486
Views
11
CrossRef citations to date
0
Altmetric
Review

Flos Sophorae Immaturus: Phytochemistry, bioactivities, and its potential applications

, , &

References

  • Chu, Q.; Wu, T.; Fu, L.; Ye, J. Determination and Comparison of Phytoestrogens in Both Crude and Parched Flos Sophorae Immaturus by Capillary Electrophoresis with Electrochemical Detection. Microchim. Acta. 2004, 148(3–4), 311–315. DOI: 10.1007/s00604-004-0280-9.
  • Huang, R.; Zhang, Y.; Zhang, Y.; Zhang, L.; Pei, L.; Shu, G.; Yuan, Z.; Lin, J.; Peng, G.; Zhang, W., et al. Evaluation of the Synergetic Effect of Yupingfeng San and Flos Sophorae Immaturus Based on Free Radical Scavenging Capacity. Biomed. Pharmacother. 2020, 128, 110265. DOI: 10.1016/j.biopha.2020.110265.
  • Zeng, H.; Wang, Y.; Kong, J.; Nie, C.; Yuan, Y. Ionic Liquid-based Microwave-assisted Extraction of Rutin from Chinese Medicinal Plants. Talanta. 2010, 83(2), 582–590. DOI: 10.1016/j.talanta.2010.10.006.
  • Vanessa; Sales; de; Oliveira; Fernanda; Silva; Ferreira; Maria; Clara. Ramos Use of Natural Antioxidants in the Inhibition of Cholesterol Oxidation: A Review. Compr. Rev. Food Sci. Food Saf.2018, 17 ,1465–1483. doi:10.1111/1541-4337.12386. .
  • Williamson, G.; Kay, C. D.; Crozier, A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from A Historical Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17(5), 1054–1112. DOI: 10.1111/1541-4337.12351.
  • Gong, X.; Ji, M.; Xu, J.; Zhang, C.; Li, M. Hypoglycemic Effects of Bioactive Ingredients from Medicine Food Homology and Medicinal Health Food Species Used in China. Crit. Rev. Food Sci. Nutr. 2020, 60(14), 2303–2326. DOI: 10.1080/10408398.2019.1634517.
  • Wang, S.; Zhu, F. Antidiabetic Dietary Materials and Animal Models. Food Res. Int. 2016, 85, 315–331. DOI: 10.1016/j.foodres.2016.04.028.
  • Chen, W.; Li, P.; Wang, X. Chemical Stability of Yellow Pigment Extracted from the Flower Bud of Sophora Japonica L. (Huaimi). Int. J. Food Sci. Technol. 2010, 45(8), 1666–1672. DOI: 10.1111/j.1365-2621.2010.02322.x.
  • Sanjukta, S.; Rai, A. K. Production of Bioactive Peptides during Soybean Fermentation and Their Potential Health Benefits. Trends Food Sci. Technol. 2016, 50, 1–10. DOI: 10.1016/j.tifs.2016.01.010.
  • Vong, W. C.; Liu, S.-Q. Biovalorisation of Okara (Soybean Residue) for Food and Nutrition. Trends Food Sci. Technol. 2016, 52, 139–147. DOI: 10.1016/j.tifs.2016.04.011.
  • Zhu, F. Chemical Composition and Health Effects of Tartary Buckwheat. Food Chem. 2016, 203, 231–245. DOI: 10.1016/j.foodchem.2016.02.050.
  • Aly, S. H.; Elissawy, A. M.; Eldahshan, O. A.; Elshanawany, M. A.; Efferth, T.; Singab, A. N. B. The Pharmacology of the Genus Sophora (Fabaceae): An Updated Review. Phytomedicine. 2019, 64, 153070. DOI: 10.1016/j.phymed.2019.153070.
  • Gan, Z.; Chen, Q.; Fu, Y.; Chen, G. Determination of Bioactive Constituents in Flos Sophorae Immaturus and Cortex Fraxini by Capillary Electrophoresis in Combination with Far Infrared-assisted Solvent Extraction. Food Chem. 2012, 130(4), 1122–1126. DOI: 10.1016/j.foodchem.2011.08.018.
  • He, X.; Bai, Y.; Zhao, Z.; Wang, X.; Fang, J.; Huang, L.; Zeng, M.; Zhang, Q.; Zhang, Y.; Zheng, X. Local and Traditional Uses, Phytochemistry, and Pharmacology of Sophora Japonica L.: A Review. J. Ethnopharmacol. 2016, 187, 160–182. DOI: 10.1016/j.jep.2016.04.014.
  • Fang, Q.; Hu, J.; Nie, Q.; Nie, S. Effects of Polysaccharides on Glycometabolism Based on Gut Microbiota Alteration. Trends Food Sci. Technol. 2019, 92, 65–70. DOI: 10.1016/j.tifs.2019.08.015.
  • Li, L.; Huang, T.; Lan, C.; Ding, H.; Yan, C.; Dou, Y. Protective Effect of Polysaccharide from Sophora Japonica L. Flower Buds against UVB Radiation in a Human Keratinocyte Cell Line (Hacat Cells). J. Photochem. Photobiol. B: Biol. 2019, 191, 135–142. DOI: 10.1016/j.jphotobiol.2018.12.001.
  • Ma, W.; Wang, T.; Wang, J.; Wu, D.; Wu, C.; Du, M. Enhancing the Thermal Stability of Soy Proteins by Preheat Treatment at Lower Protein Concentration. Food Chem. 2020, 306, 125593. DOI: 10.1016/j.foodchem.2019.125593.
  • Bessada, S. M. F.; Barreira, J. C. M.; Oliveira, M. B. P. P. Pulses and Food Security: Dietary Protein, Digestibility, Bioactive and Functional Properties. Trends Food Sci. Technol. 2019, 93, 53–68. DOI: 10.1016/j.tifs.2019.08.022.
  • Charrondiere, U. R.; Rittenschober, D.; Nowak, V.; Stadlmayr, B.; Wijesinha-Bettoni, R.; Haytowitz, D. Improving Food Composition Data Quality: Three New FAO/INFOODS Guidelines on Conversions, Data Evaluation and Food Matching. Food Chem. 2016, 193, 75–81. DOI: 10.1016/j.foodchem.2014.11.055.
  • Charrondiere, U. R.; Rittenschober, D.; Nowak, V.; Nicodemi, C.; Bruggeling, P.; Petracchi, C. FAO/INFOODS e-Learning Course on Food Composition Data. Food Chem. 2016, 193, 6–11. DOI: 10.1016/j.foodchem.2014.11.048.
  • Luca, S. V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A. C.; Trifan, A. Bioactivity of Dietary Polyphenols: The Role of Metabolites. Crit. Rev. Food Sci. Nutr. 2019, 64, 1–34.
  • Gowd, V.; Karim, N.; Shishir, M. R. I.; Xie, L.; Chen, W. Dietary Polyphenols to Combat the Metabolic Diseases via Altering Gut Microbiota. Trends Food Sci. Technol. 2019, 93, 81–93. DOI: 10.1016/j.tifs.2019.09.005.
  • Liu, J. L.; Li, L. Y.; He, G. H. Optimization of Microwave-Assisted Extraction Conditions for Five Major Bioactive Compounds from Flos Sophorae Immaturus (Cultivars of Sophora Japonica L.) Using Response Surface Methodology. Molecules. 2016, 21(3), 296. DOI: 10.3390/molecules21030296.
  • Wang, G.; Cui, Q.; Yin, L. J.; Zheng, X.; Gao, M. Z.; Meng, Y.; Wang, W. Efficient Extraction of Flavonoids from Flos Sophorae Immaturus by Tailored and Sustainable Deep Eutectic Solvent as Green Extraction Media. J. Pharm. Biomed. Anal. 2019, 170, 285–294. DOI: 10.1016/j.jpba.2018.12.032.
  • Abdallah, H. M.; Al-Abd, A. M.; Asaad, G. F.; Abdel-Naim, A. B.; El-halawany, A. M.; Lobaccaro, J.-M. A. Isolation of Antiosteoporotic Compounds from Seeds of Sophora Japonica. PLoS One. 2014, 9(6), e98559. DOI: 10.1371/journal.pone.0098559.
  • Tang, R.; Luo, J.; Wang, W.; Liu, D.; Wang, G.; Guo, X. Rutin’s Natural Source Flos Sophorae as Potential Antioxidant and Improver of Fungal Community in Chinese Sausages. LWT - Food Sci. Technol. 2019, 101, 435–443. DOI: 10.1016/j.lwt.2018.11.064.
  • Chua, L. S. A Review on Plant-based Rutin Extraction Methods and Its Pharmacological Activities. J. Ethnopharmacol. 2013, 150(3), 805–817. DOI: 10.1016/j.jep.2013.10.036.
  • Liao, J.; Qu, B.; Liu, D.; Zheng, N. New Method to Enhance the Extraction Yield of Rutin from Sophora Japonica Using a Novel Ultrasonic Extraction System by Determining Optimum Ultrasonic Frequency. Ultrason. Sonochem. 2015, 27, 110–116. DOI: 10.1016/j.ultsonch.2015.05.005.
  • Cho, Y. J.; Lee, S. Extraction of Rutin from Tartary Buckwheat Milling Fractions and Evaluation of Its Thermal Stability in an Instant Fried Noodle System. Food Chem. 2015, 176, 40–44. DOI: 10.1016/j.foodchem.2014.12.020.
  • Cruz-Zuniga, J. M.; Soto-Valdez, H.; Peralta, E.; Mendoza-Wilson, A. M.; Robles-Burgueno, M. R.; Auras, R.; Gamez-Meza, N. Development of an Antioxidant Biomaterial by Promoting the Deglycosylation of Rutin to Isoquercetin and Quercetin. Food Chem. 2016, 204, 420–426. DOI: 10.1016/j.foodchem.2016.02.130.
  • Gayoso, L.; Claerbout, A.-S.; Calvo, M. I.; Cavero, R. Y.; Astiasarán, I.; Ansorena, D. Bioaccessibility of Rutin, Caffeic Acid and Rosmarinic Acid: Influence of the in Vitro Gastrointestinal Digestion Models. J. Funct. Foods. 2016, 26, 428–438. DOI: 10.1016/j.jff.2016.08.003.
  • Hernandez-Herrero, J. A.; Frutos, M. J. Influence of Rutin and Ascorbic Acid in Colour, Plum Anthocyanins and Antioxidant Capacity Stability in Model Juices. Food Chem. 2015, 173, 495–500. DOI: 10.1016/j.foodchem.2014.10.059.
  • Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z. G. Green and Efficient Extraction of Rutin from Tartary Buckwheat Hull by Using Natural Deep Eutectic Solvents. Food Chem. 2017, 221, 1400–1405. DOI: 10.1016/j.foodchem.2016.11.013.
  • Kerdudo, A.; Dingas, A.; Fernandez, X.; Faure, C. Encapsulation of Rutin and Naringenin in Multilamellar Vesicles for Optimum Antioxidant Activity. Food Chem. 2014, 159, 12–19. DOI: 10.1016/j.foodchem.2014.03.005.
  • Kite, G. C.; Stoneham, C. A.; Veitch, N. C. Flavonol Tetraglycosides and Other Constituents from Leaves of Styphnolobium Japonicum (Leguminosae) and Related Taxa. Phytochemistry. 2007, 68(10), 1407–1416. DOI: 10.1016/j.phytochem.2007.03.004.
  • Peng, F.; Xu, P.; Zhao, B. Y.; Zong, M. H.; Lou, W. Y. The Application of Deep Eutectic Solvent on the Extraction and in Vitro Antioxidant Activity of Rutin from Sophora Japonica Bud. J. Food Sci. Technol. 2018, 55(6), 2326–2333. DOI: 10.1007/s13197-018-3151-9.
  • Li, F. J.; Ning, S. L.; Li, Y.; Yu, Y. J.; Shen, C. D.; Duan, G. L. Optimisation of Infrared-assisted Extraction of Rutin from Crude Flos Sophorae Immaturus Using Response Surface Methodology and HPLC Analysis. Phytochem. Anal. 2012, 23(4), 292–298. DOI: 10.1002/pca.1357.
  • Xie, Z.; Sun, Y.; Lam, S.; Zhao, M.; Liang, Z.; Yu, X.; Yang, D.; Xu, X. Extraction and Isolation of Flavonoid Glycosides from Flos Sophorae Immaturus Using Ultrasonic-assisted Extraction Followed by High-speed Countercurrent Chromatography. J. Sep. Sci. 2014, 37(8), 957–965. DOI: 10.1002/jssc.201301340.
  • Xu, J.; Zhang, H.; Chen, G. Carbon Nanotube/polystyrene Composite Electrode for Microchip Electrophoretic Determination of Rutin and Quercetin in Flos Sophorae Immaturus. Talanta. 2007, 73(5), 932–937. DOI: 10.1016/j.talanta.2007.05.019.
  • Almeida, A. F.; Borge, G. I. A.; Piskula, M.; Tudose, A.; Tudoreanu, L.; Valentová, K.; Williamson, G.; Santos, C. N. Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Compr. Rev. Food Sci. Food Saf. 2018, 17(3), 714–731. DOI: 10.1111/1541-4337.12342.
  • Qiu-hong, L.; Zhong-qiu, L.; Ji-kun, W. The Chemical Components, Chinese Medicine Processing and Pharmacological Effect on Sophora Flower Bud. Acta Chinese Med. Pharmacol. 2017, 45, 112–116.
  • Ulusoy, H. G.; Sanlier, N. A Minireview of Quercetin: From Its Metabolism to Possible Mechanisms of Its Biological Activities. Crit. Rev. Food Sci. Nutr. 2019, 59(1), 1–14.
  • Bahchevanska, S.; Koleva, I. A Study on the Autohydrolysis of Rutin to Quercetin from Sophora Japonica Blossoms. Biotechnol. Biotechnol. Equip. 2014, 10(1), 56–58. DOI: 10.1080/13102818.1996.10818882.
  • El-Halawany, A. M.; Chung, M. H.; Abdallah, H. M.; Nishihara, T.; Hattori, M. Estrogenic Activity of a Naringinase-treated Extract of Sophora Japonica Cultivated in Egypt. Pharm. Biol. 2010, 48(2), 177–181. DOI: 10.3109/13880200903062663.
  • Kim, J. M.; Yun-Choi, H. S. Anti-platelet Effects of Flavonoids and Flavonoid-glycosides from Sophora Japonica. Arch. Pharmacal Res. 2008, 31(7), 886–890. DOI: 10.1007/s12272-001-1242-1.
  • Wang, Z. L.; Sun, J. Y.; Wang, D. N.; Xie, Y. H.; Wang, S. W.; Zhao, W. M. Pharmacological Studies of the Large-scaled Purified Genistein from Huaijiao (Sophora japonica-Leguminosae) on Anti-osteoporosis. Phytomedicine. 2006, 13(9–10), 718–723. DOI: 10.1016/j.phymed.2005.09.005.
  • Liu, T.; Wang, S.; Ma, H.; Jin, H.; Li, J.; Yang, X.; Gao, X.; Chang, Y. Microwave-Assisted Extraction Combined with In-Capillary [Fe(ferrozine)3](2+)-CE-DAD to Screen Active Components with the Ability to Chelate Ferrous Ions from Flos Sophorae Immaturus (Flos Sophorae). Molecules2019, 24(17) ,3052 . doi:10.3390/molecules24173052.
  • Lee, H. K.; Kim, H. S.; Kim, Y. J.; Kim, J. S.; Park, Y. S.; Kang, J. S.; Yuk, D. Y.; Hong, J. T.; Kim, Y.; Han, S. B. Sophoricoside Isolated from Sophora Japonica Ameliorates Contact Dermatitis by Inhibiting NF-kappaB Signaling in B Cells. Int. Immunopharmacol. 2013, 15(3), 467–473. DOI: 10.1016/j.intimp.2013.01.025.
  • Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. The Inhibitory Effect of Plant Essential Oils on Foodborne Pathogenic Bacteria in Food. Crit. Rev. Food Sci. Nutr. 2019, 59(20), 3281–3292. DOI: 10.1080/10408398.2018.1488159.
  • Yang, W. Y.; Won, T. H.; Ahn, C. H.; Lee, S. H.; Yang, H. C.; Shin, J.; Oh, K. B. Streptococcus Mutans Sortase A Inhibitory Metabolites from the Flowers of Sophora Japonica. Bioorg. Med. Chem. Lett. 2015, 25(7), 1394–1397. DOI: 10.1016/j.bmcl.2015.02.051.
  • Lo, Y. H.; Lin, R. D.; Lin, Y. P.; Liu, Y. L.; Lee, M. H. Active Constituents from Sophora Japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes. J. Ethnopharmacol. 2009, 124(3), 625–629. DOI: 10.1016/j.jep.2009.04.053.
  • Boozari, M.; Nejad Ebrahimi, S.; Soltani, S.; Tayarani-Najaran, Z.; Emami, S. A.; Asili, J.; Iranshahi, M. Absolute Configuration and Anti-cancer Effect of Prenylated Flavonoids and Flavonostilbenes from Sophora Pachycarpa: Possible Involvement of Wnt Signaling Pathway. Bioorg. Chem. 2019, 85, 498–504. DOI: 10.1016/j.bioorg.2019.01.051.
  • Qi, Y.; Sun, A.; Liu, R.; Meng, Z.; Xie, H. Isolation and Purification of Flavonoid and Isoflavonoid Compounds from the Pericarp of Sophora Japonica L. By Adsorption Chromatography on 12% Cross-linked Agarose Gel Media. J. Chromatogr. A. 2007, 1140(1–2), 219–224. DOI: 10.1016/j.chroma.2006.12.002.
  • Yan, S.; Pan, S.; Ji, J. Silk Fabric Dyed with Extract of Sophora Flower Bud. Nat. Prod. Res. 2018, 32(3), 308–315. DOI: 10.1080/14786419.2017.1359170.
  • Bi, H.; Sun, Z.; Chu, Q.; Li, L.; Guan, X.; Zhou, Y.; Li, Z. Analgesic Effects of Astilbin Partially via Calcium Channels through Regulation on CaMKII. Food Agric. Immunol. 2019, 30(1), 309–319. DOI: 10.1080/09540105.2019.1580677.
  • Medina Dos Santos, N.; Berilli Batista, P.; Batista, Â. G.; Maróstica Júnior, M. R. Current Evidence on Cognitive Improvement and Neuroprotection Promoted by Anthocyanins. Curr. Opin. Food Sci. 2019, 26, 71–78. DOI: 10.1016/j.cofs.2019.03.008.
  • Yang, J.; Guo, J.; Yuan, J. In Vitro Antioxidant Properties of Rutin. LWT - Food Sci. Technol. 2008, 41(6), 1060–1066. DOI: 10.1016/j.lwt.2007.06.010.
  • Yu-long, Z.; Zhe, J.; Yu-sen, J. Clinical Observation of Japanese Pagoda Tree Flower-buds to Relieve Female Urinary Tract Infection. Beijing J. Tradit. Chinese Med. 2017, 36, 992–995.
  • Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary Polyphenols and Type 2 Diabetes: Human Study and Clinical Trial. Crit. Rev. Food Sci. Nutr. 2019, 59(20), 3371–3379. DOI: 10.1080/10408398.2018.1492900.
  • Li, C.; Yu, W.; Wu, P.; Chen, X. D. Current in Vitro Digestion Systems for Understanding Food Digestion in Human Upper Gastrointestinal Tract. Trends Food Sci. Technol. 2020, 96, 114–126. DOI: 10.1016/j.tifs.2019.12.015.
  • Kachur, K.; Suntres, Z. The Antibacterial Properties of Phenolic Isomers, Carvacrol and Thymol. Crit. Rev. Food Sci. Nutr. 2019, 59(1), 1–12.
  • Wang, F.; Xiong, Z. Y.; Li, P.; Yang, H.; Gao, W.; Li, H. J. From Chemical Consistency to Effective Consistency in Precise Quality Discrimination of Sophora Flower-bud and Sophora Flower: Discovering Efficacy-associated Markers by Fingerprint-activity Relationship Modeling. J. Pharm. Biomed. Anal. 2017, 132, 7–16. DOI: 10.1016/j.jpba.2016.09.042.
  • Chen, Y.; Chang, S. K. C.; Zhang, Y.; Hsu, C. Y.; Nannapaneni, R. Gut Microbiota and Short Chain Fatty Acid Composition as Affected by Legume Type and Processing Methods as Assessed by Simulated in Vitro Digestion Assays. Food Chem. 2020, 312, 126040. DOI: 10.1016/j.foodchem.2019.126040.
  • Yujie, C.; Lijie, M.; Lei, H.; Jing, L. Inhibition Effects and Mechanisms of Sophora Flower Bud Abstract on Tumor in S180 Tumor-bearing Mice. Pharmacol. Clini. Chinese Mater. Med. 2014, 30, 100–102.
  • Depo, Y.; Junfeng, J.; Yongping, H.; Binshan, L.; Linhua, L. Theoretical System of Ecocare and Its Applications in Health Care and Product Development of Traditional Chinese Medicine. World Sci. Technol. 2010, 12(2), 155–159. DOI: 10.1016/S1876-3553(11)60013-6.
  • Faria-Silva, C.; Ascenso, A.; Costa, A. M.; Marto, J.; Carvalheiro, M.; Ribeiro, H. M.; Simões, S. Feeding the Skin: A New Trend in Food and Cosmetics Convergence. Trends Food Sci. Technol. 2020, 95, 21–32. DOI: 10.1016/j.tifs.2019.11.015.
  • Hou, Z.; Sun, G.; Guo, Y.; Yang, F.; Gong, D. Capillary Electrophoresis Fingerprints Combined with Linear Quantitative Profiling Method to Monitor the Quality Consistency and Predict the Antioxidant Activity of Alkaloids of Sophora Flavescens. J. Chromato. B-Analyt. Technol. Biomed. Life Sci. 2019, 1133, 121827. DOI: 10.1016/j.jchromb.2019.121827.
  • Min, B.; Oh, S. R.; Lee, H. K.; Takatsu, K.; Chang, I. M.; Min, K. R.; Kim, Y. Sophoricoside Analogs as the IL-5 Inhibitors from Sophora Japonica. Planta Med. 1999, 65(5), 408–412. DOI: 10.1055/s-1999-14016.
  • Junsheng, B.; Lijia, Z.; Hongmei, L.; Hong, G.; Yunlong, L.; Junjun, H.; Meifang, W.; Xin, Y. Optimization of Fixation Technology of Flos Sophora by Orthogonal Test. J. Shanxi Agric. Sci. 2017, 45, 1162–1164.
  • Xie, F.; Zhu, H.; Li, Z. Z.; Li, Z. Y. Effects of Different Harvesting Time and Processing Methods on the Content of Rutin in Sophora Japonica. Jiangsu Agric. Sci. 2013, 41, 281–282.
  • Ling, W.; Jun-Hong, Z.; Hui-Li, L.; Ran, Y.; Chemistry, D. O.; University, Z. N. Effect of Processing Temperature on the Content of Tannins, Flavonoids and Their Antioxidant Activities in Sophora Japonica L. J. Qingdao Univ. Sci. Technol. (Nat. Sci. Ed.) 2014, 35(04),346–349 .DOI: 10.16351/j.1672-6987.2014.04.018 .
  • Wang, X.; Fan, D.; Zhang, T. Effects of Hydrothermal Processing on Rutin Retention and Physicochemical Properties of Tartary Buckwheat Enriched Dough and Chinese Steamed Bread. Int. J. Food Sci. Technol. 2017, 52(10), 2180–2190. DOI: 10.1111/ijfs.13497.
  • Li, Y.; Fan, L. Comparative Studies on the Stabilization of Flos Sophorae Immaturus Beverages by Various Hydrocolloids. LWT - Food Sci. Technol. 2020, 123, 109117. DOI: 10.1016/j.lwt.2020.109117.
  • Pires, T. C. S. P.; Barros, L.; Santos-Buelga, C.; Ferreira, I. C. F. R. Edible Flowers: Emerging Components in the Diet. Trends Food Sci. Technol. 2019, 93, 244–258. DOI: 10.1016/j.tifs.2019.09.020.
  • Junhua, G.; Xianmeng, X.; Shaoning, C.; Zengshuai, Z.; Xiaodong, W. Processing Technology and Scavenging Capacities on DPPH Free Radical of Sophora Japonica Yoghurt. China Brewing. 2016, 35, 187–191.
  • Liying, W.; Yuqing, M.; Zhibin, Y.; Weihua, L.; Yiling, T. Nourishment of Flos Sophorae and Study of Instant Drink Made from It. Chin. Agric. Sci. Bull. 2008, 24, 70–73.
  • Xiaohong, W. X. W. Development of Sophora Japonica L. And Honey Healthy Compound Beverage. Hubei Agric. Sci. 2009, 48, 2827–2830.
  • Moradi, M.; Daneshzad, E.; Azadbakht, L. The Effects of Isolated Soy Protein, Isolated Soy Isoflavones and Soy Protein Containing Isoflavones on Serum Lipids in Postmenopausal Women: A Systematic Review and Meta-analysis. Crit. Rev. Food Sci. Nutr. 2019, 59(1), 1–15.
  • Liu, L.; Li, S.; Zheng, J.; Bu, T.; He, G.; Wu, J. Safety Considerations on Food Protein-derived Bioactive Peptides. Trends Food Sci. Technol. 2020, 96, 199–207. DOI: 10.1016/j.tifs.2019.12.022.
  • Wang, R.; Deng, X.; Gao, Q.; Wu, X.; Han, L.; Gao, X.; Zhao, S.; Chen, W.; Zhou, R.; Li, Z., et al. Sophora Alopecuroides L.: An Ethnopharmacological, Phytochemical, and Pharmacological Review. J. Ethnopharmacol. 2020, 248, 112172. DOI: 10.1016/j.jep.2019.112172.
  • Hussain, S. A.; Panjagari, N. R.; Singh, R. R.; Patil, G. R. Potential Herbs and Herbal Nutraceuticals: Food Applications and Their Interactions with Food Components. Crit. Rev. Food Sci. Nutr. 2015, 55(1), 94–122. DOI: 10.1080/10408398.2011.649148.
  • Jędrusek‐Golińska, A.; Górecka, D.; Buchowski, M.; Wieczorowska‐Tobis, K.; Gramza‐Michałowska, A.; Szymandera‐Buszka, K. Recent Progress in the Use of Functional Foods for Older Adults: A Narrative Review. Compr. Rev. Food Sci. Food Saf. 2020,19, 835–856. , DOI“:10.1111/1541-4337.12530

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.