.2016.11.016.
  • Kim, S. H.; Hwang, K. A.; Choi, K. C. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J. Nutr. Biochem. 2016, 28, 70–82. DOI: 10.1016/j.jnutbio.2015.09.027.
  • Pang, X.; Fu, W.; Wang, J.; Kang,; Xu, L.; Zhao, Y.; Liu, A.-L.; Du, A. L.; Kang, G. H. Identification of Estrogen Receptor alpha Antagonists from Natural Products via In Vitro and In Silico Approaches. Oxid. Med. Cell. Longev. 2018, 2018, 6040149. DOI: 10.1155/2018/6040149.
  • Resende, F. A.; de Oliveira, A. P.; de Camargo, M. S.; Vilegas, W.; Varanda, E. A.; Jeong, J.-W. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay. PloS one. 2013, 8(10), e74881. DOI: 10.1371/journal.pone.0074881.
  • Oh, S. M.; Kim, Y. P.; Chung, K. H. Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Arch. Pharm. Res. 2006, 29(5), 354–362. DOI: 10.1007/BF02968584.
  • Harris, D. M.; Besselink, E.; Henning, S. M.; Go, V. L.; Heber, D. Phytoestrogens induce differential estrogen receptor alpha- or Beta-mediated responses in transfected breast cancer cells. Exp. Biol. Med. (Maywood). 2005, 230(8), 558–568. DOI: 10.1177/153537020523000807.
  • Shahi Thakuri, P.; Gupta, M.; Singh, S.; Joshi, R.; Glasgow, E.; Lekan, A.; Agarwal, S.; Luker, G. D.; Tavana, H. Phytochemicals inhibit migration of triple negative breast cancer cells by targeting kinase signaling. BMC cancer. 2020, 20(1), 4. DOI: 10.1186/s12885-019-6479-2.
  • Song, N. R.; Chung, M. Y.; Kang, N. J.; Seo, S. G.; Jang, T. S.; Lee, H. J.; Lee, K. W. Quercetin suppresses invasion and migration of H-Ras-transformed MCF10A human epithelial cells by inhibiting phosphatidylinositol 3-kinase. Food Chem. 2014, 142, 66–71. DOI: 10.1016/j.foodchem.2013.07.002.
  • Moreira, L.; Araujo, I.; Costa, T.; Correia-Branco, A.; Faria, A.; Martel, F.; Keating, E. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp. Cell Res. 2013, 319(12), 1784–1795. DOI: 10.1016/j.yexcr.2013.05.001.
  • Zhao, X.; Wang, Q.; Yang, S.; Chen, C.; Li, X.; Liu, J.; Zou, Z.; Cai, D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur. J. Pharmacol. 2016, 781, 60–68. DOI: 10.1016/j.ejphar.2016.03.063.
  • Zhu, L.; Luo, Q.; Bi, J.; Ding, J.; Ge, S.; Chen, F. Galangin inhibits growth of human head and neck squamous carcinoma cells in vitro and in vivo. Chem.-Biol. Interact. 2014, 224, 149–156. DOI: 10.1016/j.cbi.2014.10.027.
  • Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Pipitone, R. M.; Dusonchet, L.; Meli, M.; Crosta, L.; Gebbia, N.; Invidiata, F. P.; Titone, L. Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells. Cancer Lett. 2008, 265(2), 289–297. DOI: 10.1016/j.canlet.2008.02.025.
  • Sulaiman, G. Molecular structure and antiproliferative effect of galangin in HCT116 cells. vitro. 2016.
  • Cook, M. T.; Liang, Y.; Besch-Williford, C.; Hyder, S. M. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells. Breast Cancer (Dove Med Press). 2017, 9, 9–19. DOI: 10.2147/BCTT.S124860.
  • Cook, M. T.; Mafuvadze, B.; Besch-Williford, C.; Ellersieck, M. R.; Goyette, S.; Hyder, S. M. Luteolin suppresses development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats. Oncol. Rep. 2016, 35(2), 825–832. DOI: 10.3892/or.2015.4431.
  • Cook, M. T.; Liang, Y.; Besch-Williford, C.; Goyette, S.; Mafuvadze, B.; Hyder, S. M. Luteolin inhibits progestin-dependent angiogenesis, stem cell-like characteristics, and growth of human breast cancer xenografts. Springerplus. 2015, 4(1), 444. DOI: 10.1186/s40064-015-1242-x.
  • Seo, H. S.; Choi, H. S.; Kim, S. R.; Choi, Y. K.; Woo, S. M.; Shin, I.; Woo, J. K.; Park, S. Y.; Shin, Y. C.; Ko, S. G. Apigenin induces apoptosis via extrinsic pathway, inducing p53 and inhibiting STAT3 and NFkappaB signaling in HER2-overexpressing breast cancer cells. Mol. Cell. Biochem. 2012, 366(1–2), 319–334. DOI: 10.1007/s11010-012-1310-2.
  • Mafuvadze, B.; Liang, Y.; Besch-Williford, C.; Zhang, X.; Hyder, S. M. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Hormones Cancer. 2012, 3(4), 160–171. DOI: 10.1007/s12672-012-0114-x.
  • Mafuvadze, B.; Benakanakere, I.; Lopez Perez, F. R.; Besch-Williford, C.; Ellersieck, M. R.; Hyder, S. M. Apigenin prevents development of medroxyprogesterone acetate-accelerated 7,12-dimethylbenz(a)anthracene-induced mammary tumors in Sprague-Dawley rats. Cancer Prev. Res. (Phila). 2011, 4(8), 1316–1324. DOI: 10.1158/1940-6207.CAPR-10-0382.
  • Ristivojevic, P.; Trifkovic, J.; Andric, F.; Milojkovic-Opsenica, D. Poplar-type Propolis: Chemical Composition, Botanical Origin and Biological Activity. Nat. Prod. Commun. 2015, 10(11), 1869–1876.
  • Diaz-Carballo, D.; Malak, S.; Bardenheuer, W.; Freistuehler, M.; Reusch, H. P. Cytotoxic activity of nemorosone in neuroblastoma cells. J. Cellular Mol. Med. 2008, 12(6B), 2598–2608. DOI: 10.1111/j.1582-4934.2008.00232.x.
  • Camargo, M. S.; Prieto, A. M.; Resende, F. A.; Boldrin, P. K.; Cardoso, C. R.; Fernandez, M. F.; Molina-Molina, J. M.; Olea, N.; Vilegas, W.; Cuesta-Rubio, O., et al. Evaluation of estrogenic, antiestrogenic and genotoxic activity of nemorosone, the major compound found in brown Cuban propolis. BMC Complement. Altern. Med. 2013, 13(1), 201.
  • Camargo, M. S.; Varela, S. D.; de Oliveira, A. P. S.; Resende, F. A.; Cuesta-Rubio, O.; Vilegas, W.; Varanda, E. A. Assessment of estrogenic, mutagenic and antimutagenic activity of nemorosone. Brazilian J. Pharmacognosy. 2011, 21(5), 921–927. DOI: 10.1590/S0102-695X2011005000148.
  • Braakhuis, A. Evidence on the health benefits of supplemental propolis. Nutrients. 2019, 11(11), 2705.
  • Yesiltas, B.; Capanoglu, E.; Firatligil-Durmus, E.; Sunay, A. E.; Samanci, T.; Boyacioglu, D. Investigating the in-vitro bioaccessibility of propolis and pollen using a simulated gastrointestinal digestion System. J. Apic. Res. 2014, 53(1), 101–108. DOI: 10.3896/IBRA.1.53.1.10.
  • Curti, V.; Zaccaria, V.; Tsetegho Sokeng, A. J.; Dacrema, M.; Masiello, I.; Mascaro, A.; D’Antona, G.; Daglia, M. Bioavailability and in vivo antioxidant activity of a standardized polyphenol mixture extracted from brown propolis. Int. J. Mol. Sci. 2019, 20(5), 1250. DOI: 10.3390/ijms20051250.
  • Boufadi, Y. M.; Van Antwerpen, P.; Chikh Alard, I.; Nève, J.; Djennas, N.; Riazi, A.; Soubhye, J. Antioxidant effects and bioavailability evaluation of propolis extract and its content of pure polyphenols. J. Food Biochem. 2018, 42(1), e12434. DOI: 10.1111/jfbc.12434.
  • Mesbah, L.; Samia, A Bioavailability and pharmacokinetic of the Algerian propolis constituent naringenin in rats after oral administration. Planta Med. 2011, 77(12), PA11. DOI: 10.1055/s-0031-1282207.
  • Kubiliene, L.; Jekabsone, A.; Zilius, M.; Trumbeckaite, S.; Simanaviciute, D.; Gerbutaviciene, R.; Majiene, D. Comparison of aqueous, polyethylene glycol-aqueous and ethanolic propolis extracts: antioxidant and mitochondria modulating properties. BMC Complementary Altern. Med. 2018, 18(1), 1–10. DOI: 10.1186/s12906-018-2234-5.
  • Woźniak, M.; Mrówczyńska, L.; Kwaśniewska-Sip, P.; Waśkiewicz, A.; Nowak, P.; Ratajczak, I. Effect of the solvent on propolis phenolic profile and its antifungal, antioxidant, and in vitro cytoprotective activity in human erythrocytes under oxidative stress. Molecules. 2020, 25(18), 4266. DOI: 10.3390/molecules25184266.
  • Mendez-Pfeiffer, P.; Juarez, J.; Hernández, J.; Taboada, P.; Virues, C.; Valencia, D.; Velazquez, C. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. J. Drug Delivery Sci. Technol. 2021, 65, 102762. DOI: 10.1016/j.jddst.2021.102762.
  • Huang, C.; Wei, Y. X.; Shen, M. C.; Tu, Y. H.; Wang, C. C.; Huang, H. C. Chrysin, Abundant in Morinda citrifolia Fruit Water-EtOAc Extracts, Combined with Apigenin Synergistically Induced Apoptosis and Inhibited Migration in Human Breast and Liver Cancer Cells. J. Agric. Food Chem. 2016, 64(21), 4235–4245. DOI: 10.1021/acs.jafc.6b00766.
  • Ackland, M. L.; van de Waarsenburg, S.; Jones, R. Synergistic antiproliferative action of the flavonols quercetin and kaempferol in cultured human cancer cell lines. Vivo. 2005, 19(1), 69–76.
  • Huang, C.; Huang, Y. L.; Wang, C. C.; Pan, Y. L.; Lai, Y. H.; Huang, H. C. Ampelopsins A and C Induce Apoptosis and Metastasis through Downregulating AxL, TYRO3, and FYN Expressions in MDA-MB-231 Breast Cancer Cells. J. Agric. Food Chem. 2019, 67(10), 2818–2830. DOI: 10.1021/acs.jafc.8b06444.
  • Yang, M. Y.; Wang, C. J.; Chen, N. F.; Ho, W. H.; Lu, F. J.; Tseng, T. H. Luteolin enhances paclitaxel-induced apoptosis in human breast cancer MDA-MB-231 cells by blocking STAT3. Chem. Biol. Interact. 2014, 213, 60–68. DOI: 10.1016/j.cbi.2014.02.002.
  • Choi, E. J.; Kim, G. H. 5-Fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol. Rep. 2009, 22(6), 1533–1537. DOI: 10.3892/or_00000598.
  • Samy, R. P.; Gopalakrishnakone, P.; Ignacimuthu, S. Anti-tumor promoting potential of luteolin against 7,12-dimethylbenz(a)anthracene-induced mammary tumors in rats. Chem. Biol. Interact. 2006, 164(1–2), 1–14. DOI: 10.1016/j.cbi.2006.08.018.
  • Scambia, G.; Ranelletti, F. O.; Panici, P. B.; De Vincenzo, R.; Bonanno, G.; Ferrandina, G.; Piantelli, M.; Bussa, S.; Rumi, C.; Cianfriglia, M., et al. Quercetin potentiates the effect of adriamycin in a multidrug-resistant MCF-7 human breast-cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol. 1994, 34(6), 459–464.
  • Ozkan, E.; Bakar-Ates, F. Potentiation of the Effect of Lonidamine by Quercetin in MCF-7 human breast cancer cells through downregulation of MMP-2/9 mRNA Expression. Anais da Academia Brasileira de Ciencias. 2020, 92(4), e20200548. DOI: 10.1590/0001-3765202020200548.
  • Li, J.; Zhang, J.; Wang, Y.; Liang, X.; Wusiman, Z.; Yin, Y.; Shen, Q. Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int. J. Pharm. 2017, 523(1), 300–309. DOI: 10.1016/j.ijpharm.2017.03.040.
  • Gyemant, N.; Tanaka, M.; Antus, S.; Hohmann, J.; Csuka, O.; Mandoky, L.; Molnar, J. In vitro search for synergy between flavonoids and epirubicin on multidrug-resistant cancer cells. Vivo. 2005, 19(2), 367–374.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.