325
Views
4
CrossRef citations to date
0
Altmetric
Review

Advances in Polyphenol Research from Chile: A Literature Review

, , , , , , , , , , , , , , , & show all

References

  • Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Z.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016, 21(7), 901. DOI: 10.3390/molecules21070901.
  • Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients. 2010, 2(12), 1231–1246. DOI: 10.3390/nu2121231.
  • Rothwell, J. A.; Knaze, V.; Zamora-Ros, R. Polyphenols: Dietary Assessment and Role in the Prevention of Cancers. Curr. Opin. Clin. Nutr. Metab. Care. 2017, 20(6), 512–521. DOI: 10.1097/MCO.0000000000000424.
  • Zamora-Ros, R.; Knaze, V.; Rothwell, J. A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.-C., et al. Dietary Polyphenol Intake in Europe: The European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Eur. J. Nutr. 2016, 55(4), 1359–1375.
  • Dalgaard, F.; Bondonno, N. P.; Murray, K.; Bondonno, C. P.; Lewis, J. R.; Croft, K. D.; Kyrø, C.; Gislason, G.; Scalbert, A.; Cassidy, A., et al. Associations between Habitual Flavonoid Intake and Hospital Admissions for Atherosclerotic Cardiovascular Disease: A Prospective Cohort Study. Lancet Planet Heal. 2019, 3(11), e450–9. DOI: 10.1016/S2542-5196(19)30212-8.
  • Zhang, P. Y. Polyphenols in Health and Disease. Cell Biochem. Biophys. 2015, 73(3), 649–664. DOI: 10.1007/s12013-015-0558-z.
  • Del Bo’, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P., et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is There Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients. 2019, 11(6), 1355. DOI: 10.3390/nu11061355.
  • Bernardi, S.; Del Bo’, C.; Marino, M.; Gargari, G.; Cherubini, A.; Andrés-Lacueva, C.; Hidalgo-Liberona, N.; Peron, G.; González-Dominguez, R.; Kroon, P., et al. Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. J. Agric. Food Chem. 2020, 68(7), 1816–1829. DOI: 10.1021/acs.jafc.9b02283.
  • Peron, G.; Hidalgo Liberona, N.; González-Domínguez, R.; Garcia-Aloy, M.; Guglielmetti, S.; Bernardi, S.; Kirkup, B.; Kroon, P.; Cherubini, A.; Riso, P., et al. Exploring the Molecular Pathways behind the Effects of Nutrients and Dietary Polyphenols on Gut Microbiota and Intestinal Permeability: A Perspective on the Potential of Metabolomics and Future Clinical Applications. J. Agric. Food Chem. 2020, 68(7), 1780–1789. DOI: 10.1021/acs.jafc.9b01687.
  • Knaze, V.; Rothwell, J. A.; Zamora-Ros, R.; Moskal, A.; Kyrø, C.; Jakszyn, P.; Skeie, G.; Weiderpass, E.; de Magistris, M. S.; Agnoli, C., et al. A New Food-composition Database for 437 Polyphenols in 19,899 Raw and Prepared Foods Used to Estimate Polyphenol Intakes in Adults from 10 European Countries. Am. J. Clin. Nutr. 2018, 108(3), 517–524. DOI: 10.1093/ajcn/nqy098.
  • Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 Richest Dietary Sources of Polyphenols: An Application of the Phenol-Explorer Database. Eur. J. Clin. Nutr. 2010, 64, S112–20. DOI: 10.1038/ejcn.2010.221.
  • Zamora-Ros, R.; Touillaud, M.; Rothwell, J. A.; Romieu, I.; Scalbert, A. Measuring Exposure to the Polyphenol Metabolome in Observational Epidemiologic Studies: Current Tools and Applications and Their Limits. Am. J. Clin. Nutr. 2014, 100(1), 11–26. DOI: 10.3945/ajcn.113.077743.
  • Garcia-Diaz, D. F.; Jimenez, P.; Reyes-Farias, M.; Soto-Covasich, J.; Costa, A. G. V. A Review of the Potential of Chilean Native Berries in the Treatment of Obesity and Its Related Features. Plant Foods Hum. Nutr. 2019, 74(3), 277–286. DOI: 10.1007/s11130-019-00746-6.
  • Schmeda-Hirschmann, G.; Jiménez-Aspee, F.; Theoduloz, C.; Ladio, A. Patagonian Berries as Native Food and Medicine. J. Ethnopharmacol. 2019, 241, 111979. DOI: 10.1016/j.jep.2019.111979.
  • Ministerio de Agricultura. Panorama de la agricultura Chilena. https://www.odepa.gob.cl/wp-content/uploads/2019/09/panorama2019Final.pdf. (accessed Feb 22, 2021).
  • Cejudo-Bastante, M. J.; Del Barrio-galán, R.; Heredia, F. J.; Medel-Marabolí, M.; Peña-Neira, Á. Location Effects on the Polyphenolic and Polysaccharidic Profiles and Colour of Carignan Grape Variety Wines from the Chilean Maule Region. Food Res. Int. 2018, 106, 729–735. DOI: 10.1016/j.foodres.2018.01.054.
  • Ghisoni, S.; Lucini, L.; Rocchetti, G.; Chiodelli, G.; Farinelli, D.; Tombesi, S.; Trevisan, M., et al. Untargeted Metabolomics with Multivariate Analysis to Discriminate Hazelnut (Corylus Avellana L.) Cultivars and Their Geographical Origin. J. Sci. Food Agric. 2020, 100(2), 500–508. DOI: 10.1002/jsfa.9998.
  • González, G.; Venegas, R.; Greve, V. Chile Food Power Position in the International Markets. https://www.chilealimentos.com/wordpress/wp-content/uploads/2017/01/PUBLICACION-CHILEALIMENTOS_2016-FINAL-38.pdf. (accessed Feb 22, 2021).
  • Kovalskys, I.; Rigotti, A.; Koletzko, B.; Fisberg, M.; Gómez, G.; Herrera-Cuenca, M.; Cortés Sanabria, L. Y.; Yépez García, M. C.; Pareja, R. G.; Zalcman-Zimberg, I., et al. Latin American Consumption of Major Food Groups: Results from the ELANS Study. PLoS One. 2019, 14(12), e0225101. DOI: 10.1371/journal.pone.0225101.
  • Ministerio de Salud, Gobierno de Chile. Encuesta Nacional de Consumo Alimentario en Chile (ENCA). https://www.minsal.cl/enca/ .(accessed 22 Feb, 2021).
  • Troncoso, C.; Lanuza, F.; Martínez-Sanguinetti, M.; Leiva, A. M.; Ramírez-Alarcón, K.; Martorell, M.; Labraña, A. M.; Parra-Soto, S.; Lasserre-Laso, N.; Nazar, G., et al. Lifestyles and Adherence to the Chilean Dietary Guidelines: Results of the Chilean National Health 2016–2017 Survey. Rev. Chil. Nutr. 2020, 47(4), 650–657. DOI: 10.4067/S0717-75182020000400650.
  • Ministerio de Salud. Encuesta Nacional de Salud 2016–2017. MINSAL, Chile. (2018) http://epi.minsal.cl/encuesta-nacional-de-salud-2015-2016/. (accessed Feb 22, 2021).
  • Kovalskys, I.; Fisberg, M.; Gómez, G.; Pareja, R. G.; Yépez García, M. C.; Cortés Sanabria, L. Y.; Herrera-Cuenca, M.; Rigotti, A.; Guajardo, V.; Zalcman Zimberg, I., et al. Energy Intake and Food Sources of Eight Latin American Countries: Results from the Latin American Study of Nutrition and Health (ELANS). Public Health Nutrition. 2018, 21(14), 2535–2547. DOI: 10.1017/S1368980018001222.
  • Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean Diet and Multiple Health Outcomes: An Umbrella Review of Meta-analyses of Observational Studies and Randomised Trials. Eur. J. Clin. Nutr. 2018, 72(1), 30–43. DOI: 10.1038/ejcn.2017.58.
  • Zamora-Ros, R.; Rothwell, J. A.; Scalbert, A.; Knaze, V.; Romieu, I.; Slimani, N.; Fagherazzi, G.; Perquier, F.; Touillaud, M.; Molina-Montes, E., et al. Dietary Intakes and Food Sources of Phenolic Acids in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Br. J. Nutr. 2013, 110(8), 1500–1511. DOI: 10.1017/S0007114513000688.
  • Echeverría, G.; Urquiaga, I.; Concha, M. J.; Dussaillant, C.; Villarroel, L.; Velasco, N.; Leighton, F.; Rigotti, A. Validación de Cuestionario Autoaplicable Para Un Índice de Alimentación Mediterránea En Chile. Revista médica de Chile. 2016, 144(12), 1531–1543. DOI: 10.4067/S0034-98872016001200004.
  • Echeverría, G.; McGee, E. E.; Urquiaga, I.; Jiménez, P.; D ‘Acuña, S.; Villarroel, L.; Velasco, N.; Leighton, F.; Rigotti, A. Inverse Associations between a Locally Validated Mediterranean Diet Index, Overweight/Obesity, and Metabolic Syndrome in Chilean Adults. Nutrients. 2017, 9(8), 862. DOI: 10.3390/nu9080862.
  • Rinaldi de alvarenga, J. F.; Quifer‐Rada, P.; Westrin, V.; Hurtado‐Barroso, S.; Torrado‐Prat, X.; Lamuela‐Raventós, R. M. Mediterranean Sofrito Home-cooking Technique Enhances Polyphenol Content in Tomato Sauce. J. Sci. Food Agric. 2019, 99(14), 6535–6545. DOI: 10.1002/jsfa.9934.
  • Henríquez, C.; López-Alarcón, C.; Gómez, M.; Lutz, M.; Speisky, H. Time-dependence of Ferric Reducing Antioxidant Power (FRAP) Index in Chilean Apples and Berries. Arch. Latinoam. Nutr. 2011, 61(3), 323–332.
  • Fredes, C.; Montenegro, G.; Zoffoli, J. P.; Santander, F.; Robert, P. Comparación de los contenidos de fenoles totales, antocianos totales y la actividad antioxidante de frutos ricos en polifenoles que crecen en Chile. Cienc. Inv. Agr. 2014, 41(1), 49–59. DOI: 10.4067/S0718-16202014000100005.
  • Jiménez-Aspee, F.; Theoduloz, C.; Vieira, M. N.; Rodríguez-Wernwe, M. A.; Schmalfuss, E.; Winterhalter, P.; Schmeda-Hirschmann, G. Phenolics from the Patagonian Currants Ribes Spp.: Isolation, Characterization and Cytoprotective Effect in Human AGS Cells. J. Funct. Foods. 2016, 26, 11–26. DOI: 10.1016/j.jff.2016.06.036.
  • Sepúlveda, E.; Sáenz, C.; Peña, Á.; Robert, P.; Bartolomé, B.; Gómez-Cordovés, C. Gómez-Cordovés. Influence of the Genotype on the Anthocyanin Composition, Antioxidant Capacity and Color of Chilean Pomegranate (Punica Granatum L.) Juices. Chilean J. Agric. Res. 2010, 70(1), 50–57. DOI: 10.4067/S0718-58392010000100005.
  • Simirgiotis, M. J.; Schmeda-Hirschmann, G. Determination of Phenolic Composition and Antioxidant Activity in Fruits, Rhizomes and Leaves of the White Strawberry (Fragaria Chiloensis Spp. Chiloensis Form Chiloensis) Using HPLC-DAD-ESI-MS and Free Radical Quenching Techniques. J. Food Compos. Anal. 2010, 23(6), 545–553. DOI: 10.1016/j.jfca.2009.08.020.
  • Arancibia-Avila, P.; Toledo, F.; Werner, E.; Suhaj, M.; Leontowicz, H.; Leontowicz, M.; Martinez-Ayala, A. L.; Pasko, P.; Gorinstein, S. Partial Characterization of a New Kind of Chilean Murtilla-like Berries. Food Res. Int. 2011, 44(7), 2054–2062. DOI: 10.1016/j.foodres.2011.01.016.
  • Jiménez-Aspee, F.; Theoduloz, C.; Ávila, F.; Thomas-Valdés, S.; Mardones, C.; Von Baer, D.; Schmeda-Hirschmann, G. The Chilean Wild Raspberry (Rubus Geoides Sm.) Increases Intracellular GSH Content and Protects against H2O2 and Methylglyoxal-induced Damage in AGS Cells. Food Chem. 2016, 194, 908–919. DOI: 10.1016/j.foodchem.2015.08.117.
  • Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; Von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin Profiles in South Patagonian Wild Berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51(2), 706–713. DOI: 10.1016/j.foodres.2013.01.043.
  • Speisky, H.; López-Alarcón, C.; Gómez, M.; Fuentes, J.; Sandoval-Acuña, C. First Web-based Database on Total Phenolics and Oxygen Radical Absorbance Capacity (ORAC) of Fruits Produced and Consumed within the South Andes Region of South America. J. Agric. Food Chem. 2012, 60(36), 8851–8859. DOI: 10.1021/jf205167k.
  • Fredes, C.; Montenegro, G.; Zoffoli, J. P.; Gómez, M.; Robert, P. Polyphenol Content and Antioxidant Activity of Maqui (Aristotelia Chilensis Molina Stuntz) during Fruit Development and Maturation in Central Chile. Chilean J. Agric. Res. 2012, 72(4), 582–589. DOI: 10.4067/S0718-58392012000400019.
  • Brauch, J. E.; Buchweitz, M.; Schweiggert, R. M.; Carle, R. Detailed Analyses of Fresh and Dried Maqui (Aristotelia Chilensis (Mol.) Stuntz) Berries and Juice. Food Chem. 2016, 190, 308–316. DOI: 10.1016/j.foodchem.2015.05.097.
  • Araneda, X.; Quilamán, E.; Martínez, M.; Morales, D. Elaboración y evaluación de jugo de maqui (Aristotelia chilensis (Mol.) Stuntz) por arrastre de vapor. Sci. Agropecu. 2014, 5(3), 149–156. DOI: 10.17268/sci.agropecu.2014.03.05.
  • Fredes, C.; Yousef, G. G.; Robert, P.; Grace, M. H.; Lila, M. A.; Gómez, M.; Gebauer, M.; Montenergo, G. Anthocyanin Profiling of Wild Maqui Berries (Aristotelia Chilensis [Mol.] Stuntz) from Different Geographical Regions in Chile. J. Sci. Food Agric. 2014, 94(13), 2639–2648. DOI: 10.1002/jsfa.6602.
  • Rubilar, M.; Jara, C.; Poo, Y.; Acevedo, F.; Gutierrez, C.; Sineiro, J.; Shene, C. Extracts of Maqui (Aristotelia Chilensis) and Murta (Ugni Molinae Turcz.): Sources of Antioxidant Compounds and α-glucosidase/α-amylase Inhibitors. J. Agric. Food Chem. 2011, 59(5), 1630–1637. DOI: 10.1021/jf103461k.
  • Ruiz, A.; Hermosín-Gutiérrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; Von Baer, D. Polyphenols and Antioxidant Activity of Calafate (Berberis Microphylla) Fruits and Other Native Berries from Southern Chile. J. Agric. Food Chem. 2010, 58(10), 6081–6089. DOI: 10.1021/jf100173x.
  • Quispe-Fuentes, I.; Vega-Gálvez, A.; Aranda, M. Evaluation of Phenolic Profiles and Antioxidant Capacity of Maqui (Aristotelia Chilensis) Berries and Their Relationships to Drying Methods. J. Sci. Food Agric. 2018, 98(11), 4168–4176. DOI: 10.1002/jsfa.8938.
  • Reyes-Farias, M.; Vasquez, K.; Ovalle-Marin, A.; Fuentes, F.; Parra, C.; Quitral, V.; Jimenez, P.; Garcia-Diaz, D. F. Chilean Native Fruit Extracts Inhibit Inflammation Linked to the Pathogenic Interaction between Adipocytes and Macrophages. J. Med. Food. 2015, 18(5), 601–608. DOI: 10.1089/jmf.2014.0031.
  • Genskowsky, E.; Puente, L. A.; Pérez-Álvarez, J. A.; Fernández-López, J.; Muñoz, L. A.; Viuda-Martos, M. Determination of Polyphenolic Profile, Antioxidant Activity and Antibacterial Properties of Maqui [Aristotelia Chilensis (Molina) Stuntz] a Chilean Blackberry. J. Sci. Food. Agric. 2016, 96(12), 4235–4242. DOI: 10.1002/jsfa.7628.
  • Junqueira-Gonçalves, M. P.; Yáñez, L.; Morales, C.; Navarro, M.; Conteras, R. A.; Zuñiga, G. E. Isolation and Characterization of Phenolic Compounds and Anthocyanins from Murta (Ugni Molinae Turcz.) Fruits. Assessment of Antioxidant and Antibacterial Activity. Molecules. 2015, 20(4), 5698–5713. DOI: 10.3390/molecules20045698.
  • Peña-Cerda, M.; Arancibia-Radich, J.; Valenzuela-Bustamante, P.; Pérez-Arancibia, R.; Barriga, A.; Seguel, I.; García, L.; Delporte, C. Phenolic Composition and Antioxidant Capacity of Ugni Molinae Turcz. Leaves of Different Genotypes. Food Chem. 2017, 215, 219–227. DOI: 10.1016/j.foodchem.2016.07.159.
  • Avello Lorca, M.; Pastene Navarrete, E.; González Riquelme, M.; Bittner Berner, M.; Becerra Allende, J. In Vitro Determination of the Antioxidant Capacity of Extracts and Phenolic Compounds from Ugni Molinae Turcz. Leaves. Rev. Cubana Plant. Med. 2013, 18(4), 596–608.
  • Ramirez, J. E.; Zambrano, R.; Sepúlveda, B.; Kennelly, E. J.; Simirgiotis, M. J. Anthocyanins and Antioxidant Capacities of Six Chilean Berries by HPLC-HR-ESI-ToF-MS. Food Chem. 2015, 176, 106–114. DOI: 10.1016/j.foodchem.2014.12.039.
  • Alfaro, S.; Mutis, A.; Palma, R.; Quiroz, A.; Seguel, I.; Scheuermann, E. Influence of Genotype and Harvest Year on Polyphenol Content and Antioxidant Activity in Murtilla (Ugni Molinae Turcz) Fruit. J. Soil Sci. Plant. Nutr. 2013, 13(1), 67–78. DOI: 10.4067/S0718-95162013005000007.
  • Brito, A.; Areche, C.; Sepúlveda, B.; Kennelly, E. J.; Simirgiotis, M. J. Anthocyanin Characterization, Total Phenolic Quantification and Antioxidant Features of Some Chilean Edible Berry Extracts. Molecules. 2014, 19(8), 10936–10955. DOI: 10.3390/molecules190810936.
  • López de Dicastillo, C.; Bustos, F.; Valenzuela, X.; López-Carballo, G.; Vilariño, J. M.; Galotto, M. J. Chilean Berry Ugni Molinae Turcz. Fruit and Leaves Extracts with Interesting Antioxidant, Antimicrobial and Tyrosinase Inhibitory Properties. Food Res. Int. 2017, 102, 119–128. DOI: 10.1016/j.foodres.2017.09.073.
  • Avello, M. A.; Pastene, E. R.; Bustos, E. D.; Bittner, M. L.; Becerra, J. A. Variation in Phenolic Compounds of Ugni Molinae Populations and Their Potential Use as Antioxidant Supplement. Brazilian J. Pharmacogn. 2013, 23(1), 44–50. DOI: 10.1590/S0102-695X2012005000122.
  • Fuentes, L.; Valdenegro, M.; Gómez, M. G.; Ayala-Raso, A.; Quiroga, E.; Martínez, J. P.; Vinet, R.; Caballero, E.; Figueroa, C. R. Characterization of Fruit Development and Potential Health Benefits of Arrayan (Luma Apiculata), a Native Berry of South America. Food Chem. 2016, 196, 1239–1247. DOI: 10.1016/j.foodchem.2015.10.003.
  • Lutz, M.; Hernández, J.; Henríquez, C. Phenolic Content and Antioxidant Capacity in Fresh and Dry Fruits and Vegetables Grown in Chile. CYTA - J. Food. 2015, 13(4), 541–547.
  • Simirgiotis, M. J.; Bórquez, J.; Schmeda-Hirschmann, G. Antioxidant Capacity, Polyphenolic Content and Tandem HPLC-DAD-ESI/MS Profiling of Phenolic Compounds from the South American Berries Luma Apiculata and L. Chequén. Food Chem. 2013, 139(1–4), 289–299. DOI: 10.1016/j.foodchem.2013.01.089.
  • Ruiz, A.; Zapata, M.; Sabando, C.; Bustamante, L.; Von Baer, D.; Vergara, C.; Mardones, C. Flavonols, Alkaloids, and Antioxidant Capacity of Edible Wild Berberis Species from Patagonia. J. Agric. Food Chem. 2014, 62(51), 12407–12417. DOI: 10.1021/jf502929z.
  • Mariangel, E.; Reyes-Diaz, M.; Lobos, W.; Bensch, E.; Schalchli, H.; Ibarra, P. The Antioxidant Properties of Calafate (Berberis Microphylla) Fruits from Four Different Locations in Southern Chile. Cienc. E Inv. Agr. 2013, 40(1), 161–170. DOI: 10.4067/S0718-16202013000100014.
  • Lutz, M.; Jorquera, K.; Cancino, B.; Ruby, R.; Henriquez, C. Phenolics and Antioxidant Capacity of Table Grape (Vitis viniferaL.) Cultivars Grown in Chile. J. Food Sci. 2011, 76(7), 1088–1093. DOI: 10.1111/j.1750-3841.2011.02298.x.
  • Lutz, M.; Cajas, Y.; Henríquez, C. Phenolics Content and Antioxidant Capacity of Chilean Grapes Cv. País and Cabernet Sauvignon. CyTA - J. Food. 2012, 10(4), 251–257. DOI: 10.1080/19476337.2011.633244.
  • Obreque-Slier, E.; Peña-Neira, Á.; López-Solís, R.; Zamora-Marín, F.; Silva JM., R.-D.; Laureano, O. Comparative Study of the Phenolic Composition of Seeds and Skins from Carménère and Cabernet Sauvignon Grape Varieties (Vitis Vinifera L.) During Ripening. J. Agric. Food Chem. 2010, 58(6), 3591–3599. DOI: 10.1021/jf904314u.
  • Obreque-Slier, E.; López-Solís, R.; Castro-Ulloa, L.; Romero-Díaz, C.; Peña-Neira, Á. Phenolic Composition and Physicochemical Parameters of Carménère, Cabernet Sauvignon, Merlot and Cabernet Franc Grape Seeds (Vitis Vinifera L.) During Ripening. LWT - Food Sci. Technol. 2012, 48(1), 134–141. DOI: 10.1016/j.lwt.2012.02.007.
  • Obreque-Slier, E.; Peña-Neira, Á.; López-Solís, R.; Cáceres-Mella, A.; Toledo-Araya, H.; López-Rivera, A. Phenolic Composition of Skins from Four Carmenet Grape Varieties (Vitis Vinifera L.) During Ripening. LWT - Food Sci. Technol. 2013, 54(2), 404–413. DOI: 10.1016/j.lwt.2013.06.009.
  • Cáceres-Mella, A.; Peña-Neira, Á.; Avilés-Gálvez, P.; Medel-Marabolí, M.; Del Barrio-Galán, R.; López-Solís, R.; Canals, J. M. Phenolic Composition and Mouthfeel Characteristics Resulting from Blending Chilean Red Wines. J. Sci. Food Agric. 2014, 94(4), 666–676. DOI: 10.1002/jsfa.6303.
  • Ramirez, J. E.; Zambrano, R.; Sepúlveda, B.; Simirgiotis, M. J. Antioxidant Properties and Hyphenated HPLC-PDA-MS Profiling of Chilean Pica Mango Fruits (Mangifera Indica L. Cv. Piqueño). Molecules. 2013, 19(1), 438–458. DOI: 10.3390/molecules19010438.
  • Jiménez-Aspee, F.; Theoduloz, C.; Soriano, M. D. P. C.; Ugalde-Arbizu, M.; Alberto, M. R.; Zampini, I. R.; Isla, M. I.; Simirigiotis, M.; Schmeda-Hirschmann, G. The Native Fruit Geoffroea Decorticans from Arid Northern Chile: Phenolic Composition, Antioxidant Activities and in Vitro Inhibition of Pro-inflammatory and Metabolic Syndrome-associated Enzymes. Molecules. 2017, 22(9), 1–18. DOI: 10.3390/molecules22091565.
  • Pino Ramos, L. L.; Jiménez-Aspee, F.; Theoduloz, C.; Burgos-Edwards, A.; Domínguez-Perles, R.; Oger, C.; Durand, T.; Gil-Izquierdo, Á.; Bustamante, L.; Mardones, C., et al. Phenolic, Oxylipin and Fatty Acid Profiles of the Chilean Hazelnut (Gevuina Avellana): Antioxidant Activity and Inhibition of Pro-inflammatory and Metabolic Syndrome-associated Enzymes. Food Chem. 2019, 298, 125026. DOI: 10.1016/j.foodchem.2019.125026.
  • Locatelli, M.; Coïsson, J. D.; Travaglia, F.; Bordiga, M.; Arlorio, M. Impact of Roasting on Identification of Hazelnut (Corylus Avellana L.) Origin: A Chemometric Approach. J. Agric. Food Chem. 2015, 63(32), 7294–7303. DOI: 10.1021/acs.jafc.5b03201.
  • Baginsky, C.; Peña-Neira, A.; Cáceres, A.; Hernández, T.; Estrella, I.; Morales, H.; Pertuzé, R. Phenolic Compound Composition in Immature Seeds of Fava Bean (Vicia Faba L.) Varieties Cultivated in Chile. J. Food Compos. Anal. 2013, 31(1), 1–6. DOI: 10.1016/j.jfca.2013.02.003.
  • González-Muñoz, A.; Quesille-Villalobos, A. M.; Fuentealba, C.; Shetty, K.; Gálvez Ranilla, L. Potential of Chilean Native Corn (Zea Mays L.) Accessions as Natural Sources of Phenolic Antioxidants and in Vitro Bioactivity for Hyperglycemia and Hypertension Management. J. Agric. Food Chem. 2013, 61(46), 10995–11007. DOI: 10.1021/jf403237p.
  • Vega-Gálvez, A.; Zura, L.; Lutz, M.; Jagus, R.; Agüero, M. V.; Pastén, A.; Di Scala, K.; Uribe, E. Assessment of Dietary Fiber, Isoflavones and Phenolic Compounds with Antioxidant and Antimicrobial Properties of Quinoa (Chenopodium Quinoa Willd.). Chil. J. Agric. Anim. Sci. 2018, 34(1). DOI: 10.4067/S0719-38902018005000101.
  • Fischer, S.; Wilckens, R.; Jara, J.; Aranda, M. Variation in Antioxidant Capacity of Quinoa (Chenopodium Quinoa Will) Subjected to Drought Stress. Ind. Crops. Prod. 2013, 46, 341–349. DOI: 10.1016/j.indcrop.2013.01.037.
  • Henríquez, C.; Almonacid, S.; Chiffelle, I.; Valenzuela, T.; Araya, M.; Cabezas, L.; Simpson, R.; Speisky, H. Determinación de la capacidad antioxidante, contenido de fenoles totales y composición mineral de diferentes tejidos de frutos de cinco variedades de manzana cultivadas en Chile. Chil. J. Agric. Res. 2010, 70(4), 523–536. DOI: 10.4067/S0718-58392010000400001.
  • Quitral, V.; Sepulveda, M.; Schwartz, M. Antioxidant Capacity and Total Polyphenol Content in Different Apple Varieties Cultivated in Chile. Rev. Iber. Tecnología Postcosecha. 2013, 14(1), 31–39.
  • Sepúlveda, M.; Quitral, V.; Schwartz, M.; Vio, F.; Zacarías, I.; Werther, K. Propiedades saludables y calidad sensorial de snack de manzanas destinadas a alimentacion escolar. Arch. Latinoam. Nutr. 2011, 61(4), 423–428.
  • Sanz-Pintos, N.; Pérez-Jiménez, J.; Buschmann, A. H.; Vergara-Salinas, J. R.; Pérez-Correa, J. R.; Saura-Calixto, F. Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds. J. Food Sci. 2017, 82(2), 289–295. DOI: 10.1111/1750-3841.13592.
  • Pacheco, L. V.; Parada, J.; Pérez-Correa, J. R.; Mariotti-Celis, M. S.; Erpel, F.; Zambrano, A.; Palacios, M. Bioactive Polyphenols from Southern Chile Seaweed as Inhibitors of Enzymes for Starch Digestion. Mar. Drugs. 2020, 18(7), 1–12. DOI: 10.3390/md18070353.
  • Schmeda-Hirschmann, G.; Quispe, C.; González, B. Phenolic Profiling of the South American “Baylahuen” Tea (Haplopappus Spp., Asteraceae) by HPLC-DAD-ESI-MS. Molecules. 2015, 20(1), 913–928. DOI: 10.3390/molecules20010913.
  • Quispe, C.; Viveros-Valdez, E.; Phenolic, S.-H. G. Constituents of the Chilean Herbal Tea Fabiana Imbricata R. Et P. Plant Foods Hum. Nutr. 2012, 67(3), 242–246. DOI: 10.1007/s11130-012-0302-4.
  • Soto, C.; Caballero, E.; Pérez, E.; Zúñiga, M. E. Effect of Extraction Conditions on Total Phenolic Content and Antioxidant Capacity of Pretreated Wild Peumus Boldus Leaves from Chile. Food Bioprod. Process. 2014, 92(3), 328–333. DOI: 10.1016/j.fbp.2013.06.002.
  • Simirgiotis, M. J.; Caligari, P. D. S.; Schmeda-Hirschmann, G. Identification of Phenolic Compounds from the Fruits of the Mountain Papaya Vasconcellea Pubescens A. DC. Grown in Chile by Liquid chromatography-UV Detection-mass Spectrometry. Food Chem. 2009, 115(2), 775–784. DOI: 10.1016/j.foodchem.2008.12.071.
  • Masson, L.; Salvatierra, M. A.; Robert, P. C.; Encina, C.; Camilo, C. Chemical and Nutritional Composition of Copao Fruit (Eulychnia Acida Phil.) Under Three Environmental Conditions in the Coquimbo Region. Chil. J. Agric. Res. 2011, 71(4), 521–529. DOI: 10.4067/S0718-58392011000400004.
  • Jiménez-Aspee, F.; Quispe, C.; Soriano, M. D. P. C.; Fuentes Gonzalez, J.; Hüneke, E.; Theoduloz, C.; Schmeda-Hirschmann, G. Schmeda-Hirschmann. Antioxidant Activity and Characterization of Constituents in Copao Fruits (Eulychnia Acida Phil., Cactaceae) by HPLC-DAD-MS/MSn. Food Res. Int. 2014, 62, 286–298. DOI: 10.1016/j.foodres.2014.03.013.
  • Schmeda-Hirschmann, G.; Quispe, C.; Soriano, M. D. P. C.; Theoduloz, C.; Jiménez-Aspee, F.; Pérez, M. J.; Cuello, A. S.; Isla, M. I. Chilean Prosopis Mesocarp Flour: Phenolic Profiling and Antioxidant Activity. Molecules. 2015, 20(4), 7017–7033. DOI: 10.3390/molecules20047017.
  • Ahumada, J.; Fuentealba, C.; Olaeta, J. A.; Undurraga, P.; Pedreschi, R.; Shetty, K.; Chirinos, R.; Campos, D.; Gálvez Ranilla, L. Compuestos bioactivos de níspero (Eriobotrya japonica lindl.) cv. golden nugget y análisis de su funcionalidad in vitro para el manejo de la hiperglicemia. Cienc. E Inv. Agrar. 2017, 44(3), 272–284. DOI: 10.7764/rcia.v44i3.1816.
  • Villagra, E.; Campos-Hernandez, C.; Cáceres, P.; Cabrera, G.; Bernardo, Y.; Arencibia, A.; Carrasco, B.; Caligari, P. D. S.; Pico, J.; García-Gonzalez, R. Morphometric and Phytochemical Characterization of Chaura Fruits (Gaultheria Pumila): A Native Chilean Berry with Commercial Potential. Biol. Res. 2014, 47(1), 1–8. DOI: 10.1186/0717-6287-47-26.
  • Zamorano, P.; Morales, M.; Rojano, B. A.; Proximal, C. Q. Capacidad Antioxidante y Actividad Antifúngica de Peciolo de Nalca (Gunnera tinctoria). Inf. Tecnol. 2018, 29(2), 185–194. DOI: 10.4067/S0718-07642018000200185.
  • Sánchez, E.; Piovano, M.; Valdés, E.; Young, M. E.; Acevedo, C. A.; Osorio, M. Determination of Antioxidant Properties of 26 Chilean Honeys and a Mathematical Association Study with Their Volatile Profile. Nat. Prod. Commun. 2012, 7(7), 951–954.
  • Cheel, J.; Theoduloz, C.; Rodríguez, J.; Saud, G.; Caligari, P. D. S.; Schmeda-Hirschmann, G. E-cinnamic Acid Derivatives and Phenolics from Chilean Strawberry Fruits, Fragaria Chiloensis Ssp. Chiloensis. J. Agric. Food Chem. 2005, 53(22), 8512–8518. DOI: 10.1021/jf051294g.
  • Cheel, J.; Theoduloz, C.; Rodríguez, J. A.; Caligari, P. D. S.; Schmeda-Hirschmann, G. Free Radical Scavenging Activity and Phenolic Content in Achenes and Thalamus from Fragaria Chiloensis Ssp. Chiloensis, F. Vesca and F. X Ananassa Cv. Chandler. Food Chem. 2007, 102(1), 36–44. DOI: 10.1016/j.foodchem.2006.04.036.
  • Simirgiotis, M. J.; Theoduloz, C.; Caligari, P. D. S.; Schmeda-Hirschmann, G. Comparison of Phenolic Composition and Antioxidant Properties of Two Native Chilean and One Domestic Strawberry Genotypes. Food Chem. 2009, 113(2), 377–385. DOI: 10.1016/j.foodchem.2008.07.043.
  • Ruiz, A.; Bustamante, L.; Vergara, C.; Von Baer, D.; Hermosín-Gutiérrez, I.; Obando, L.; Mardones, C. Hydroxycinnamic Acids and Flavonols in Native Edible Berries of South Patagonia. Food Chem. 2015, 167, 84–90. DOI: 10.1016/j.foodchem.2014.06.052.
  • Bañados, M. P.; Hojas, C.; Patillo, C.; Gonzalez, J. Geographical Distribution of Native Ribes Species Present in the Herbarium of Chile. Acta Hortic. 2002, 585, 103–106. DOI: 10.17660/ActaHortic.2002.585.13.
  • Gironés-Vilaplana, A.; Baenas, N.; Villaño, D.; Moreno, D.; García-Viguera, C.; Moreno, D. A. Evaluation of Latin-American Fruits Rich in Phytochemicals with Biological Effects. J. Funct. Foods. 2014, 7, 599–608. DOI: 10.1016/j.jff.2013.12.025.
  • Rojo, L. E.; Ribnicky, D.; Logendra, S.; Poulev, A. :.; Rojas-Silva, P.; Kuhn, P.; Dorn, R.; Grace, M. H.; Lila, M. A.; Raskin, I. In Vitro and in Vivo Anti-diabetic Effects of Anthocyanins from Maqui Berry (Aristotelia Chilensis). Food Chem. 2012, 131(2), 387–396. DOI: 10.1016/j.foodchem.2011.08.066.
  • Ruiz, A.; Pastene, E.; Vergara, C.; Von Baer, D.; Avello, M.; Mardones, C. Hydroxycinnamic Acid Derivatives and Flavonol Profiles of Maqui (Aristotelia Chilensis) Fruits. J. Chil. Chem. Soc. 2016, 61(1), 2792–2796. DOI: 10.4067/S0717-97072016000100010.
  • Céspedes, C. L.; Valdez-Morales, M.; Avila, J. G.; El-Hafidi, M.; Alarcón, J.; Paredes-López, O. Phytochemical Profile and the Antioxidant Activity of Chilean Wild Black-berry Fruits, Aristotelia Chilensis (Mol) Stuntz (Elaeocarpaceae). Food Chem. 2010, 119(3), 886–895. DOI: 10.1016/j.foodchem.2009.07.045.
  • Rubilar, M.; Pinelo, M.; Ihl, M.; Scheuermann, E.; Sineiro, J.; Nuñez, M. J. Murta Leaves (Ugni Molinae Turcz) as a Source of Antioxidant Polyphenols. J. Agric. Food Chem. 2006, 54(1), 59–64. DOI: 10.1021/jf051571j.
  • López, J.; Vega-Gálvez, A.; Rodríguez, A.; Uribe, E.; Bilbao-Sainz, C. Murta (Ugni Molinae Turcz.): A Review on Chemical Composition, Functional Components and Biological Activities of Leaves and Fruits. Chil. J. Agric. Anim. Sci. 2018, 34(1), 43–46. DOI: 10.4067/S0719-38902018005000205.
  • Schnettler, B.; Miranda, H.; Sepúlveda, J.; Denegri, M.; Mora, M.; Lobos, G. Preferences for Berries among Consumers in Southern Chile: Blueberries are Produced but are They Consumed? J. Food Sci. 2011, 76(7), 458–464. DOI: 10.1111/j.1750-3841.2011.02334.x.
  • FAO. AgricultureNews from Latin America and the Caribbean: Chilean Blueberry Rocks the International Markets. http://www.fao.org/in-action/agronoticias/detail/en/c/1110832/. (accessed Feb 23, 2021).
  • Kalt, W.; Ryan, D. A. J.; Duy, J. C.; Prior, R. L.; Ehlenfeldt, M. K.; Vander Kloet, S. P. Interspecific Variation in Anthocyanins, Phenolics, and Antioxidant Capacity among Genotypes of Highbush and Lowbush Blueberries (Vaccinium Section Cyanococcus Spp.). J. Agric. Food Chem. 2001, 49(10), 4761–4767. DOI: 10.1021/jf010653e.
  • Kalt, W.; Cassidy, A.; Howard, L. R.; Krikorian, R.; Stull, A. J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11(2), 224–236. DOI: 10.1093/advances/nmz065.
  • Chamorro, M. F.; Reiner, G.; Theoduloz, C.; Ladio, A.; Schmeda-Hirschmann, G.; Gómez-Alonso, S.; Jiménez-Aspee, F. Polyphenol Composition and (Bio)activity of Berberis Species and Wild Strawberry from the Argentinean Patagonia. Molecules. 2019, 24(18), 3331. DOI: 10.3390/molecules24183331.
  • Martínez-Gil, A. M.; Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Pérez-Álvarez, E. P.; Moreno-Simunovic, Y. Characterization of Phenolic Composition in Carignan Noir Grapes (Vitis Vinifera L.) From Six Wine-growing Sites in Maule Valley, Chile. J. Sci. Food Agric. 2017, 98(1), 274–282. DOI: 10.1002/jsfa.8468.
  • Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. Location Effects on Ripening and Grape Phenolic Composition of Eight ‘Carignan’ Vineyards from Maule Valley (Chile). Chil. J. Agric. Res. 2018, 78(1), 139–149. DOI: 10.4067/S0718-58392018000100139.
  • Tonietto, J.; Carbonneau, A. A Multicriteria Climatic Classification System for Grape-growing Regions Worldwide. Agric. For. Meteorol. 2004, 124(1–2), 81–97. DOI: 10.1016/j.agrformet.2003.06.001.
  • Bergqvist, J.; Dokoozlian, N.; Ebisuda, N. Sunlight Exposure and Temperature Effects on Berry Growth and Composition of Cabernet Sauvignon and Grenache in the Central San Joaquin Valley of California. Am. J. Enol. Vitic. 2001, 52(1), 1–7.
  • Pérez-Trujillo, J. P.; Hernández, Z.; López-Bellido, F. J.; Hermosín-Gutiérrez, I. Characteristic Phenolic Composition of Single-cultivar Red Wines of the Canary Islands (Spain). J. Agric. Food Chem. 2011, 59(11), 6150–6164. DOI: 10.1021/jf200881s.
  • Canuti, V.; Frost, S.; Lerno, L. A.; Tanabe, C. J.; Zweigenbaum, J.; Zanoni, B.; Ebeler, S. E. Chemical Characteristics of Sangiovese Wines from California and Italy of 2016 Vintage. J. Agric. Food Chem. 2019, 67(9), 2647–2659. DOI: 10.1021/acs.jafc.8b05674.
  • Vergara, C.; Von Baer, D.; Mardones, C.; Gutiérrez, L.; Hermosín-Gutiérrez, I.; Castillo-Muñoz, N. Flavonol Profiles for Varietal Differentiation between Carmé Nère and Merlot Wines Produced in Chile: HPLC and Chemometric Analysis. J. Chil. Chem. Soc. 2011, 56(4), 827–832. DOI: 10.4067/S0717-97072011000400001.
  • Cáceres-Mella, A.; Peña-Neira, Á.; Parraguez, J.; López-Solís, R.; Laurie, V. F.; Canals, J. M. Effect of Inert Gas and Prefermentative Treatment with Polyvinylpolypyrrolidone on the Phenolic Composition of Chilean Sauvignon Blanc Wines. J. Sci. Food Agric. 2013, 93(8), 1928–1934. DOI: 10.1002/jsfa.5993.
  • Coletta, A.; Berto, S.; Crupi, P.; Cravero, M. C.; Tamborra, P.; Antonacci, D.; Daniele, P. G.; Prenesti, E. Effect of Viticulture Practices on Concentration of Polyphenolic Compounds and Total Antioxidant Capacity of Southern Italy Red Wines. Food Chem. 2014, 152, 467–474. DOI: 10.1016/j.foodchem.2013.11.142.
  • Costamagna, M. S.; Zampini, I. C.; Alberto, M. R.; Cuello, S.; Torres, S.; Pérez, J.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M. I. Polyphenols Rich Fraction from Geoffroea Decorticans Fruits Flour Affects Key Enzymes Involved in Metabolic Syndrome, Oxidative Stress and Inflammatory Process. Food Chem. 2016, 190, 392–402. DOI: 10.1016/j.foodchem.2015.05.068.
  • Reynoso, M. A.; Vera, N.; Aristimuño, M. E.; Daud, A.; Sánchez Riera, A. Antinociceptive Activity of Fruits Extracts and Arrope of Geoffroea Decorticans (Chañar). J. Ethnopharmacol. 2013, 145(1), 355–362. DOI: 10.1016/j.jep.2012.11.022.
  • Yuri, J. A.; Neira, A.; Quilodran, A.; Motomura, Y.; Palomo, I. Antioxidant Activity and Total Phenolics Concentration in Apple Peel and Flesh Is Determined by Cultivar and Agroclimatic Growing Regions in Chile. J. Food, Agric. Environ. 2009, 7(3–4), 513–517.
  • Vázquez-Luna, A.; Fuentes, F.; Rivadeneyra, E.; Hernández, C.; Díaz-Sobac, R. Nutrimental Content and Functional Properties of Quinoa Flour from Chile and Mexico. Cienc. E Investig. Agrar. 2019, 46(2), 144–153. DOI: 10.7764/rcia.v46i2.2099.
  • Lutz, M.; Martínez, A.; Martínez, E. A. Daidzein and Genistein Contents in Seeds of Quinoa (Chenopodium Quinoa Willd.) From Local Ecotypes Grown in Arid Chile. Ind. Crops. Prod. 2013, 49, 117–121. DOI: 10.1016/j.indcrop.2013.04.023.
  • Jiménez-Aspee, F.; Theoduloz, C.; Gómez-Alonso, S.; Hermosín-Gutiérrez, I.; Reyes, M.; Schmeda-Hirschmann, G. Polyphenolic Profile and Antioxidant Activity of Meristem and Leaves from “Chagual” (Puya Chilensis Mol.), A Salad from Central Chile. Food Res. Int. 2018, 114(May), 90–96. DOI: 10.1016/j.foodres.2018.07.051.
  • Schmeda-Hirschmann, G.; Theoduloz, C. Fabiana Imbricata Ruiz Et Pav. (Solanaceae), a Review of an Important Patagonian Medicinal Plant. J. Ethnopharmacol. 2019, 228, 26–39. DOI: 10.1016/j.jep.2018.09.020.
  • Simirgiotis, M. J.; Schmeda-Hirschmann, G. Direct Identification of Phenolic Constituents in Boldo Folium (Peumus Boldus Mol.) Infusions by High-performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A. 2010, 1217(4), 443–449. DOI: 10.1016/j.chroma.2009.11.014.
  • Velásquez, P.; Sandoval, M. I.; Giordano, A.; Gómez, M.; Montenegro, G. Composición nutricional y contenido de polifenols de las frutas comestibles de peumus boldus mol. Cienc. E Inv. Agr. 2017, 44(1), 64–74. DOI: 10.7764/rcia.v44i1.1684.
  • Iturriaga, L.; Nazareno, M. Functional Components and Medicinal Properties of Cactus Products. In Functional Properties of Traditional Foods; Kristbergsson, K., and Ötles, S., Eds.; New York: Integrating Food Science and Engineering Knowledge Into the Food Chain. Springer, Boston, MA., 2016; Vol. 12, pp 251–269. DOI: 10.1007/978-1-4899-7662-8_18.
  • Oyarzún, P.; Cornejo, P.; Gómez-Alonso, S.; Ruiz, A. Influence of Profiles and Concentrations of Phenolic Compounds in the Coloration and Antioxidant Properties of Gaultheria Poeppigii Fruits from Southern Chile. Plant Foods Hum. Nutr. 2020Aug11, 75, 532–539. DOI: 10.1007/s11130-020-00843-x.
  • Coklar, H. Antioxidant Capacity and Phenolic Profile of Berry, Seed, and Skin of Ekşikara (Vitis Vinifera L) Grape: Influence of Harvest Year and Altitude. Int. J. Food Prop. 2017, 20(9), 2071–2087. DOI: 10.1080/10942912.2016.1230870.
  • González, B.; Vogel, H.; Razmilic, I.; Wolfram, E. Polyphenol, Anthocyanin and Antioxidant Content in Different Parts of Maqui Fruits (Aristotelia Chilensis) during Ripening and Conservation Treatments after Harvest. Ind, Crops Prod. 2015, 76, 158–165. DOI: 10.1016/j.indcrop.2015.06.038.
  • Barceló, F.; Perona, J. S.; Prades, J.; Funari, S. S.; Gómez-Gracia, E.; Conde, M.; Estruch, R.; Ruiz-Gutiérrez, V. Mediterranean-style Diet Effect on the Structural Properties of the Erythrocyte Cell Membrane of Hypertensive Patients: The Prevencion Con Dieta Mediterranea Study. Hypertension. 2009, 54(5), 1143–1150. DOI: 10.1161/HYPERTENSIONAHA.109.137471.
  • Ruiz, A.; Sanhueza, M.; Gómez, F.; Tereucán, G.; Valenzuela, T.; García, S.; Cornejo, P.; Hermosín-Gutiérrez, I. Changes in the Content of Anthocyanins, Flavonols, and Antioxidant Activity in Fragaria Ananassa Var. Camarosa Fruits under Traditional and Organic Fertilization. J. Sci. Food Agric. 2019, 99(5), 2404–2410. DOI: 10.1002/jsfa.9447.
  • Schreckinger, M. E.; Lotton, J.; Lila, M. A.; Gonzalez de Mejia, E. Berries from South America: A Comprehensive Review on Chemistry, Health Potential, and Commercialization. J. Med. Food. 2010, 13(2), 233–246. DOI: 10.1089/jmf.2009.0233.
  • Thomas-Valdés, S.; Theoduloz, C.; Jiménez-Aspee, F.; Burgos-Edwards, A.; Schmeda-Hirschmann, G. Changes in Polyphenol Composition and Bioactivity of the Native Chilean White Strawberry (Fragaria Chiloensis Spp. Chiloensis F. Chiloensis) after in Vitro Gastrointestinal Digestion. Food Res. Int. 2018, 105, 10–18. DOI: 10.1016/j.foodres.2017.10.074.
  • Molinett, S.; Nuñez, F.; Moya-León, M. A.; Chilean Strawberry, Z.-H. J. Consumption Protects against LPS-Induced Liver Injury by Anti-Inflammatory and Antioxidant Capability in Sprague-Dawley Rats. Evid. Based Complement. Alternat. Med. 2015, 2015, 320136. DOI: 10.1155/2015/320136.
  • Burgos-Edwards, A.; Jiménez-Aspee, F.; Theoduloz, C.; Schmeda-Hirschmann, G. Colonic Fermentation of Polyphenols from Chilean Currants (Ribes Spp.) And Its Effect on Antioxidant Capacity and Metabolic Syndrome-associated Enzymes. Food Chem. 2018, 258, 144–155. DOI: 10.1016/j.foodchem.2018.03.053.
  • Miranda-Rottmann, S.; Aspillaga, A. A.; Pérez, D. D.; Vasquez, L.; Martinez, A. L. F.; Leighton, F. Juice and Phenolic Fractions of the Berry Aristotelia Chilensis Inhibit LDL Oxidation in Vitro and Protect Human Endothelial Cells against Oxidative Stress. J. Agric. Food Chem. 2002, 50(26), 7542–7547. DOI: 10.1021/jf025797n.
  • Schreckinger, M. E.; Wang, J.; Yousef, G.; Lila, M. A.; Gonzalez de mejia, E. Antioxidant Capacity and in Vitro Inhibition of Adipogenesis and Inflammation by Phenolic Extracts of Vaccinium Floribundum and Aristotelia Chilensis. Journal of Agricultural and Food Chemistry. 2010, 58(16), 8966–8976. Epub 2010 Jul 27. DOI: 10.1021/jf100975m.
  • Zhou, G.; Chen, L.; Sun, Q.; Mo, Q. G.; Sun, W. C.; Wang, Y. W. Maqui Berry Exhibited Therapeutic Effects against DSS-induced Ulcerative Colitis in C57BL/6 Mice. Food Funct. 2019, 10(10), 6655–6665. DOI: 10.1039/c9fo00663j.
  • Reyes-Farias, M.; Vasquez, K.; Fuentes, F.; Parra, C.; Quitral, V.; Jimenez, P.; Garcia-Diaz, D. F.; Quitral, V.; Jimenez, P.; Garcia, L. Extracts of Chilean Native Fruits Inhibit Oxidative Stress, Inflammation and Insulin-resistance Linked to the Pathogenic Interaction between Adipocytes and Macrophages. J. Funct. Foods. 2016, 27, 69–83. DOI: 10.1016/j.jff.2016.08.052.
  • Céspedes-Acuña, C. L.; Xiao, J.; Wei, Z. J.; Wei, Z. J.; Chen, L.; Bastias, J. M.; Avila, J. G.; Alarcón-Enos, J.; Werner-Navarrete, E.; Werner-Navarrete, E., et al. Antioxidant and Anti-inflammatory Effects of Extracts from Maqui Berry Aristotelia Chilensis in Human Colon Cancer Cells. J. Berry Res. 2018, 8(4), 275–296. DOI: 10.3233/JBR-180356.
  • Sandoval, V.; Femenias, A.; Martínez-Garza, Ú.; Sanz-Lamora, H.; Castagnini, J. M.; Quifer-Rada, P.; Lamuela-Raventós, R. M.; Marrero, P. F.; Haro, D.; Relat, J. Lyophilized Maqui (Aristotelia Chilensis) Berry Induces Browning in the Subcutaneous White Adipose Tissue and Ameliorates the Insulin Resistance in High Fat Diet-induced Obese Mice. Antioxidants. 2019, 8(9), 360. DOI: 10.3390/antiox8090360.
  • Chen, L.; Zhou, G.; Meng, X.-S.; Fu, H.-Y.; Mo, Q.-G.; Wang, Y.-W. Photoprotection of Maqui Berry against Ultraviolet B-induced Photodamage: In Vitro and in Vivo. Food & Funct. 2020, 11(3), 2749–2762. DOI: 10.1039/c9fo01902b.
  • Fuentealba, J.; Dibarrart, A.; Saez-Orellana, F.; Fuentes-Fuentes, M. C.; Oyanedel, C. N.; Guzmán, J.; Perez, C.; Becerra, J.; Aguayo, L. G. Synaptic Silencing and Plasma Membrane Dyshomeostasis Induced by amyloid-β Peptide are Prevented by Aristotelia Chilensis Enriched Extract. J. Alzheimer’s Dis. 2012, 31(4), 879–889. DOI: 10.3233/JAD-2012-120229.
  • Céspedes, C. L.; El-Hafidi, M.; Pavon, N.; Alarcon, J. Antioxidant and Cardioprotective Activities of Phenolic Extracts from Fruits of Chilean Blackberry Aristotelia Chilensis (Elaeocarpaceae), Maqui. Food Chem. 2008, 107(2), 820–829. DOI: 10.1016/j.foodchem.2007.08.092.
  • Alvarado, J. L.; Leschot, A.; Olivera-Nappa, Á.; Salgado, A.-M.; Rioseco, H.; Lyon, C.; Vigil, P. Delphinidin-Rich Maqui Berry Extract (Delphinol®) Lowers Fasting and Postprandial Glycemia and Insulinemia in Prediabetic Individuals during Oral Glucose Tolerance Tests. Biomed. Res. Int. 2016, 2016, 9070537. DOI: 10.1155/2016/9070537.
  • Hidalgo, J.; Flores, C.; Hidalgo, M. A.; Perez, M.; Yañez, A.; Quiñones, L.; Caceres, D. D.; Burgos, R. A. Delphinol® Standardized Maqui Berry Extract Reduces Postprandial Blood Glucose Increase in Individuals with Impaired Glucose Regulation by Novel Mechanism of Sodium Glucose Cotransporter Inhibition. Panminerva Med. 2014, 56(2 Suppl 3), 1–7.
  • Jofré, I.; Pezoa, C.; Cuevas, M.; Scheuermann, E.; Almeida Freires, I.; Rosalen, P. L.; de Alencar, S. M.; Romero, F. Antioxidant and Vasodilator Activity of Ugni Molinae Turcz. (Murtilla) and Its Modulatory Mechanism in Hypotensive Response. Oxid. Med Cell Longev. 2016, 2016, 6513416. DOI: 10.1155/2016/6513416.
  • Shene, C.; Canquil, N.; Jorquera, M.; Pinelo, M.; Rubilar, M.; Acevedo, F.; Vergara, C.; Von Baer, D.; Mardones, C. In Vitro Activity on Human Gut Bacteria of Murta Leaf Extracts (Ugni Molinae Turcz.), A Native Plant from Southern Chile. J. Food. Scie. 2012, 77(6), M323–9. DOI: 10.1111/j.1750-3841.2012.02692.x.
  • Shene, C.; Reyes, A. K.; Villarroel, M.; Sineiro, J.; Pinelo, M.; Rubilar, M. Plant Location and Extraction Procedure Strongly Alter the Antimicrobial Activity of Murta Extracts. Eur. Food Res. Technol. 2009, 228(3), 467–475. DOI: 10.1007/s00217-008-0954-3.
  • Avello, M.; Valdivia, R.; Mondaca, M. A.; Ordoñez, J. L.; Bittner, M.; Becerra, J. Actividad de Ugni molinae Turcz. Frente a microorganismos de importancia clínica. Bol. Latinoam. Caribe Plant. Med. Aromat. 2009, 8(2), 141–144.
  • Suwalsky, M.; Orellana, P.; Avello, M.; Villena, F. Protective Effect of Ugni Molinae Turcz against Oxidative Damage of Human Erythrocytes. Food Chem. Toxicol. 2007, 45(1), 130–135. DOI: 10.1016/j.fct.2006.08.010.
  • Soto-Covasich, J.; Reyes-Farias, M.; Torres, R. F.; Vásquez, K.; Duarte, L.; Quezada, J.; Jimenez, P.; Pino, M. T.; Garcia-Nanning, L.; Mercado, L., et al. A Polyphenol-rich Calafate (Berberis Microphylla) Extract Rescues Glucose Tolerance in Mice Fed with Cafeteria Diet. J. Funct. Foods 2020, 67, 103856. DOI: 10.1016/j.jff.2020.103856.
  • Calderón-Reyes, C.; Pezoa, R. S.; Leal, P.; Ribera-Fonseca, A.; Caceres, C.; Riquelme, I.; Zambrano, T.; Peña, D.; Alberdi, M.; Reyes-Díaz, M. Anthocyanin-Rich Extracts of Calafate (Berberis Microphylla G. Forst.) Fruits Decrease in Vitro Viability and Migration of Human Gastric and Gallbladder Cancer Cell Lines. J. Soil Sci. Plant Nutr. 2020May19, 20(4), 1891–1903. DOI: 10.1007/s42729-020-00260-8.
  • Duarte, L.; Ramirez, L.; Quezada, J.; Poblete, C.; Concha, F.; Rivas, F.; Lagos, G.; Vasquez, K.; Espinoza, K.; Garcia-Diaz, D. F. A Berberis Microphylla Extract Prevents Obesity, Modulates Inflammation and Promotes Thermogenesis in Mice Fed on A High Fat Diet (P06–055–19). Curr. Dev. Nutr. 2019, 3, P06–055–19. DOI: 10.1093/cdn/nzz031.P06-055-19.
  • Calfío, C.; Huidobro-Toro, J. P. Potent Vasodilator and Cellular Antioxidant Activity of Endemic Patagonian Calafate Berries (Berberis Microphylla) with Nutraceutical Potential. Molecules. 2019, 24, 15. DOI: 10.3390/molecules24152700.
  • Ovalle-Marin, A.; Reyes-Farias, M.; Vasquez, K.; Parra-Ruiz, C.; Quitral, V.; Jimenez, P.; Garcia, L.; Ramirez, L. A.; Quezada, J.; Gonzalez-Muniesa, P., et al. Maqui, Calafate, and Blueberry Fruits Extracts Treatments Suppress the Pathogenic Interaction Amongst Human Adipocytes and Macrophages. J. Berry Res. 2020, 10, 531–545. DOI: 10.3233/JBR-200576.
  • Ávila, F.; Theoduloz, C.; López-Alarcón, C.; Dorta, E.; Cytoprotective Mechanisms, S.-H. G. Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells. Oxid. Med. Cell Longev. 2017, 2017, 9808520. DOI: 10.1155/2017/9808520.
  • Urquiaga, I.; Ávila, F.; Echeverria, G.; Perez, D.; Trejo, S.; Leighton, F. A Chilean Berry Concentrate Protects against Postprandial Oxidative Stress and Increases Plasma Antioxidant Activity in Healthy Humans. Oxid. Med. Cell Longev. 2017, 2017, 8361493. DOI: 10.1155/2017/8361493.
  • Urquiaga, I.; D’Acuña, S.; Pérez, D.; Dicenta, S.; Echeverría, G.; Rigotti, A.; Leighton, F. Wine Grape Pomace Flour Improves Blood Pressure, Fasting Glucose and Protein Damage in Humans: A Randomized Controlled Trial. Biol. Res. 2015, 48(1), 49. DOI: 10.1186/s40659-015-0040-9.
  • Cires, M. J.; Navarrete, P.; Pastene, E.; Carrasco-Pozo, C.; Valenzuela, R.; Medina, D. A.; Andriamihaja, M.; Beaumont, M.; Blachier, F.; Gotteland, M. Protective Effect of an Avocado Peel Polyphenolic Extract Rich in Proanthocyanidins on the Alterations of Colonic Homeostasis Induced by a High-Protein Diet. J. Agric. Food Chem. 2019, 67(42), 11616–11626. DOI: 10.1021/acs.jafc.9b03905.
  • Ovalle-Marin, A.; Parra-Ruiz, C.; Rivas, F.; Orellana, J. F.; Garcia-Diaz, D. F.; Jimenez, P. Characterization of Persea Americana Mill. Peels and Leaves Extracts and Analysis of Its Potential in Vitro Anti-inflammatory Properties. Bol. Latinoam. Caribe Plant. Med. Aromat. 2020, 19(4), 395–407. DOI: 10.37360/blacpma.20.19.4.27.
  • Wong, X.; Carrasco-Pozo, C.; Escobar, E.; Navarrete, P.; Blaicher, F.; Andriamihaja, M.; Lan, A.; Tomé, D.; Cires, M. J.; Pastene, E., et al. Deleterious Effect of p-Cresol on Human Colonic Epithelial Cells Prevented by Proanthocyanidin-Containing Polyphenol Extracts from Fruits and Proanthocyanidin Bacterial Metabolites. J. Agric. Food Chem. 2016, 64(18), 3574–3583. DOI: 10.1021/acs.jafc.6b00656.
  • Schmeda-Hirschmann, G.; Rodriguez, J. A.; Theoduloz, C.; Astudillo, S. L.; Feresin, G. E.; Tapia, A. Free-radical Scavengers and Antioxidants from Peumus Boldus Mol. (“boldo”). Free Radic. Res. 2003, 37(4), 447–452. DOI: 10.1080/1071576031000090000.
  • Fernández, J.; Lagos, P.; Rivera, P.; Zamorano-Ponce, E. Effect of Boldo (Peumus Boldus Molina) Infusion on Lipoperoxidation Induced by Cisplatin in Mice Liver. Phyther. Res. 2009, 23, 1024–1027. DOI: 10.1002/ptr.2746.
  • Pastene, E.; Parada, V.; Avello, M.; Ruiz, A.; Catechin-based, G. A. Procyanidins from Peumus Boldus Mol. Aqueous Extract Inhibit Helicobacter Pylori Urease and Adherence to Adenocarcinoma Gastric Cells. Phyther. Res. 2014, 28(11), 1637–1645. DOI: 10.1002/ptr.5176.
  • Cespedes, C. L.; Pavon, N.; Dominguez, M.; Alarcon, J.; Balbontin, C.; Kubo, I.; El-Hafidi, M.; Avila, J. G. The Chilean Superfruit Black-berry Aristotelia Chilensis (Elaeocarpaceae), Maqui as Mediator in Inflammation-associated Disorders. Food Chem. Toxicol. 2017, 108, 438–450. DOI: 10.1016/j.fct.2016.12.036.
  • Bribiesca-Cruz, I.; Moreno, D. A.; García-Viguera, C.; Gallardo, J. M.; Segura-Uribe, J. J.; Pinto-Almazán, R.; Guerra-Araiza, C. Maqui Berry (Aristotelia Chilensis) Extract Improves Memory and Decreases Oxidative Stress in Male Rat Brain Exposed to Ozone. Nutr. Neurosci. 2019, 1–13. DOI: 10.1080/1028415X.2019.1645438.
  • Lucas-Gonzalez, R.; Navarro-Coves, S.; Pérez-Álvarez, J. A.; Fernández-López, J.; Muñoz, L. A.; Viuda-Martos, M. Assessment of Polyphenolic Profile Stability and Changes in the Antioxidant Potential of Maqui Berry (Aristotelia Chilensis (Molina) Stuntz) during in Vitro Gastrointestinal Digestion. Ind. Crops Prod. 2016, 94, 774–782. DOI: 10.1016/j.indcrop.2016.09.057.
  • Hollman, P. C. H.; Cassidy, A.; Comte, B.; Heinonen, M.; Richelle, M.; Richling, E.; Serafini, M.; Scalbert, A.; Sies, H.; Vidry, S. The Biological Relevance of Direct Antioxidant Effects of Polyphenols for Cardiovascular Health in Humans Is Not Established. J. Nutr. 2011, 141(5), 989–1009. DOI: 10.3945/jn.110.131490.
  • Romero-González, J.; Shun Ah-Hen, K.; Lemus-Mondaca, R.; Muñoz-Fariña, O. Total Phenolics, Anthocyanin Profile and Antioxidant Activity of Maqui, Aristotelia Chilensis (Mol.) Stuntz, Berries Extract in Freeze-dried Polysaccharides Microcapsules. Food. Chem. 2020, 313, 126115. DOI: 10.1016/j.foodchem.2019.126115.
  • Fredes, C.; Becerra, C.; Parada, J.; Robert, P. The Microencapsulation of Maqui (Aristotelia Chilensis (Mol.) Stuntz) Juice by Spray-drying and Freeze-drying Produces Powders with Similar Anthocyanin Stability and Bioaccessibility. Molecules. 2018, 23(5), 1227. DOI: 10.3390/molecules23051227.
  • Ah-Hen, K. S.; Mathias-Rettig, K.; Gómez-Pérez, L. S.; Riquelme-Asenjo, G.; Lemus-Mondaca, R.; Muñoz-Fariña, O. Bioaccessibility of Bioactive Compounds and Antioxidant Activity in Murta (Ugni Molinae T.) Berries Juices. J. Food Meas. Charact. 2018, 12(1), 602–615. DOI: 10.1007/s11694-017-9673-4.
  • Turcz, U.; Lam, B.; Fredes, C.; Parada, A. Phytochemicals and Traditional Use of Two Southernmost Chilean Berry Fruits: Murta (Ugni Molinae Turcz) and Calafate (Berberis Buxifolia Lam.). Foods. 2020, 9(1), 54. DOI: 10.3390/foods9010054.
  • Echeverría, G.; Tiboni, O.; Berkowitz, L.; Pinto, V.; Samith, B.; Von Schultzendorff, A.; Pedrals, N.; Bitran, M.; Ruini, C.; Ryff, C. D., et al. Mediterranean Lifestyle to Promote Physical, Mental, and Environmental Health: The Case of Chile. Int. J. Environ Res. Public Health. 2020, 17(22), 1–17. DOI: 10.3390/ijerph17228482.
  • Fiore, M.; Messina, M. P.; Petrella, C.; D’Angelo, A.; Greco, A.; Ralli, M.; Ferraguti, G.; Tarani, L.; Vitali, M.; Ceccanti, M. Antioxidant Properties of Plant Polyphenols in the Counteraction of Alcohol-abuse Induced Damage: Impact on the Mediterranean Diet. J. Funct. Foods. 2020, 71, (May):104012. DOI: 10.1016/j.jff.2020.104012.
  • Coelho, M. C.; Pereira, R. N.; Rodrigues, A. S.; Teixeira, J. A.; Pintado, M. E. The Use of Emergent Technologies to Extract Added Value Compounds from Grape By-products. Trends Food Sci. Technol. 2020, 106(Sep), 182–197. DOI: 10.1016/j.tifs.2020.09.028.
  • de La Cerda-carrasco, A.; López-Solís, R.; Nuñez-Kalasic, H.; Peña-Neira, Á.; Obreque-Slier, E. Phenolic Composition and Antioxidant Capacity of Pomaces from Four Grape Varieties (Vitis Vinifera L.). J. Sci. Food Agric. 2015, 95(7), 1521–1527. DOI: 10.1002/jsfa.6856.
  • Zambrano, A.; Molt, M.; Uribe, E.; Salas, M. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as a Potential Therapeutic Strategy. Int. J. Mol. Sci. 2019, 20(13), 1–20. DOI: 10.3390/ijms20133374.
  • Andriamihaja, M.; Lan, A.; Beaumont, M.; Grauso, M.; Gotteland, M.; Pastene, E.; Cires, M. J.; Carrasco-Pozo, C.; Tomé, D.; Blachier, F. Proanthocyanidin-containing Polyphenol Extracts from Fruits Prevent the Inhibitory Effect of Hydrogen Sulfide on Human Colonocyte Oxygen Consumption. Amino Acids. 2018, 50(6), 755–763. DOI: 10.1007/s00726-018-2558-y.
  • Ministerio de Salud, Gobierno de Chile. Medicamentos Herbarios Tradicionales, 2009. https://www.minsal.cl/wp-content/uploads/2018/02/Libro-MHT-2010.pdf. (accessed Feb 23, 2020).
  • Fredes, C.; Montenegro, G. Chilean Plants as a Source of Polyphenols. In Natural Antioxidants and Biocides from Wild Med Plants; Céspedes, C., Sampietro, D., Seigler, D., Rai, M., Eds.; CAB Int Wallingford: UK, 2013; pp 116–136. DOI: 10.1079/9781780642338.0116.
  • Parra, C.; Soto, E.; León, G.; Salas, C. O.; Heinrich, M.; Echiburú-Chau, C. Nutritional Composition, Antioxidant Activity and Isolation of Scopoletin from Senecio Nutans Support of Ancestral and New Uses. Nat. Prod. Res. 2020, 32(6), 719–722. DOI: 10.3390/md18070353.
  • Speisky, H.; Rocco, C.; Carrasco, C.; Lissi, E. A.; López-Alarcón, C. Antioxidant Screening of Medicinal Herbal Teas. Phyther. Res. 2006, 20(6), 462–467. DOI: 10.1002/ptr.1878.
  • Echiburu-Chau, C.; Pastén, L.; Parra, C.; Bórquez, J.; Mocan, A.; Simirgiotis, M. J. High Resolution UHPLC-MS Characterization and Isolation of Main Compounds from the Antioxidant Medicinal Plant Parastrephia Lucida (Meyen). Saudi Pharm. J. 2017, 25(7), 1032–1039. DOI: 10.1016/j.jsps.2017.03.001.
  • Backhouse, N.; Delporte, C.; Givernau, M.; Cassels, B. K.; Valenzuela, A.; Speisky, H. Anti-inflammatory and Antipyretic Effects of Boldine. Agents Actions. 1994, 42(3–4), 114–117. h ttps://d oi:1 0.1 007/BF01983475.
  • O’Brien, P.; Carrasco-Pozo, C.; Speisky, H. Boldine and Its Antioxidant or Health-promoting Properties. Chem. Biol. Interact. 2006, 159(1), 1–17. DOI: 10.1016/j.cbi.2005.09.002.
  • Speisky, H.; Cassels, B. K. Boldo and Boldine: An Emerging Case of Natural Drug Development. Pharmacol. Res. 1994, 29(1), 1–12. DOI: 10.1016/1043-6618(94)80093-6.
  • Gómez, G. I.; Velarde, V. Boldine Improves Kidney Damage in the Goldblatt 2K1C Model Avoiding the Increase in TGF-β. Int. J. Mol. Sci. 2018, 19, 7. DOI: 10.3390/ijms19071864.
  • Hernández-Salinas, R.; Vielma, A. Z.; Arismendi, M. N.; Boric, M. P.; Sáez, J. C.; Velarde, V. Boldine Prevents Renal Alterations in Diabetic Rats. J. Diabetes Res. 2013, 2013, 593672. DOI: 10.1155/2013/593672.
  • Zamora-Ros, R. Polyphenol Epidemiology: Looking Back and Moving Forward. Am. J. Clin. Nutr. 2016, 104(3), 549–550. DOI: 10.3945/ajcn.116.141465.
  • Scalbert, A.; Zamora-Ros, R. Bridging Evidence from Observational and Intervention Studies to Identify Flavonoids Most Protective for Human Health. Am. J. Clin. Nutr. 2015, 101(5), 897–898. DOI: 10.3945/ajcn.115.110205.
  • Miranda, A. M.; Steluti, J.; Fisberg, R. M.; Marchioni, D. M. Dietary Intake and Food Contributors of Polyphenols in Adults and Elderly Adults of Sao Paulo: A Population-based Study. Br. J. Nutr. 2016, 115(6), 1637–1645. DOI: 10.1002/ptr.5176.
  • Nascimento-Souza, M. A.; de Paiva, P. G.; Pérez-Jiménez, J.; Do Carmo Castro Franceschini, S.; Ribeiro, A. Q. Estimated Dietary Intake and Major Food Sources of Polyphenols in Elderly of Viçosa, Brazil: A Population-based Study. Eur. J. Nutr. 2018, 57(2), 617–627. DOI: 10.1007/s00394-016-1348-0.
  • Pérez-Jiménez, J.; Fezeu, L.; Touvier, M.; Arnault, N.; Manach, C.; Hercberg, S.; Galan, P.; Scalbert, A. Dietary Intake of 337 Polyphenols in French Adults. Am. J. Clin. Nutr. 2011, 93(6), 1220–1228. DOI: 10.3945/ajcn.110.007096.
  • Grosso, G.; Stepaniak, U.; Topor-Madry, R.; Szafraniec, K.; Pajak, A. Estimated Dietary Intake and Major Food Sources of Polyphenols in the Polish Arm of the HAPIEE Study. Nutrition. 2014, 30(11–12), 1398–1403. DOI: 10.1016/j.nut.2014.04.012.
  • Rossi, M. C.; Bassett, M. N.; Sammán, N. C. Dietary Nutritional Profile and Phenolic Compounds Consumption in School Children of Highlands of Argentine Northwest. Food Chem. 2018, 238, 111–116. DOI: 10.1016/j.foodchem.2016.12.065.
  • Zamora-Ros, R.; Biessy, C.; Rothwell, J. A.; Monge, A.; Lajous, M.; Scalbert, A.; López-Ridaura, R.; Romieu, I. Dietary Polyphenol Intake and Their Major Food Sources in the Mexican Teachers’ Cohort. Br. J. Nutr. 2018, 120(3), 353–360. DOI: 10.1017/S0007114518001381.
  • Lutz, M.; Barraza, R.; Henríquez, C. Phenolic Compounds Content and Antioxidant Capacity of Meals Provided to Elementary Public Schools in Chile during 2011. Arch. Latinoam. Nutr. 2015, 65, 71–78.
  • Martini, D.; Bernardi, S.; Del Bo’, C.; Liberona, N. H.; Zamora-Ros, R.; Tucci, M.; Cherubini, A.; Porrini, M.; Gargari, G.; González-Domínguez, R., et al. Estimated Intakes of Nutrients and Polyphenols in Participants Completing the Maple Randomised Controlled Trial and Its Relevance for the Future Development of Dietary Guidelines for the Older Subjects. Nutrients.2020, 12(8), 1–1. DOI: 10.3390/nu12082458.
  • Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C. G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, Bioactivity and Impact on Health of Dietary Flavonoids and Related Compounds: An Update. Arch. Toxicol. 2014, 88(10), 1803–1853. DOI: 10.1007/s00204-014-1330-7.
  • Neveu, V.; Perez-Jiménez, J.; Vos, F.; Du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; Scalbert, A. Phenol-Explorer: An Online Comprehensive Database on Polyphenol Contents in Foods. Database (Oxford). 2010, 1–9. DOI: 10.1093/database/bap024.
  • Harnly, J. M.; Doherty, R. F.; Beecher, G. R.; Holden, J. M.; Haytowitz, D. B.; Bhagwat, S.; Gebhardt, S. Flavonoid Content of U.S. Fruits, Vegetables, and Nuts. J. Agric. Food Chem. 2006, 54(26), 9966–9977. DOI: 10.1021/jf061478a.
  • Wark, P. A.; Hardie, L. J.; Frost, G. S.; Alwan, N. R.; Carter, M.; Elliot, P.; Ford, H. E.; Hancock, N.; Morris, M. A.; Mulla, U. Z., et al. Validity of an Online 24-h Recall Tool (Myfood24) for Dietary Assessment in Population Studies: Comparison with Biomarkers and Standard Interviews. BMC Med. 2018, 16(1), 1–14. DOI: 10.1186/s12916-018-1113-8.
  • Probst, Y.; Guan, V.; Kent, K. A Systematic Review of Food Composition Tools Used for Determining Dietary Polyphenol Intake in Estimated Intake Studies. Food Chem. 2018, 238, 146–152. DOI: 10.1016/j.foodchem.2016.11.010.
  • Zamora-Ros, R.; Rabassa, M.; Cherubini, A.; Urpí-Sardà, M.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C. High Concentrations of a Urinary Biomarker of Polyphenol Intake are Associated with Decreased Mortality in Older Adults. J. Nutr. 2013, 143(9), 1445–1450. DOI: 10.3945/jn.113.177121.
  • Vermeulen, R.; Schymanski, E. L.; Barabási, A. L.; Miller, G. W. The Exposome and Health: Where Chemistry Meets Biology. Science. 2020, 367(6476), 392–396. DOI: 10.1126/science.aay3164.
  • Palmnäs, M.; Brunius, C.; Shi, L.; Rostgaard-Hansen, A.; Estanyol-Torres, N.; González-Domínguez, R.; Zamora-Ros, R.; Ye, Y. L.; Halkjær, J.; Tjønneland, A., et al. Perspective: Metabotyping—A Potential Personalized Nutrition Strategy for Precision Prevention of Cardiometabolic Disease. Adv. Nutr. 2019, 10, 1–9. DOI: 10.1093/advances/nmz121.
  • Adams, S. H.; Anthony, J. C.; Carvajal, R.; Chae, L.; Khoo, C. S. H.; Latulippe, M. E.; Matusheski, N. V.; McClung, H. L.; Rozga, M.; Schmid, C. H., et al. Perspective: Guiding Principles for the Implementation of Personalized Nutrition Approaches that Benefit Health and Function. Advances in Nutrition (Bethesda, Md.).2020, 11(1), 25–34. DOI: 10.1093/advances/nmz086.
  • Maruvada, P.; Lampe, J. W.; Wishart, D. S.; Barupal, D.; Chester, D. N.; Dodd, D.; Djoumbou-Feunang, Y.; Dorrestein, P. C.; Dragsted, L. O.; Draper, J., et al. Perspective: Dietary Biomarkers of Intake and Exposure-Exploration with Omics Approaches. Adv. Nutr. 2020, 11(2), 200–215. DOI: 10.1093/advances/nmz075.
  • Scalbert, A.; Brennan, L.; Manach, C.; Andres-Lacueva, C.; Dragsted, L. O.; Draper, J.; Rappaport, S. M.; van der Hooft, J. J.; Wishart, D. S. The Food Metabolome: A Window over Dietary Exposure. Am. J. Clin. Nutr. 2014, 99(6), 1286–1308. DOI: 10.3945/ajcn.113.076133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.