1,498
Views
15
CrossRef citations to date
0
Altmetric
Review

A comprehensive review on health benefits, nutritional composition and processed products of camel milk

, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • OECD-FAO, OECD-FAO agricultural outlook 2019-2028. Organisation for Economic Co-operation and Development OECD: Latin America, 2019.
  • Gizachew, A.; Teha, J.; Nekemte,E., . Review on medicinal and nutritional values of camel milk. Nature and Sci. 2014, 12(12), 35–41.
  • El-Agamy, E. The Challenge of Cow Milk Protein Allergy. Small Ruminant Res. 2007, 68(1), 64–72. DOI: 10.1016/j.smallrumres.2006.09.016.
  • Maqsood, S.; Al-Dowaila, A.; Mudgil, P.; Kamal, H.; Jobe, B.; Hassan, H. M., Comparative characterization ofpProtein and lipid fractions from camel and cow milk, their functionality, antioxidant and antihypertensive properties upon simulated gastro-intestinal digestion. Food Chem. 2019, 279, 328–338.
  • Metwalli, A. A.; Hailu, Y. Effects of Industrial Processing Methods on Camel Milk Composition, Nutritional Value, and Health Properties. In Handbook of Research on Health and Environmental Benefits of Camel Products, Alhaj, O. A., Faye, B., and Agrawal, R. P., Eds.IGI Global: 2020; pp 197–239.
  • El-Agamy, E. I.; Nawar, M.; Shamsia, S. M.; Awad, S.; Haenlein, G. F. W.; et al. Are Camel Milk Proteins Convenient to the Nutrition of Cow Milk Allergic Children?. Small Ruminant Res. 2009, 82(1), 1–6.
  • Rahmeh, R.; et al. Composition and Properties of Camel Milk, in Milk Production, Processing and Marketing; IntechOpen, 2019.
  • Talarico, V.; et al. Camel Milk: A Possible Alternative for Children with Cow’s Milk Allergy?; Minerva Pediatrica, 2019.
  • Berhe, T.; et al. Processing Challenges and Opportunities of Camel Dairy Products; International Journal of Food Science, 2017.
  • Faye, B.; Konuspayeva, G. Innovations in Camel Milk Processing: The New Challenges for Marketing Camel Dairy Products and the Consequences on Genetic Selection. in Regional conf. for animal genetic resources conservation. Towards Sustainable Utilization. Available on: https://oapgrc.gov.om/Documents/Thenewchallengesformarketingcameldairyproductsandtheconsequencesongeneticselection_BernardFye.pdf. 2016.
  • Farah, Z.; Mollet, M.; Younan, M.; Dahir, R.; et al. Camel Dairy in Somalia: Limiting Factors and Development Potential. Livestock Sci. 2007, 110(1–2), 187–191.
  • Abeiderrahmane, N. J. Camel Cheese: Seemed like a Good Idea; 2013.
  • Hashim, I.; Khalil, A.; Habib, H. Quality and Acceptability of a Set-type Yogurt Made from Camel Milk. J. Dairy Sci. 2009, 92(3), 857–862. DOI: 10.3168/jds.2008-1408.
  • Berhe, T.; Seifu, E.; Kurtu, M. Y. Physicochemical Properties of Butter Made from Camel Milk. Int. Dairy J. 2013, 31(2), 51–54. DOI: 10.1016/j.idairyj.2013.02.008.
  • Nagy, P.; Juhasz, J. Review of Present Knowledge on Machine Milking and Intensive Milk Production in Dromedary Camels and Future Challenges. Trop. Anim. Health Prod. 2016, 48(5), 915–926. DOI: 10.1007/s11250-016-1036-3.
  • Elhadi, Y. A.; Nyariki, D. M.; Wasonga, O. V. Role of Camel Milk in Pastoral Livelihoods in Kenya: Contribution to Household Diet and Income. Pastoralism. 2015, 5(1), 8. DOI: 10.1186/s13570-015-0028-7.
  • IMARC. Camel Dairy Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2019-2024; Research and Markets. p. t.ly/FP42, 2019.
  • Izadi, A.; Khedmat, L.; Mojtahedi, S. Y. Nutritional and Therapeutic Perspectives of Camel Milk and Its Protein Hydrolysates: A Review on Versatile Biofunctional Properties. J. Funct. Foods. 2019, 60, 103441. DOI: 10.1016/j.jff.2019.103441.
  • Alavi, F.; et al. Nutraceutical Properties of Camel Milk, in Nutrients in Dairy and Their Implications on Health and Disease; Elsevier, 2017; pp 451–468.
  • Khalesi, M.; Salami, M.; Moslehishad, M.; Winterburn, J.; Moosavi-Movahedi, A. A.; et al. Biomolecular Content of Camel Milk: A Traditional Superfood Towards Future Healthcare Industry. Trends Food Sci. Technol. 2017, 62, 49–58. DOI: 10.1016/j.tifs.2017.02.004.
  • Al Haj, O. A.; Al Kanhal, H. A. Compositional, Technological and Nutritional Aspects of Dromedary Camel Milk. Int. Dairy J. 2010, 20(12), 811–821. DOI: 10.1016/j.idairyj.2010.04.003.
  • Bouhaddaoui, S.; et al. Study of the Biochemical Biodiversity of Camel Milk. Sci. World J. 2019, 2019.
  • Ismaili, M. A.; Saidi, B.; Zahar, M.; Hamama, A.; Ezzaier, R.; et al. Composition and Microbial Quality of Raw Camel Milk Produced in Morocco. J. Saudi Soc. Agric. Sci. 2019, 18(1), 17–21.
  • Debouz, A.; Guerguer, L. Etude comparative de la qualité de vache et du. Revue ElWahat pour les recherches et les E. 2014, 7(2).
  • Siboukeur, A.; Siboukeur, O. Caractéristiques physico-chimiques et biochimiques du lait de chamelle collecté localement en comparaison avec le lait bovin. Ann. of Sci. and Technol. 2012, 4(2), 6.
  • Sboui, A.; et al. Comparaison de la composition physicochimique du lait camelin et bovin du Sud tunisien; variation du pH et de l’acidité à différentes températures. Afrique Science: Revue Internationale Des Sciences Et Technologie. 2009, 5.
  • Abdellahi, O. M.; Sidi, O. H. Contribution à l’étude comparative des laits crus des chamelles provenant des Wilayas de Mauritanie destinés à la transformation. J. Appl. Biosci. 2016, 102, 9738–9744.
  • Zouari, A.; Schuck, P.; Gaucheron, F.; Triki, M.; Delaplace, G.; Gauzelin-Gaiani, C.; Lopez, C.; Attia, H.; Ayadi, M. A.; et al. Microstructure and Chemical Composition of Camel and Cow Milk Powders’ Surface. LWT. 2020, 117, 108693. DOI: 10.1016/j.lwt.2019.108693.
  • Rafiq, S.; Huma, N.; Pasha, I.; Sameen, A.; Mukhtar, O.; Khan, M. I.; et al. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species. Asian-australas. J. Anim. Sci. 2016, 29(7), 1022–1028.
  • Meiloud, G. M.; et al. Composition of Mauritanian Camel Milk: Results of First Study. Int. J. Agric. Biol. 2011, 13.
  • Musaad, A. M.; Faye, B.; Al-Mutairi, S. E. Seasonal and Physiological Variation of Gross Composition of Camel Milk in<br>Saudi Arabia. Emir. J. Food Agric. 2013, 25, 618–624. DOI: 10.9755/ejfa.v25i8.16095.
  • Kaskous, S. Camel Milk Composition, Udder Health and Effect of Different Storage Times and Temperatures on Raw Milk Quality Using Camel Milking Machine “Stimulactor”. Agric. and Food Sci. Res. 2019, 6(2), 172–181. DOI: 10.20448/journal.512.2019.62.172.181.
  • Hammam, A. R. Compositional and Therapeutic Properties of Camel Milk: A Review. Emir. J. Food Agric. 2019, 148–152. DOI: 10.9755/ejfa.2019.v31.i3.1919.
  • Yoganandi, J.; Mehta, B. M.; Wadhwani, K. N.; Darji, V. B.; Aparnathi, K. D.; et al. Evaluation and Comparison of Camel Milk with Cow Milk and Buffalo Milk for Gross Composition. J. of Camel Pract. and Res. 2014, 21(2), 259–265.
  • El-Hatmi, H.; et al. Comparison of Composition and Whey Protein Fractions of Human, Camel, Donkey, Goat and Cow Milk. Mljekarstvo: Časopis Za Unaprjeđenje Proizvodnje I Prerade Mlijeka. 2015, 65(3), 159–167.
  • Sabahelkhier, M.; Faten, M.; Omer, F. Comparative Determination of Biochemical Constituents between Animals (Goat, Sheep, Cow and Camel) Milk with Human Milk. Res. J. of Recent Sci. 2012, 2277, 2502.
  • Faraz, A.; Tauqir, N. A.; Mirza, R. H.; Ishaq, H. M.; Nabeel, M. S.; et al. Characteristics and Composition of Camel (Camelus Dromedarius) Milk: The White Gold of Desert. Adv. in Anim. and Vet. Sci. 2020, 8(7), 766–770.
  • He, J.; Xiao, Y.; Orgoldol, K.; Ming, L.; Yi, L.; Ji, R.; et al. Effects of Geographic Region on the Composition of Bactrian Camel Milk in Mongolia. Anim. 2019, 9(11), 890.
  • Faraz, A.; et al. Production Potential of Camel and Its Prospects in Pakistan. Punjab Univ. J. Zool. 2013, 28(2), 89–95.
  • Elhosseny, M.; et al. Evaluation of Physicochemical Properties and Microbiological Quality of Camel Milk from Egypt. J Dairy Vet Anim Res. 2018, 7(3), 92–97.
  • Pak, V. V.; Khojimatov, O. K.; Abdiniyazova, G. J.; Magay, E. B.; et al. Composition of Camel Milk and Evaluation of Food Supply for Camels in Uzbekistan. J. Ethnic Foods. 2019, 6, DOI:10.1186/s42779-019-0031-5.
  • Ahmad, S.; Yaqoob, M.; Bilal, M. Q.; Khan, M. K.; Muhammad, G.; Yang, L.-G.; Tariq, M.; et al. Factors Affecting Yield and Composition of Camel Milk Kept under Desert Conditions of Central Punjab, Pakistan. Trop. Anim. Health Prod. 2012, 44(7), 1403–1410.
  • Hadef, L.; et al. Study of Yield and Composition of Camel Milk in Algeria. Sci. Study & Res. Chem. & Chem. Eng. Biotechnol, Food Ind. 2018, 19(1), 1–11.
  • Babiker, W. I.; El-Zubeir, I. E. Impact of Husbandry, Stages of Lactation and Parity Number on Milk Yield and Chemical Composition of Dromedary Camel Milk. Emir. J. Food Agric. 2014, 26, 333–341. DOI: 10.9755/ejfa.v26i4.17664.
  • Faye, B.; Konuspayeva, G.; Narmuratova, M.; Serikbaeva, A.; Musaad, A. M.; Mehri, H.; et al. Effect of Crude Olive Cake Supplementation on Camel Milk Production and Fatty Acid Composition. Dairy Sci. Technol. 2013, 93(3), 225–239.
  • Abdalla, E. B.; Anis Ashmawy, A. E.-H.; Farouk, M. H.; Abd El-Rahman Salama, O.; Khalil, F. A.; Seioudy, A. F.; et al. Milk Production Potential in Maghrebi She-camels. Small Ruminant Res. 2015, 123(1), 129–135.
  • Al-Saiady, M.; et al. Some Factors Affecting Dairy She-camel Performance. Emir. J. Food Agric. 2012, 85–91.
  • Alshaikh, M. A.; Salah, M. S. Effect of Milking Interval on Secretion Rate and Composition of Camel Milk in Late Lactation. J. Dairy Res. 1994, 61, 451. DOI: 10.1017/S0022029900028375.
  • Haddadin, M. S.; Gammoh, S. I.; Robinson, R. K. Seasonal Variations in the Chemical Composition of Camel Milk in Jordan. The J. of Dairy Res. 2008, 75(1), 8. DOI: 10.1017/S0022029907002750.
  • Stahl, T.; et al. Selected Vitamins and Fatty Acid Patterns in Dromedary Milk and Colostrum. J. of Camel Pract. and Res. 2006, 13(1), 53–57.
  • Faye, B.; Konuspayeva, G.; Bengoumi, M. Vitamins of Camel Milk: A Comprehensive Review; 2019.
  • Sboui, A.; et al. Le lait de chamelle: Qualités nutritives et effet sur les variations de la glycémie. Options Méditerranéennes, A. 2016, 115, 487–492.
  • Singh, R.; Mal, G.; Kumar, D.; Patil, N. V.; Pathak, K. M. L.; et al. Camel Milk: An Important Natural Adjuvant. Agric. Res. 2017, 6(4), 327–340.
  • Wernery, U. Novel Observations on Camel Milk. In Camel Health in Relation to Milk Production. Proc. of the 9 th Kenya Camel Forum. Kenya Camel Association (KCA), 2003.
  • Ibrahim, A.; Khalifa, S. Effect of Freeze-drying on Camel’s Milk Nutritional Properties. Int. Food Res. J. 2015, 22(4), 1438.
  • Zhao, D.-B.; Bai, Y.-H.; Niu, Y.-W. Composition and Characteristics of Chinese Bactrian Camel Milk. Small Ruminant Res. 2015, 127, 58–67. DOI: 10.1016/j.smallrumres.2015.04.008.
  • Zhang, H.; Yao, J.; Zhao, D.; Liu, H.; Li, J.; Guo, M.; et al. Changes in Chemical Composition of Alxa Bactrian Camel Milk during Lactation. J. Dairy Sci. 2005, 88(10), 3402–3410.
  • Khan, K. U.; Appanna, T. Carotene and Vitamin A in Camel Milk. Indian J. of Nutr. and Diet. 1967, 4, 17–20.
  • Graulet, B.; Girard, C. L. B Vitamins in Cow Milk; Elsevier, 2017; pp 211–224.
  • Pereira, P. C. Milk Nutritional Composition and Its Role in Human Health. Nutr. 2014, 30(6), 619–627. DOI: 10.1016/j.nut.2013.10.011.
  • Guneser, O.; Karagul Yuceer, Y. Effect of Ultraviolet Light on Water- and Fat-soluble Vitamins in Cow and Goat Milk. J. Dairy Sci. 2012, 95(11), 6230–6241. DOI: 10.3168/jds.2011-5300.
  • Haug, A.; Høstmark, A. T.; Harstad, O. M. Bovine Milk in Human Nutrition–a Review. Lipids Health Dis. 2007, 6, 25. DOI: 10.1186/1476-511X-6-25.
  • Ragaller, V.; Lebzien, P.; Südekum, K.-H.; Hüther, L.; Flachowsky, G.; et al. Pantothenic Acid in Ruminant Nutrition: A Review. J. Anim. Physiol. Anim. Nutr. 2011, 95(1), 6–16.
  • Macgibbon, A. K. H.; Taylor, M. W. Composition and Structure of Bovine Milk Lipids; Springer US, 1–42.
  • Medhammar, E.; Wijesinha-Bettoni, R.; Stadlmayr, B.; Nilsson, E.; Charrondiere, U. R.; Burlingame, B.; et al. Composition of Milk from Minor Dairy Animals and Buffalo Breeds: A Biodiversity Perspective. J. Sci. Food Agric. 2012, 92(3), 445–474.
  • Hailu, Y.; Hansen, E. B.; Seifu, E.; Eshetu, M.; Ipsen, R.; Kappeler, S.; et al. Functional and Technological Properties of Camel Milk Proteins: A Review. J. Dairy Res. 2016, 83(4), 422–429.
  • Khaskheli, M.; et al. Physico-chemical Quality of Camel Milk. J. of Agric. and Social Sci. 2005, 2, 164–166.
  • Mohamed, H.; Johansson, M.; Lundh, Å.; Nagy, P.; Kamal-Eldin, A.; et al. Short Communication: Caseins and α-lactalbumin Content of Camel Milk (Camelus Dromedarius) Determined by Capillary Electrophoresis. J. Dairy Sci. 2020, 103(12), 11094–11099.
  • Omar, A.; Harbourne, N.; Oruna-Concha, M. J. Quantification of Major Camel Milk Proteins by Capillary Electrophoresis. Int. Dairy J. 2016, 58, 31–35. DOI: 10.1016/j.idairyj.2016.01.015.
  • Mati, A.; Senoussi-Ghezali, C.; Si Ahmed Zennia, S.; Almi-Sebbane, D.; El-Hatmi, H.; Girardet, J.-M.; et al. Dromedary Camel Milk Proteins, a Source of Peptides Having Biological activities–A Review. Int. Dairy J. 2017, 73, 25–37. DOI: 10.1016/j.idairyj.2016.12.001.
  • Abou-Soliman, N. Studies on Goat Milk Proteins: Molecular and Immunological Characterization with respect to Human Health and Nutrition. Ph. D. Thesis, Alexandria University, Egypt, 2005.
  • El-Agamy, E. I.; Ed. Bioactive Components in Camel Milk. In Bioactive Components in Milk and Dairy Products; Ed. Y.W. Park; Wiley‐Blackwell, 2009; Vol. 107, pp 159–194.
  • Farag, S.; Kebary, K. Chemical Composition and Physical Properties of Camel’s Milk and Milk Fat. in Proceed. 5th Egyptian Conference for Dairy Science and Technology, 1992.
  • Mehaia, M. A.; Hablas, M. A.; Abdel-Rahman, K. M.; El-Mougy, S. A.; et al. Milk Composition of Majaheim, Wadah and Hamra Camels in Saudi Arabia. Food Chem. 1995, 52(2), 115–122.
  • Farah, Z. Composition and Characteristics of Camel Milk. J. Dairy Res. 1993, 60(4), 603–626. DOI: 10.1017/S0022029900027953.
  • Kappeler, S.; Heuberger, C.; Farah, Z.; Puhan, Z.; et al. Expression of the Peptidoglycan Recognition Protein, PGRP, in the Lactating Mammary Gland. J. Dairy Sci. 2004, 87(8), 2660–2668.
  • Merin, U.; Bernstein, S.; Bloch-Damti, A.; Yagil, R.; van Creveld, C.; Lindner, P.; Gollop, N.; et al. A Comparative Study of Milk Serum Proteins in Camel (Camelus Dromedarius) and Bovine Colostrum. Livest. Prod. Sci. 2001, 67(3), 297–301.
  • Felfoul, I.; Jardin, J.; Gaucheron, F.; Attia, H.; Ayadi, M. A.; et al. Proteomic Profiling of Camel and Cow Milk Proteins under Heat Treatment. Food Chem. 2017, 216, 161–169. DOI: 10.1016/j.foodchem.2016.08.007.
  • Mal, G.; et al. Role of Camel Milk as an Adjuvant Nutritional Supplement in Human Tuberculosis Patients. Livest. Int. 2000, 4(4), 7–14.
  • Konuspayeva, G.; Faye, B.; Loiseau, G. The Composition of Camel Milk: A Meta-analysis of the Literature Data. J. Food Compost. Anal. 2009, 22(2), 95–101. DOI: 10.1016/j.jfca.2008.09.008.
  • Salwa, M. Q.; Lina, A. K. Antigenotoxic and Anticytotoxic Effect of Camel Milk in Mice Treated with Cisplatin. Saudi J. Biol. Sci. 2010, 17(2), 159–166. DOI: 10.1016/j.sjbs.2010.02.010.
  • Meena, S.; Rajput, Y.; Sharma, R. Comparative Fat Digestibility of Goat, Camel, Cow and Buffalo Milk. Int. Dairy J. 2014, 35(2), 153–156. DOI: 10.1016/j.idairyj.2013.11.009.
  • Ibrahem, S. A.; El Zubeir, I. E. Processing, Composition and Sensory Characteristic of Yoghurt Made from Camel Milk and Camel–sheep Milk Mixtures. Small Ruminant Res. 2016, 136, 109–112. DOI: 10.1016/j.smallrumres.2016.01.014.
  • Haddad, I.; Mozzon, M.; Strabbioli, R.; Frega, N. G.; et al. Electrospray Ionization Tandem Mass Spectrometry Analysis of Triacylglycerols Molecular Species in Camel Milk (Camelus Dromedarius). Int. Dairy J. 2011, 21(2), 119–127.
  • Shamsia, S. Nutritional and Therapeutic Properties of Camel and Human Milks. Int. J. of Genet. and Mol. Biol. 2009, 1(4), 052–058.
  • Mostafidi, M.; Moslehishad, M.; Piravivanak, Z.; Pouretedal, Z.; et al. Evaluation of Mineral Content and Heavy Metals of Dromedary Camel Milk in Iran. Food Sci. Technol. 2016, 36(4), 717–723.
  • Soliman, G. Z. Comparison of Chemical and Mineral Content of Milk from Human, Cow, Buffalo, Camel and Goat in Egypt. The Egypt. J. of Hosp. Med. 2005, 21(1), 116–130. DOI: 10.21608/ejhm.2005.18054.
  • Oh, H. E.; Deeth, H. C. Magnesium in Milk. Int. Dairy J. 2017, 71, 89–97. DOI: 10.1016/j.idairyj.2017.03.009.
  • de Amorim, F. R.; Nascentes, C. C.; Franco, M. B.; Da Silva, J. B. B.; et al. Fast Determination of Manganese in Milk and Similar Infant Food Samples Using Multivariate Optimization and GF AAS. Int. J. of Spectrosc. 2011, 2011, 810641. DOI: 10.1155/2011/810641.
  • Farah, Z.; Rettenmaier, R.; Atkins, D. Vitamin Content of Camel Milk. Int. J. Vitam. Nutr. Res. 1992, 62(1), 30–33.
  • Abrhaley, A.; Leta, S. Medicinal Value of Camel Milk and Meat. J. Appl. Animal Res. 2018, 46(1), 552–558. DOI: 10.1080/09712119.2017.1357562.
  • Wernery, U. Camel Milk-new Observations. In TK Gahlot. Proceedings of the International Camel Conference, CVAS, Bikaner, 2007.
  • Agrawal, R.; Beniwal, R.; Kochar, D. K.; Tuteja, F. C.; Ghorui, S. K.; Sahani, M. S.; Sharma, S.; et al. Camel Milk as an Adjunct to Insulin Therapy Improves Long-term Glycemic Control and Reduction in Doses of Insulin in Patients with Type-1 Diabetes A 1 Year Randomized Controlled Trial. Diabetes Res. Clin. Pract. 2005, 68(2), 176–177.
  • Yagil, R. Camels and Camel Milk Animal Production and Health Report; FAO: Rome, Italy, 1982.
  • Agrawal, R.; Jain, S.; Shah, S.; Chopra, A.; Agarwal, V.; et al. Effect of Camel Milk on Glycemic Control and Insulin Requirement in Patients with Type 1 Diabetes: 2-years Randomized Controlled Trial. Eur. J. Clin. Nutr. 2011, 65(9), 1048–1052.
  • Mohamad, R. H.; Zekry, Z. K.; Al-Mehdar, H. A.; Salama, O.; El-Shaieb, S. E.; El-Basmy, A. A.; Al-said, M. G. A. M.; Sharawy, S. M.; et al. Camel Milk as an Adjuvant Therapy for the Treatment of Type 1 Diabetes: Verification of a Traditional Ethnomedical Practice. J. Med. Food. 2009, 12(2), 461–465.
  • Redha, A. A.; Valizadenia, H.; Siddiqui, S. A.; Maqsood, S.; et al. A State-of-art Review on Camel Milk Proteins as an Emerging Source of Bioactive Peptides with Diverse Nutraceutical Properties. Food Chem. 2021, 373, 131444. DOI: 10.1016/j.foodchem.2021.131444.
  • Bateman, B. T.; Patorno, E.; Desai, R. J.; Seely, E. W.; Mogun, H.; Dejene, S. Z.; Fischer, M. A.; Friedman, A. M.; Hernandez-Diaz, S.; Huybrechts, K. F.; et al. Angiotensin-converting Enzyme Inhibitors and the Risk of Congenital Malformations. Obstetrics and Gynecology. 2017, 129(1), 174.
  • Kilari, B. P.; et al. Effect of Camel Milk Protein Hydrolysates against Hyperglycemia, Hyperlipidemia, and Associated Oxidative Stress in Streptozotocin (Stz)-induced Diabetic Rats. J. Dairy Sci. 2020.
  • Ameen, S. H.; Hameed, A. K. Therapy Role of Camel Milk for the Treatment of Hepatitis Mice Which Induces via Listeria Monocytogenes. Indian J. of Public Health Res. & Dev. 2019, 10(2), 537–542. DOI: 10.5958/0976-5506.2019.00347.4.
  • Yassin, M. H.; Mohamed Soliman, M.; Abd-Elhafez Mostafa, S.; Ali, H.; et al. Antimicrobial Effects of Camel Milk against Some Bacterial Pathogens. J. Food Nutr. Res. 2015, 3(3), 162–168.
  • Aisha, A.; Murad A, A.-H.; Hind, A.-R.; Sufian, A.-K.; Anas A, A.-N.; Richard A, H.; Mutamed, A.; et al. Growth Inhibition of Foodborne Pathogens in Camel Milk: Staphylococcus Aureus, Listeria Monocytogenes, Salmonella Spp. And E. Coli O157: H7. Czech J. Food Sci. 2017, 35(4), 311–320.
  • Abusheliabi, A.; Al-Rumaithi, H. O.; Olaimat, A. N.; Al-Nabulsi, A. A.; Osaili, T.; Shaker, R.; Ayyash, M. M.; et al. Inhibitory Effect of Camel Milk on Cronobacter Sakazakii. J. Food Saf. 2017, 37(4), e12343.
  • Conesa, C.; Sánchez, L.; Rota, C.; Pérez, M.-D.; Calvo, M.; Farnaud, S.; Evans, R. W.; et al. Isolation of Lactoferrin from Milk of Different Species: Calorimetric and Antimicrobial Studies. Comp. Biochem. Physiol. B. 2008, 150(1), 131–139.
  • Benkerroum, N.; Mekkaoui, M.; Bennani, N.; Hidane, K.; et al. Antimicrobial Activity of Camel’s Milk against Pathogenic Strains of Escherichia Coli and Listeria Monocytogenes. Int. J. Dairy Technol. 2004, 57(1), 39–43.
  • Ismael, A. B.; Hafez, S. M. A. E.; Mahmoud, M. B.; Elaraby, A.-K. A.; Hassan, H. M.; et al. Development of New Strategy for Non-antibiotic Therapy: Dromedary Camel Lactoferrin Has a Potent Antimicrobial and Immunomodulator Effects. Adv. Infect. Dis. 2013, 3(4), 231.
  • Tanhaeian, A.; Shahriari Ahmadi, F.; Sekhavati, M. H.; Mamarabadi, M.; et al. Expression and Purification of the Main Component Contained in Camel Milk and Its Antimicrobial Activities against Bacterial Plant Pathogens. Probiotics Antimicrob. Proteins. 2018, 10(4), 787–793.
  • Al-Nabulsi, A. A.; Olaimat, A. N.; Osaili, T. M.; Ayyash, M. M.; Abushelaibi, A.; Jaradat, Z. W.; Shaker, R.; Al-Taani, M.; Holley, R. A.; et al. Behavior of Escherichia Coli O157: H7and Listeria Monocytogenes during Fermentation and Storage of Camel Yogurt. J. Dairy Sci. 2016, 99(3), 1802–1811.
  • El-Bayoumi, M. M. Utilization of Bioactive Peptides Derived from Camel Milk Proteins as Biopreservatives in Kareish Cheese. Int. J. of Biotechnol. and Food Sci. 2019, 7(4), 49–55.
  • Algboory, H. L.; et al. Partial Purification of Antimicrobial Peptides from Fermented Iraqi Camel’s Milk by Streptococcus Thermophilus and Lactobacillus Delbrueckii Sp. Bulgaricus. Biochem. and Cell. Arch. 17, 697–701.
  • Lafta, H.; Jarallah, E. M.; Darwash, A. Antibacterial Activity of Fermented Camel Milk Using Two Lactic Acid Bacteria. J. of Univ. of Babylon. 2014, 22(9), 2377–2382.
  • Jrad, Z.; El Hatmi, H.; Adt, I.; Girardet, J.-M.; Cakir-Kiefer, C.; Jardin, J.; Degraeve, P.; Khorchani, T.; Oulahal, N.; et al. Effect of Digestive Enzymes on Antimicrobial, Radical Scavenging and Angiotensin I-converting Enzyme Inhibitory Activities of Camel Colostrum and Milk Proteins. Dairy Sci. Technol. 2014, 94(3), 205–224.
  • Alhaj, O. A.; et al. Angiotensin Converting Enzyme‐inhibitory Activity and Antimicrobial Effect of Fermented Camel Milk (Camelus Dromedarius); International Journal of Dairy Technology, 2017.
  • Jrad, Z.; El Hatmi, H.; Adt, I.; Khorchani, T.; Degraeve, P.; Oulahal, N.; et al. Antimicrobial Activity of Camel Milk Casein and Its Hydrolysates. Acta Aliment. 2015, 44(4), 609–616.
  • Salami, M.; Moosavi-Movahedi, A. A.; Ehsani, M. R.; Yousefi, R.; Haertlé, T.; Chobert, J.-M.; Razavi, S. H.; Henrich, R.; Balalaie, S.; Ebadi, S. A.; et al. Improvement of the Antimicrobial and Antioxidant Activities of Camel and Bovine Whey Proteins by Limited Proteolysis. J. Agric. Food Chem. 2010, 58(6), 3297–3302.
  • Kumar, D.; Chatli, M. K.; Singh, R.; Mehta, N.; Kumar, P.; et al. Antioxidant and Antimicrobial Activity of Camel Milk Casein Hydrolysates and Its Fractions. Small Ruminant Res. 2016, 139, 20–25. DOI: 10.1016/j.smallrumres.2016.05.002.
  • Abdel-Hamid, M.; Goda, H. A.; De Gobba, C.; Jenssen, H.; Osman, A.; et al. Antibacterial Activity of Papain Hydrolysed Camel Whey and Its Fractions. Int. Dairy J. 2016, 61, 91–98. DOI: 10.1016/j.idairyj.2016.04.004.
  • Idaomar, M.; Abrini, J.; Abrini, J.; Abrini, J. Application of a Bacteriocin-like Inhibitory Substance Producing Enterococcus Durans E204 Strain, Isolated from Camel Milk, to Control Listeria Monocytogenes CECT 4032 in Goat Jben. Ann. Microbiol. 2014, 64(1), 313–319. DOI: 10.1007/s13213-013-0666-1.
  • Abo-Amer, A. Inhibition of Foodborne Pathogens by a Bacteriocin-like Substance Produced by a Novel Strain of Lactobacillus Acidophilus Isolated from Camel Milk. Appl. Biochem. Microbiol. 2013, 49(3), 270–279. DOI: 10.1134/S0003683813030174.
  • Rahmeh, R.; Akbar, A.; Kishk, M.; Al-Onaizi, T.; Al-Azmi, A.; Al-Shatti, A.; Shajan, A.; Al-Mutairi, S.; Akbar, B.; et al. Distribution and Antimicrobial Activity of Lactic Acid Bacteria from Raw Camel Milk. New Microbes and New Infect. 2019, 30, 100560. DOI: 10.1016/j.nmni.2019.100560.
  • Lü, X.; Hu, P.; Dang, Y.; Liu, B.; et al. Purification and Partial Characterization of a Novel Bacteriocin Produced by Lactobacillus Casei TN-2 Isolated from Fermented Camel Milk (Shubat) of Xinjiang Uygur Autonomous Region. China. Food Control. 2014, 43, 276–283. DOI: 10.1016/j.foodcont.2014.03.020.
  • Edalati, E.; Saneei, B.; Alizadeh, M.; Hosseini, S. S.; Zahedi Bialvaei, A.; Taheri, K.; et al. Isolation of Probiotic Bacteria from Raw Camel’s Milk and Their Antagonistic Effects on Two Bacteria Causing Food Poisoning. New Microbes and New Infect. 2019, 27, 64–68. DOI: 10.1016/j.nmni.2018.11.008.
  • Ahmed, A. I.; et al. Antimicrobial Activity and Antibiotic Resistance of LAB Isolated from Sudanese Traditional Fermented Camel (Camelus Dromedarius) Milk Gariss. 2012.
  • El Ouardy, K.; Mohamed, M. B. N. E. M.; Abrini, I. J. Antagonist Effect of Enterococcus Durans E204 Isolated from Camel Milk of Morocco, against Listeria Monocytogens CECT 4032 in Skimmed Milk. Life Sci. J. 2013, 10(2), 2678–2683.
  • Khay, E. O.; Mohamed, I.; Lorenzo, M. P. C.; Paula, F. B. R.; Nadia, S. S.; Jamal, A.; et al. Antimicrobial Activities of the Bacteriocin-like Substances Produced by Lactic Acid Bacteria Isolated from Moroccan Dromedary Milk. Afr. J. Biotechnol. 2011, 10(51), 10447–10455.
  • Eddine, S. D.; et al. Antifungal and Antibacterial Activity of Some Lactobacilli Isolated from Camel’s Milk Biotope in the South of Algeria. J. Microbiol. Biotechnol. Food Sci. 2020, 9(6), 871–877.
  • Rahmeh, R.; Akbar, A.; Alonaizi, T.; Kishk, M.; Shajan, A.; Akbar, B.; et al. Characterization and Application of Antimicrobials Produced by Enterococcus Faecium S6 Isolated from Raw Camel Milk. J. Dairy Sci. 2020, 103(12), 11106–11115.
  • Laiche, A. T.; Khelef, C.; Daoudi, H. Study of the Antimicrobial Activity of Bactericocins Produced by Lactic Bacteria Isolated from Camel Milk in Southern Algeria. J. Pure Appl. Microbiol. 2019, 13(2), 1285–1292. DOI: 10.22207/JPAM.13.2.72.
  • El Sayed, I.; Ruppanner, R.; Ismail, A.; Champagne, C. P.; Assaf, R.; et al. Antibacterial and Antiviral Activity of Camel Milk Protective Proteins. J. Dairy Res. 1992, 59(2), 169–175.
  • Ochoa, T. J.; Cleary, T. G. Effect of Lactoferrin on Enteric Pathogens. Biochim. 2009, 91(1), 30–34. DOI: 10.1016/j.biochi.2008.04.006.
  • Elagamy, E. Effect of Heat Treatment on Camel Milk Proteins with respect to Antimicrobial Factors: A Comparison with Cows’ and Buffalo Milk Proteins. Food Chem. 2000, 68(2), 227–232. DOI: 10.1016/S0308-8146(99)00199-5.
  • Dirar, H. A. The Indigenous Fermented Foods of the Sudan: A Study in African Food and Nutrition; CAB international, 1993.
  • Mal, G.; et al. Therapeutic Value of Camel Milk as a Nutritional Supplement for Multiple Drug Resistant (MDR) Tuberculosis Patients. Israel J. of Vet. Med. 2006, 61(3/4), 88.
  • Ouhsassi, M.; et al. Optimization of Bacteriocin-like Production by Enterococcus Durans E204 Isolated from Camel Milk of Morocco. Curr. Res. in Microbiol. and Biotechnol. 2013, 1, 155–159.
  • El Fakharany, E. M.; et al. Potential Activity of Camel Milk-amylase and Lactoferrin against Hepatitis C Virus Infectivity in HepG2 and Lymphocytes. Hepatitis Mon. 2008, 8(2), 101–109.
  • El-Fakharany, E. M.; Abedelbaky, N.; Haroun, B. M.; Sánchez, L.; Redwan, N. A.; Redwan, E. M., et al. Anti-infectivity of Camel Polyclonal Antibodies against Hepatitis C Virus in Huh7.5 Hepatoma. Virol. J. 2012, 9(1), 201.
  • El-Fakharany, E. M.; Uversky, V. N.; Redwan, E. M. Comparative Analysis of the Antiviral Activity of Camel, Bovine, and Human Lactoperoxidases against Herpes Simplex Virus Type 1. Appl. Biochem. Biotechnol. 2017, 182(1), 294–310. DOI: 10.1007/s12010-016-2327-x.
  • Mohamed, W. A.; Schaalan, M. F.; El-Abhar, H. S. Camel Milk: Potential Utility as an Adjunctive Therapy to Peg-IFN/RBV in HCV-4 Infected Patients in Egypt. Nutr. Cancer. 2015, 67(8), 1307–1315. DOI: 10.1080/01635581.2015.1087041.
  • Almahdy, O.; EL-Fakharany, E. M.; EL-Dabaa, E.; Ng, T. B.; Redwan, E. M.; et al. Examination of the Activity of Camel Milk Casein against Hepatitis C Virus (Genotype-4a) and Its Apoptotic Potential in Hepatoma and Hela Cell Lines. Hepatitis Mon. 2011, 11(9), 724.
  • Pan, Y.; Lee, A.; Wan, J.; Coventry, M. J.; Michalski, W. P.; Shiell, B.; Roginski, H.; et al. Antiviral Properties of Milk Proteins and Peptides. Int. Dairy J. 2006, 16(11), 1252–1261.
  • Redwan, E. M.; Almehdar, H. A.; EL-Fakharany, E. M.; Baig, A.-W. K.; Uversky, V. N.; et al. Potential Antiviral Activities of Camel, Bovine, and Human Lactoperoxidases against Hepatitis C Virus Genotype 4. RSC Adv. 2015, 5(74), 60441–60452.
  • Ebaid, H.; Abdel-salam, B.; Hassan, I.; Al-Tamimi, J.; Metwalli, A.; Alhazza, I.; et al. Camel Milk Peptide Improves Wound Healing in Diabetic Rats by Orchestrating the Redox Status and Immune Response. Lipids Health Dis. 2015, 14(1), 132.
  • Ayoub, M. A.; Palakkott, A. R.; Ashraf, A.; Iratni, R.; et al. The Molecular Basis of the Anti-diabetic Properties of Camel Milk. Diabetes Res. Clin. Pract. 2018, 146, 305–312. DOI: 10.1016/j.diabres.2018.11.006.
  • Nongonierma, A. B.; Cadamuro, C.; Le Gouic, A.; Mudgil, P.; Maqsood, S.; FitzGerald, R. J.; et al. Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Properties of a Camel Whey Protein Enriched Hydrolysate Preparation. Food Chem. 2019, 279, 70–79. DOI: 10.1016/j.foodchem.2018.11.142.
  • Ashraf, A.; Mudgil, P.; Palakkott, A.; Iratni, R.; Gan, C.-Y.; Maqsood, S.; Ayoub, M. A.; et al. Molecular Basis of the Anti-diabetic Properties of Camel Milk through Profiling of Its Bioactive Peptides on DPP-IV and Insulin Receptor Activity. J. Dairy Sci. 2020, 104, 61–77. DOI: 10.3168/jds.2020-18627.
  • Baba, W. N.; et al. Identification and Characterization of Novel α-amylase and α-glucosidase Inhibitory Peptides from Camel Whey Proteins. J. Dairy Sci. 2020.
  • Kamal, H.; Jafar, S.; Mudgil, P.; Murali, C.; Amin, A.; Maqsood, S.; et al. Inhibitory Properties of Camel Whey Protein Hydrolysates toward Liver Cancer Cells, Dipeptidyl peptidase-IV, and Inflammation. J. Dairy Sci. 2018, 101(10), 1–10.
  • Mudgil, P.; Kamal, H.; Yuen, G. C.; Maqsood, S.; et al. Characterization and Identification of Novel Antidiabetic and Anti-obesity Peptides from Camel Milk Protein Hydrolysates. Food Chem. 2018, 259, 46–54. DOI: 10.1016/j.foodchem.2018.03.082.
  • Nongonierma, A. B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R. J.; et al. Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Properties of Camel Milk Protein Hydrolysates Generated with Trypsin. J. Funct. Foods. 2017, 34, 49–58. DOI: 10.1016/j.jff.2017.04.016.
  • Nongonierma, A. B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R. J.; et al. Identification of Novel Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Peptides in Camel Milk Protein Hydrolysates. Food Chem. 2018, 244, 340–348. DOI: 10.1016/j.foodchem.2017.10.033.
  • Ayyash, M.; Al-Dhaheri, A. S.; Al Mahadin, S.; Kizhakkayil, J.; Abushelaibi, A.; et al. In Vitro Investigation of Anticancer, Antihypertensive, Antidiabetic, and Antioxidant Activities of Camel Milk Fermented with Camel Milk Probiotic: A Comparative Study with Fermented Bovine Milk. J. Dairy Sci. 2018, 101(2), 900–911.
  • Ayyash, M.; Al-Nuaimi, A. K.; Al-Mahadin, S.; Liu, S.-Q.; et al. In Vitro Investigation of Anticancer and ACE-inhibiting Activity, α-amylase and α-glucosidase Inhibition, and Antioxidant Activity of Camel Milk Fermented with Camel Milk Probiotic: A Comparative Study with Fermented Bovine Milk. Food Chem. 2018, 239, 588–597. DOI: 10.1016/j.foodchem.2017.06.149.
  • Tagliazucchi, D.; Martini, S.; Shamsia, S.; Helal, A.; Conte, A.; et al. Biological Activities and Peptidomic Profile of in Vitro-digested Cow, Camel, Goat and Sheep Milk. Int. Dairy J. 2018, 81, 19–27. DOI: 10.1016/j.idairyj.2018.01.014.
  • Shori, A. B.; Baba, A. S. Comparative Antioxidant Activity, Proteolysis and in Vitro α-amylase and α-glucosidase Inhibition of Allium Sativum-yogurts Made from Cow and Camel Milk. J. Saudi Chem. Soc. 2014, 18(5), 456–463. DOI: 10.1016/j.jscs.2011.09.014.
  • Agrawal, R., et al. Hypoglycemic Activity of Camel Milk in Streptozotocin Induced Diabetic Rats. Int. J. Diab. Dev. Countries. 2004, 24, 47–49.
  • Agrawal, R.; Sahani, M. S.; Tuteja, F. C.; Ghouri, S. K.; Sena, D. S.; Gupta, R.; Kochar, D. K.; et al. Hypoglycemic Activity of Camel Milk in Chemically Pancreatectomized Rats—an Experimental Study. Int. J. Diab. Dev. Countries. 2005, 25, 75–79. DOI: 10.4103/0973-3930.22776.
  • Hamad, E.; Abdel-Rahim, E.; Romeih, E. Beneficial Effect of Camel Milk on Liver and Kidneys Function in Diabetic Sprague-Dawley Rats. Int. J. Dairy Sci. 2011, 6(3), 190–197. DOI: 10.3923/ijds.2011.190.197.
  • Khan, A. A.; Alzohairy, M. A.; Mohieldein, A. Antidiabetic Effects of Camel Milk in Streptozotocin-induced Diabetic Rats. Am J Biochem Mol Biol. 2013, 3(1), 151–158. DOI: 10.3923/ajbmb.2013.151.158.
  • Khaliq, A.; et al. Assessment of Camel Milk Yogurt as a Cogent Approach on Streptozotocin (Stz) Induced Diabetes Mellitus in Sprague-Dawley Rats. J. Microbiol. Biotechnol. Food Sci. 2020, 10(1), 648–652.
  • Deeba, F.; et al. Short Term Therapeutic Efficacy of Camel Milk Vis-À-Vis Buffalo Milk in Alloxan® Induced Diabetic Rabbits. J. Diabetes Metab. Disord. 2020, 1–9.
  • Badawi, A. M.; Motawee, M. M. Potential Protective Effect of Fortified Camel Milk Products with Chromium on Alloxan Induced Hyperglycemia in Rats. Int. J. Sci. Res. 2016, 5(11), 776–785.
  • Fattouh, I.; Ezzat, S.; Soliman, S. Effect of Camel Milk on Diabetic Nephropathy in Streptozotocin–induced Diabetic Rats. Kafrelsheikh Vet. Med. J. 2015, 13(1), 71–85. DOI: 10.21608/kvmj.2015.109559.
  • Korish, A. A.; Gader, A. G. M. A.; Alhaider, A. A. Comparison of the Hypoglycemic and Antithrombotic (Anticoagulant) Actions of Whole Bovine and Camel Milk in Streptozotocin-induced Diabetes Mellitus in Rats. J. Dairy Sci. 2020, 103(1), 30–41. DOI: 10.3168/jds.2019-16606.
  • Mansour, A. A.; Nassan, M. A.; Saleh, O. M.; Soliman, M. M.; et al. Protective Effect of Camel Milk as Anti-diabetic Supplement: Biochemical, Molecular and Immunohistochemical Study. African J. of Traditional, Complementary Altern Med. 2017, 14(4), 108–119.
  • Badr, G. Camel Whey Protein Enhances Diabetic Wound Healing in a Streptozotocin-induced Diabetic Mouse Model: The Critical Role of β-Defensin-1, −2 and −3. Lipids Health Dis. 2013, 12(1), 46. DOI: 10.1186/1476-511X-12-46.
  • Amel, S.; et al. Antidiabetic Activity of Coagulum from Camel Milk on Experimental Diabetes. Am. J. Food Sci. Health. 2020, 6(4), 128–131.
  • Meena, S.; Rajput, Y. S.; Pandey, A. K.; Sharma, R.; Singh, R.; et al. Camel Milk Ameliorates Hyperglycaemia and Oxidative Damage in Type-1 Diabetic Experimental Rats. The J. of Dairy Res. 2016, 83(3), 412.
  • Sboui, A.; Khorchani, T.; Djegham, M.; Agrebi, A.; Elhatmi, H.; Belhadj, O.; et al. Anti‐diabetic Effect of Camel Milk in Alloxan‐induced Diabetic Dogs: A Dose–response Experiment. J. Anim. Physiol. Anim. Nutr. 2010, 94(4), 540–546.
  • Agrawal, R.; et al. Effect of Camel Milk on Glycemic Control, Lipid Profile and Diabetes Quality of Life in Type 1 Diabetes: A Randomised Prospective Controlled Cross over Study. Indian J. of Anim. Sci. 2003, 73(10), 1105–1110.
  • Agrawal, R.; et al. Effect of Raw Camel Milk in Type 1 Diabetic Patients: 1 Year Randomised Study. J. of Camel Pract. and Res. 2005, 12(1), 27.
  • Agrawal, R.; Budania, S.; Sharma, P.; Gupta, R.; Kochar, D. K.; Panwar, R. B.; Sahani, M. S.; et al. Zero Prevalence of Diabetes in Camel Milk Consuming Raica Community of North-west Rajasthan, India. Diabetes Res. Clin. Pract. 2007, 76(2), 290–296.
  • Agrawal, R. P.; Sharma, P.; Gafoorunissa, S. J.; Ibrahim, S. A.; Shah, B.; Shukla, D. K.; Kaur, T.; et al. Effect of Camel Milk on Glucose Metabolism in Adults with Normal Glucose Tolerance and Type 2 Diabetes in Raica Community: A Crossover Study. Acta Biomed. 2011, 82(3), 181–186.
  • Ejtahed, H. S.; et al. Effect of Camel Milk on Blood Sugar and Lipid Profile of Patients with Type 2 Diabetes: A Pilot Clinical Trial. Int. J. of Endocrinol. and Metab. 2015, 13.
  • Agrawal, R. P.; Dogra, R.; Mohta, N.; Tiwari, R.; Singhal, S.; Sultania, S.; et al. Beneficial Effect of Camel Milk in Diabetic Nephropathy. Acta Biomed. 2009, 80(2), 131–134.
  • Agarwal, R.; et al. Camel Milk as an Alternative Therapy in Type 1 Diabetes: A Randomized Controlled Trial. Endocrinol/Metab: Diabetes Mellitus. 2002, 28, 25–27.
  • Agrawal, R. P.; Saran, S.; Sharma, P.; Gupta, R. P.; Kochar, D. K.; Sahani, M. S.; et al. Effect of Camel Milk on Residual β-cell Function in Recent Onset Type 1 Diabetes. Diabetes Res. Clin. Pract. 2007, 3(77), 494–495.
  • Ereifej, K. I.; Alu’datt, M. H.; AlKhalidy, H. A.; Alli, I.; Rababah, T.; et al. Comparison and Characterisation of Fat and Protein Composition for Camel Milk from Eight Jordanian Locations. Food Chem. 2011, 127(1), 282–289.
  • Alavi, F.; et al. Nutraceutical Properties of Camel Milk, in Nutrients in Dairy and Their Implications on Health and Disease; Elsevier, 2018; pp 451–468.
  • Abdulrahman, A. O.; Ismael, M. A.; Al-Hosaini, K.; Rame, C.; Al-Senaidy, A. M.; Dupont, J.; Ayoub, M. A.; et al. Differential Effects of Camel Milk on Insulin Receptor signaling–Toward Understanding the Insulin-like Properties of Camel Milk. Front. Endocrinol. 2016, 7, 4. DOI: 10.3389/fendo.2016.00004.
  • Aqib, A. I.; Fakhar-e-alam Kulyar, M.; Ashfaq, K.; Bhutta, Z. A.; Shoaib, M.; Ahmed, R.; et al. Camel Milk Insuline: Pathophysiological and Molecular Repository. Trends Food Sci. Technol. 2019, 88, 497–504. DOI: 10.1016/j.tifs.2019.04.009.
  • Mihic, T.; Rainkie, D.; Wilby, K. J.; Pawluk, S. A.; et al. The Therapeutic Effects of Camel Milk: A Systematic Review of Animal and Human Trials. J. Evidence-based Complementary Altern. Med. 2016, 21(4), NP110–NP126.
  • Agarwal, R.; et al. Effect of Camel Milk on Glycemic Control, Risk Factors and Diabetes Quality of Life in Type-1 Diabetes: A Randomized Prospective Controlled Study. J. of Camel Pract. and Res. 2003, 10(1), 45–50.
  • Badr, G.; Mohany, M.; Metwalli, A. Effects of Undenatured Whey Protein Supplementation on CXCL12-and CCL21-mediated B and T Cell Chemotaxis in Diabetic Mice. Lipids Health Dis. 2011, 10(1), 203. DOI: 10.1186/1476-511X-10-203.
  • Chauhan, A.; Chauhan, V. Oxidative Stress in Autism. Pathophysiol. 2006, 13(3), 171–181. DOI: 10.1016/j.pathophys.2006.05.007.
  • Bjørklund, G.; et al. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020, 1–19.
  • Rose, S.; Bennuri, S. C.; Davis, J. E.; Wynne, R.; Slattery, J. C.; Tippett, M.; Delhey, L.; Melnyk, S.; Kahler, S. G.; MacFabe, D. F.; et al. Butyrate Enhances Mitochondrial Function during Oxidative Stress in Cell Lines from Boys with Autism. Transl. Psychiatry. 2018, 8(1), 1–17.
  • Adams, C. M. Patient Report: Autism Spectrum Disorder Treated with Camel Milk. Global Adv. in Health and Med. 2013, 2(6), 78–80. DOI: 10.7453/gahmj.2013.094.
  • Al-Ayadhi, L.; Elamin, N. E. Camel Milk as a Potential Therapy as an Antioxidant in Autism Spectrum Disorder (ASD); Apple Academic Press Oakville: ON, Canada, 2015.
  • Al-Ayadhi, L. Y.; Elamin, N. E. Camel Milk as a Potential Therapy as an Antioxidant in Autism Spectrum Disorder (ASD). Evid. Based Complement. Altern. Med. 2013, 2013, 1–8. DOI: 10.1155/2013/602834.
  • Al-Ayadhi, L. Y.; Halepoto, D. M.; Al-Dress, A. M.; Mitwali, Y.; Zainah, R.; et al. Behavioral Benefits of Camel Milk in Subjects with Autism Spectrum Disorder. J. Coll Physicians Surg. Pak. 2015, 25(11), 819–823.
  • Cekici, H.; Sanlier, N. Current Nutritional Approaches in Managing Autism Spectrum Disorder: A Review. Nutr. Neurosci. 2019, 22(3), 145–155. DOI: 10.1080/1028415X.2017.1358481.
  • Ghazzawi, H. Health-Improving and Disease-Preventing Potential of Camel Milk against Chronic Diseases and Autism: Camel Milk and Chronic Diseases. In Handbook of Research on Health and Environmental Benefits of Camel Products; IGI Global, 2020; pp 155–184.
  • Hamzawy, M. A.; El-Ghandour, Y. B.; Abdel-Aziem, S. H.; Ali, Z. H.; et al. Leptin and Camel Milk Abate Oxidative Stress Status, Genotoxicity Induced in Valproic Acid Rat Model of Autism. Int. J. of Immunopathol. and Pharmacol. 2018, 32, 2058738418785514. DOI: 10.1177/2058738418785514.
  • Nitschke, A.; Deonandan, R.; Konkle, A. T. The Link between Autism Spectrum Disorder and Gut Microbiota: A Scoping Review. Autism. 2020, 1362361320913364.
  • Sathe, N.; Andrews, J. C.; McPheeters, M. L.; Warren, Z. E.; et al. Nutritional and Dietary Interventions for Autism Spectrum Disorder: A Systematic Review. Pediatr. 2017, 139(6), e20170346.
  • Shabo, Y.; Yagil, R. Etiology of Autism and Camel Milk as Therapy. Int. J. on Disability and Hum Dev. 2005, 4(2), 67. DOI: 10.1515/IJDHD.2005.4.2.67.
  • Wernery, R.; et al. Camel Milk against Autism–A Preliminary Report. J. of Camel Pract. and Res. 2012, 19(2), 143–147.
  • Bashir, S.; Al-Ayadhi, L. Y. Effect of Camel Milk on Thymus and Activation-regulated Chemokine in Autistic Children: Double-blind Study. Pediatr. Res. 2014, 75(4), 559–563. DOI: 10.1038/pr.2013.248.
  • Shabo, Y.; et al. Camel Milk for Food Allergies in Children. IMAJ-RAMAT GAN-. 2005, 7(12), 796.
  • Korashy, H. M.; et al. Camel Milk Triggers Apoptotic Signaling Pathways in Human Hepatoma HepG2 and Breast Cancer MCF7 Cell Lines through Transcriptional Mechanism. J. of Biomed. and Biotechnol. 2012, 2012.
  • Habib, H. M.; Ibrahim, W. H.; Schneider-Stock, R.; Hassan, H. M.; et al. Camel Milk Lactoferrin Reduces the Proliferation of Colorectal Cancer Cells and Exerts Antioxidant and DNA Damage Inhibitory Activities. Food Chem. 2013, 141(1), 148–152.
  • El Miniawy, H. M.; Ahmed, K. A.; Tony, M. A.; Mansour, S. A.; Salah Khattab, M. M.; et al. Camel Milk Inhibits Murine Hepatic Carcinogenesis, Initiated by Diethylnitrosamine and Promoted by Phenobarbitone. Int. J. of Vet. Sci. and Med. 2014, 2(2), 136–141.
  • Hasson, S.; Al-Busaidi, J. Z.; Al-Qarni, Z. A. M.; Rajapakse, S.; Al-Bahlani, S.; Idris, M. A.; Sallam, T. A.; et al. In Vitro Apoptosis Triggering in the BT-474 Human Breast Cancer Cell Line by Lyophilised Camel’s Milk. Asian Pac. J. Cancer Prev. 2015, 16(15), 6651–6661.
  • Keykanlu, H.; et al. Fluorocarbon Nanostructures (PFOB-NEP) as Camel Milk Lactoferrin and Its Anti-cancer Effects on Human Breast Cancer Cell Line MCF7. Izvestiia Po Himiia. 2016, 48(2), 323–331.
  • Uversky, V. N.; El-Fakharany, E. M.; Abu-Serie, M. M.; Almehdar, H. A.; Redwan, E. M.; et al. Divergent Anticancer Activity of Free and Formulated Camel Milk α-lactalbumin. Cancer Invest. 2017, 35(9), 610–623.
  • El-Fakharany, E. M.; Abu-Serie, M. M.; Litus, E. A.; Permyakov, S. E.; Permyakov, E. A.; Uversky, V. N.; Redwan, E. M.; et al. The Use of Human, Bovine, and Camel Milk Albumins in Anticancer Complexes with Oleic Acid. The Protein J. 2018, 37(3), 203–215.
  • Badawy, A. A.; El-Magd, M. A.; AlSadrah, S. A. Therapeutic Effect of Camel Milk and Its Exosomes on MCF7 Cells in Vitro and in Vivo. Integr. Cancer Ther. 2018, 17(4), 1235–1246. DOI: 10.1177/1534735418786000.
  • Krishnankutty, R.; Iskandarani, A.; Therachiyil, L.; Uddin, S.; Azizi, F.; Kulinski, M.; Bhat, A. A.; Mohammad, R. M.; et al. Anticancer Activity of Camel Milk via Induction of Autophagic Death in Human Colorectal and Breast Cancer Cells. Asian Pac J. of Cancer Prev: APJCP. 2018, 19(12), 3501.
  • Yang, J.; Dou, Z.; Peng, X.; Wang, H.; Shen, T.; Liu, J.; Li, G.; Gao, Y.; et al. Transcriptomics and Proteomics Analyses of Anti-cancer Mechanisms of TR35–An Active Fraction from Xinjiang Bactrian Camel Milk in Esophageal Carcinoma Cell. Clin. Nutr. 2019, 38(5), 2349–2359.
  • Amr, A. M. Chemo-preventive Potential of Camel Milk against Colon Cancer. Asian J. of Emerging Res. 2019, 1(1), 30–32. DOI: 10.3923/ajerpk.2019.30.32.
  • Al-Omari, M. M.; Abed Alkarem Abu Alhaija, R. B. A.-G.; Zoubi, H. A.; Al-Qaoud, K. M.; et al. Camel Milk Whey Inhibits Inflammatory Colorectal Cancer Development via down Regulation of Pro-inflammatory Cytokines in Induced AOM/DSS Mouse Model. Emir. J. Food Agric. 2019, 256–262. DOI: 10.9755/ejfa.2019.v31.i4.1935.
  • Shariatikia, M.; Behbahani, M.; Mohabatkar, H. Anticancer Activity of Cow, Sheep, Goat, Mare, Donkey and Camel Milks and Their Caseins and Whey Proteins and in Silico Comparison of the Caseins. Mol. Biol. Res. Commun. 2017, 6(2), 57.
  • Abdallah, L. A.; Sawafta, A. M.; Ali, S. A. B.; Baradia, H. A., et al. Cytotoxic Potential of Camel Whey and Milk on Cervix Cancer (Hela) Cell Line. Asian J. of Med. and Biol. Res. 2019, 5(3), 231–236.
  • Korashy, H. M.; et al. Camel Milk Modulates the Expression of Aryl Hydrocarbon Receptor-regulated Genes, Cyp1a1, Nqo1, and Gsta1, in Murine Hepatoma Hepa 1c1c7 Cells. Biomed Res. Int. 2012, 2012.
  • Shabo, Y.; Barzel, R.; Yagil, R. Etiology of Crohn’s Disease and Camel Milk Treatment. J. of Camel Pract. and Res. 2008, 15(1), 55–59.
  • Elayan, A. A.; Suleiman, A.; Saleh, F. The Hypocholesterolemic Effect of Gariss and Gariss Containing. Asian J. of Biochem. 2010, 5(3), 205–209. DOI: 10.3923/ajb.2010.205.209.
  • Li, H.; Papadopoulos, V. Peripheral-type Benzodiazepine Receptor Function in Cholesterol Transport. Identification of a Putative Cholesterol Recognition/interaction Amino Acid Sequence and Consensus Pattern. Endocrinol. 1998, 139(12), 4991–4997. DOI: 10.1210/endo.139.12.6390.
  • Seelig, A.; Seelig, J. Interaction of Drugs and Peptides with the Lipid Membrane; 1996.
  • Buonopane, G. J.; Kilara, A.; Smith, J. S.; McCarthy, R. D.; et al. Effect of Skim Milk Supplementation on Blood Cholesterol Concentration, Blood Pressure, and Triglycerides in a Free-living Human Population. J. Am. Coll. Nutr. 1992, 11(1), 56–67.
  • Rao, D. R.; Chawan, C.; Pulusani, S. Influence of Milk and Thermophilus Milk on Plasma Cholesterol Levels and Hepatic Cholesterogenesis in Rats. J. Food Sci. 1981, 46(5), 1339–1341. DOI: 10.1111/j.1365-2621.1981.tb04168.x.
  • Sekachaei, A.; et al. Optimization of Ultrasound-assisted Extraction of Quince Seed Gum through Response Surface Methodology. J. Agric. Sci. Technol. 2017, 19, 323–333.
  • Badriah, A. Effect of Camel Milk on Blood Glucose, Cholesterol, Triglyceride and Liver Enzymes Activities in Female Albino Rats. World Appl. Sci. J. 2012, 17(11), 1394–1397.
  • Yehia, H. M.; Al-Masoud, A. H.; Alarjani, K. M.; Alamri, M. S.; et al. Prevalence of Methicillin-resistant (Meca Gene) and Heat-resistant Staphylococcus Aureus Strains in Pasteurized Camel Milk. J. Dairy Sci. 2020, 103(7), 5947–5963.
  • Saad, A. M.; Abdelgadir, A. M.; Moss, M. O. Aflatoxin in Human and Camel Milk in Abu Dhabi, United Arab Emirates. Mycotoxin Res. 1989, 5(2), 57–60. DOI: 10.1007/BF03192122.
  • Yousof, S. S. M.; El Zubeir, I. E. M. Chemical Composition and Detection of Aflatoxin M1 in Camels and Cows Milk in Sudan. Food Addit. Contam. B. 2020, 13(4), 298–304. DOI: 10.1080/19393210.2020.1796826.
  • Konuspayeva, G.; Faye, B. Recent Advances in Camel Milk Processing. Anim. 2021, 11(4), 1045. DOI: 10.3390/ani11041045.
  • Joshi, R.; et al. Feasibility of Low Pressure U Treatment for Maintenance of Hygiene of Raw Chromatography Milk. in International Camel conference, Bikaner, India, 2007.
  • Abeiderrahmane, N. Camel Milk and Modern Industry. J. of Camel Pract. and Res. 1997, 4(2), 223–228.
  • Amani; et al. Molecular Detection of Methicillin Heat-resistant Staphylococcus Aureus Strains in Pasteurized Camel Milk in Saudi Arabia. Biosci. Rep. 2020, 40.
  • Farah, Z. Camel Milk Properties and Products SKAT; Swiss center for development cooperation in technology and management, 1996.
  • Farah, Z.; Streiff, T.; Bachmann, M. Manufacture and Characterization of Camel Milk Butter. Milchwissenschaft. 1989, 44(7), 412–414.
  • Attia, H.; Kherouatou, N.; Dhouib, A. Dromedary Milk Lactic Acid Fermentation: Microbiological and Rheological Characteristics. J. Indus. Microbiol. Biotechnol. 2001, 26(5), 263–270. DOI: 10.1038/sj.jim.7000111.
  • Abu-Tarboush, H. Comparison of Associative Growth and Proteolytic Activity of Yogurt Starters in Whole Milk from Camels and Cows. J. Dairy Sci. 1996, 79(3), 366–371. DOI: 10.3168/jds.S0022-0302(96)76373-7.
  • Berhe, T.; Ipsen, R.; Seifu, E.; Kurtu, M. Y.; Eshetu, M.; Hansen, E. B.; et al. Comparison of the Acidification Activities of Commercial Starter Cultures in Camel and Bovine Milk. LWT. 2018, 89, 123–127. DOI: 10.1016/j.lwt.2017.10.041.
  • Ibrahim, A. H. Effects of Exopolysaccharide-producing Starter Cultures on Physicochemical, Rheological and Sensory Properties of Fermented Camel’s Milk. Emir. J. Food Agric. 2015, 373–384.
  • Mudgil, P.; Jumah, B.; Ahmad, M.; Hamed, F.; Maqsood, S.; et al. Rheological, Micro-structural and Sensorial Properties of Camel Milk Yogurt as Influenced by Gelatin. LWT. 2018, 98, 646–653. DOI: 10.1016/j.lwt.2018.09.008.
  • Sobti, B.; Mbye, M.; Alketbi, H.; Alnaqbi, A.; Alshamisi, A.; Almeheiri, M.; Seraidy, H.; Ramachandran, T.; Hamed, F.; Kamal-Eldin, A.; et al. Rheological Characteristics and Consumer Acceptance of Camel Milk Yogurts as Affected by Bovine Proteins and Hydrocolloids. Int. J. Food Prop. 2020, 23(1), 1347–1360.
  • Sobti, B.; Kamal-Eldin, A. Effect of Added Bovine Casein and Whey Protein on the Quality of Camel and Bovine Milk Yoghurts. Emir. J. Food Agric. 2019, 804–811. DOI: 10.9755/ejfa.2019.v31.i10.2022.
  • Buchilina, A.; Aryana, K. Physicochemical and Microbiological Characteristics of Camel Milk Yogurt as Influenced by Monk Fruit Sweetener. J. Dairy Sci. 2020, 104, 1484–1493. DOI: 10.3168/jds.2020-18842.
  • Jafar, S.; Kamal, H.; Mudgil, P.; Hassan, H. M.; Maqsood, S.; et al. Camel Whey Protein Hydrolysates Displayed Enhanced Cholesteryl Esterase and Lipase Inhibitory, Anti-hypertensive and Anti-haemolytic Properties. LWT Food Sci. Technol. 2018, 98, 212–218. DOI: 10.1016/j.lwt.2018.08.024.
  • Soleymanzadeh, N.; Mirdamadi, S.; Kianirad, M. Antioxidant Activity of Camel and Bovine Milk Fermented by Lactic Acid Bacteria Isolated from Traditional Fermented Camel Milk (Chal). Dairy Sci. Technol. 2016, 96(4), 443–457. DOI: 10.1007/s13594-016-0278-1.
  • Shori, A. B. Comparative Study of Chemical Composition, Isolation and Identification of Micro-flora in Traditional Fermented Camel Milk Products: Gariss, Suusac, and Shubat. J. Saudi Soc. Agric. Sci. 2012, 11(2), 79–88. DOI: 10.1016/j.jssas.2011.12.001.
  • Elagab, M.; Elfaki, A. The Dairy Product and Globaliztion Challengestroubles and Solutions. in Seminar of Quality control of food processing and future visions for third Millennium, 2002.
  • Hassan, R. A.; El Zubeir, I.; Babiker, S. Chemical and Microbial Measurements of Fermented Camel Milk (Gariss) from Transhumance and Nomadic Herds in Sudan. Aust. J. Basic Appl. Sci. 2008, 2(4), 800–804.
  • Sulieman, A. M. E. H.; Ilayan, A. A.; Faki, A. E. A. E. Chemical and Microbiological Quality of Garris, Sudanese Fermented Camel’s Milk Product. Int. J. Food Sci. Technol. 2006, 41(3), 321–328. DOI: 10.1111/j.1365-2621.2005.01070.x.
  • Abdelgadir, W.; Nielsen, D. S.; Hamad, S.; Jakobsen, M.; et al. A Traditional Sudanese Fermented Camel’s Milk Product, Gariss, as A Habitat of Streptococcus Infantarius Subsp. Infantarius. Int. J. Food Microbiol. 2008, 127(3), 215–219.
  • Ashmaig, A.; Hasan, A.; El Gaali, E. Identification of Lactic Acid Bacteria Isolated from Traditional Sudanese Fermented Camels Milk (Gariss). Afr. J. Microbiol. Res. 2009, 3(8), 451–457.
  • Lore, T. A.; Mbugua, S. K.; Wangoh, J. Enumeration and Identification of Microflora in Suusac, a Kenyan Traditional Fermented Camel Milk Product. LWT Food Sci. Technol. 2005, 38(2), 125–130. DOI: 10.1016/j.lwt.2004.05.008.
  • Jans, C.; Bugnard, J.; Njage, P. M. K.; Lacroix, C.; Meile, L.; et al. Lactic Acid Bacteria Diversity of African Raw and Fermented Camel Milk Products Reveals a Highly Competitive, Potentially Health-threatening Predominant Microflora. LWT. 2012, 47(2), 371–379.
  • Wambui, J. M.; Lamuka, P. O.; Njage, P. M. K. Lactic Acid Bacteria Isolates from Fermented Camel Milk (Suusac) are Potential Protective Cultures of Raw Camel Meat. Int. J. of Agric. and Environ. Res. 2017, 3, 2960–2975. DOI: 10.22004/ag.econ.262817.
  • Rahman, N.; Xiaohong, C.; Meiqin, F.; Mingsheng, D.; et al. Characterization of the Dominant Microflora in Naturally Fermented Camel Milk Shubat. World J. Microbiol. Biotechnol. 2009, 25(11), 1941–1946.
  • Saitmuratova, O. K.; Sulaimanova, G. I.; Sadykov, A. A. Camel’s Milk and Shubat from the Aral Region. Chem. Nat. Compd. 2001, 37(6), 566–568. DOI: 10.1023/A:1014881202792.
  • Yam, B. A. Z.; et al. Hygienic Quality of Camel Milk and Fermented Camel Milk (Chal) in Golestan Province, Iran. J.of Microbiol. Res. 2014, 4(2), 98–103.
  • Yam, B. Z., et al. Isolation and Identification of Yeasts and Lactic Acid Bacteria from Local Traditional Fermented Camel Milk, Chal. J. Food Process. Technol. 2015, 6(7), 1.
  • Soleymanzadeh, N.; Mirdamadi, S.; Kianirad, M. Incidence of Virulence Determinants and Antibiotic Resistance in Lactic Acid Bacteria Isolated from Iranian Traditional Fermented Camel Milk (Chal). J Food Biosci Technol. 2017, 7(2), 1–8.
  • Zahedi, M. T.; Salami, M.; Moslehishad, M. Fermented Camel Milk (Chal): Chemical, Microbial and Functional Properties. J. of Pharm. and Health Sci. 2016, 4(3), 193–204.
  • Biratu, K.; Seifu, E. Chemical Composition and Microbiological Quality of Dhanaan: Traditional Fermented Camel Milk Produced in Eastern Ethiopia. Int. Food Res. J. 2016, 23(5).
  • Berhe, T.; et al. Metagenomic Analysis of Bacterial Community Composition in Dhanaan: Ethiopian Traditional Fermented Camel Milk. FEMS Microbiol. Lett. 2019, 366(Supplement_1), i127–i132.
  • Watanabe, K.; Fujimoto, J.; Sasamoto, M.; Dugersuren, J.; Tumursuh, T.; Demberel, S.; et al. Diversity of Lactic Acid Bacteria and Yeasts in Airag and Tarag, Traditional Fermented Milk Products of Mongolia. World J. Microbiol. Biotechnol. 2008, 24(8), 1313–1325.
  • Didar, Z. Investigation of Iranian Traditional Drink (Doogh) Characteristics Prepared from Camel Milk Containing Lactobacillus Acidophilus LA-5. Appl. Food Biotechnol. 2019, 6(3), 185–192.
  • Kavas, G. Kefirs Manufactured from Camel (Camelus Dromedarius) Milk and Cow Milk: Comparison of Some Chemical and Microbial Properties. Ital. J. Food Sci. 2015, 27, 357–365.
  • Konuspayeva, G.; Camier, B.; Aleilawi, N.; Al-Shumeimyri, M.; Al-Hammad, K.; Algruin, K.; Alshammari, F.; Beaucher, E.; Faye, B.; et al. Manufacture of Dry‐and Brine‐salted Soft Camel Cheeses for the Camel Dairy Industry. Int. J. Dairy Technol. 2017, 70(1), 92–101.
  • Konuspayeva, G.; Camier, B.; Gaucheron, F.; Faye, B.; et al. Some Parameters to Process Camel Milk into Cheese. Emir. J. Food Agric. 2014, 26, 354–358. DOI: 10.9755/ejfa.v26i4.17277.
  • Konuspayeva, G. S. Manufacture and Challenges of Camel Milk Cheese. In Handbook of Research on Health and Environmental Benefits of Camel Products; IGI Global, 2020; pp 110–122.
  • Bornaz, S.; Sahli, A.; Attalah, A.; Attia, H.; et al. Physicochemical Characteristics and Renneting Properties of Camels’ Milk: A Comparison with Goats’, Ewes’ and Cows’ Milks. Int. J. Dairy Technol. 2009, 62(4), 505–513.
  • Mbye, M.; Sobti, B.; Al Nuami, M. K.; Al Shamsi, Y.; Al Khateri, L.; Al Saedi, R.; Saeed, M.; Ramachandran, T.; Hamed, F.; Kamal-Eldin, A.; et al. Physicochemical Properties, Sensory Quality, and Coagulation Behavior of Camel versus Bovine Milk Soft Unripened Cheeses. NFS J. 2020, 20, 28–36. DOI: 10.1016/j.nfs.2020.06.003.
  • Abou-Soliman, N. H. I.; Awad, S.; El-Sayed, M. I. The Impact of Microbial Transglutaminase on the Quality and Antioxidant Activity of Camel-Milk Soft Cheese. Food Nutr. Sci. 2020, 11(3), 153. DOI: 10.4236/fns.2020.113012.
  • Kappeler, S. R.; van Den Brink, H. M. (J.); Rahbek-Nielsen, H.; Farah, Z.; Puhan, Z.; Hansen, E. B.; Johansen, E.; et al. Characterization of Recombinant Camel Chymosin Reveals Superior Properties for the Coagulation of Bovine and Camel Milk. Biochem. Biophys. Res. Commun. 2006, 342(2), 647–654.
  • Langholm Jensen, J.; Mølgaard, A.; Navarro Poulsen, J.-C.; Harboe, M. K.; Simonsen, J. B.; Lorentzen, A. M.; Hjernø, K.; van Den Brink, J. M.; Qvist, K. B.; Larsen, S.; et al. Camel and Bovine Chymosin: The Relationship between Their Structures and Cheese-making Properties. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69(5), 901–913.
  • El Zubeir, I. E.; Jabreel, S. O. Fresh Cheese from Camel Milk Coagulated with Camifloc. Int. J. Dairy Technol. 2008, 61(1), 90–95. DOI: 10.1111/j.1471-0307.2008.00360.x.
  • Mehaia, M. A. Fresh Soft White Cheese (Domiati-type) from Camel Milk: Composition, Yield, and Sensory Evaluation. J. Dairy Sci. 1993, 76(10), 2845–2855. DOI: 10.3168/jds.S0022-0302(93)77623-7.
  • Al-zoreky, N. S.; Almathen, F. S. Using Recombinant Camel Chymosin to Make White Soft Cheese from Camel Milk. Food Chem. 2021, 337, 127994. DOI: 10.1016/j.foodchem.2020.127994.
  • Siboukeur, O.; Mati, A.; Hessas, B. Improving the Coagulability of Camel’s Milks by Using Gastric Enzyme Coagulation Extracts (Camelus Dromedarius). Cahiers Agric. 2005, 14, 473–478.
  • Walle, T.; et al. Coagulation and Preparation of Soft Unripened Cheese from Camel Milk Using Camel Chymosin. East African J. of Sci. 2017, 11(2), 99–106.
  • Gassem, M.; Abu-Tarboush, H. Lactic Acid Production by Lactobacillus Delbrueckii Subsp. Bulgaricus in Camel’s and Cow’s Wheys. Milchwissenschaft. 2000, 55(7), 374–378.
  • Mehaia, M. A. Manufacture of Fresh Soft White Cheese (Domiati Type) from Dromedary Camel’s Milk Using Ultrafiltration Process. J. Food Technol. 2006, 4(3), 206–212.
  • Bekele, B.; Hansen, E. B.; Eshetu, M.; Ipsen, R.; Hailu, Y.; et al. Effect of Starter Cultures on Properties of Soft White Cheese Made from Camel (Camelus Dromedarius) Milk. J. Dairy Sci. 2019, 102(2), 1108–1115.
  • Qadeer, Z.; et al. Influnce of Pasteurization Temperature, Ph, Cacl 2 and Blending of Buffalo Milk on the Rennet Coagulation Time (Rct), Yield and Texture of Camel Milk Cheese. Pak. J. Agric. Sci. 2019, 56(1), 141–147.
  • Mihretie, Y.; et al. Cheese Production from Camel Milk Using Lemon Juice as a Coagulant. J. of Environ. and Agric. Sci. 2018, 17, 11–19.
  • Yonas, H.; Eyassu, S.; Zelalem, Y. Physicochemical Properties and Consumer Acceptability of Soft Unripened Cheese Made from Camel Milk Using Crude Extract of Ginger (Zingiber Officinale) as Coagulant. Afr. J. Food Sci. 2014, 8(2), 87–91. DOI: 10.5897/AJFS2013.1102.
  • Elnemr, A. M.; et al. Improving the Quality of Camel Milk Soft Cheese Using Milky Component (BMR) and Sweet Potato Powder. European J. of Sci. and Technol. 2020, 19, 566–577.
  • Dubey, U. S.; Lal, M.; Mittal, A.; Kapur, S.; et al. Therapeutic Potential of Camel Milk. Emir. J. Food Agric. 2016, 28(3), 164.
  • Abu-Lehia, I. H. Physical and Chemical Characteristics of Camel Milkfat and Its Fractions. Food Chem. 1989, 34(4), 261–271. DOI: 10.1016/0308-8146(89)90103-9.
  • Ahmed, A.; El Zubeir, I. Processing Properties an D Chemical Composition of Low Fat Ice Cream Made from Camel Mil K Using Natural Additives. Int. J. Dairy Sci. 2015, 10(6), 297–305. DOI: 10.3923/ijds.2015.297.305.
  • Salem, S.; Fardous, M.; El-Rashody, M. G. Effect of Camel Milk Fortified with Dates in Ice Cream Manufacture on Viscosity, Overrun, and Rheological Properties during Storage Period. Food Nutr. Sci. 2017, 8(5), 551. DOI: 10.4236/fns.2017.85038.
  • Robinson, R. K. Dairy Microbiology Handbook: The Microbiology of Milk and Milk Products; John Wiley & Sons, 2005.
  • Zouari, A.; Perrone, Í. T.; Schuck, P.; Gaucheron, F.; Dolivet, A.; Attia, H.; Ayadi, M. A.; et al. Effect of Outlet Drying Temperature and Milk Fat Content on the Physicochemical Characteristics of Spray-dried Camel Milk Powder. Drying Technol. 2019, 37(13), 1615–1624.
  • Ho, T. M.; Chan, S.; Yago, A. J. E.; Shravya, R.; Bhandari, B. R.; Bansal, N.; et al. Changes in Physicochemical Properties of Spray-dried Camel Milk Powder over Accelerated Storage. Food Chem. 2019, 295, 224–233. DOI: 10.1016/j.foodchem.2019.05.122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.