447
Views
0
CrossRef citations to date
0
Altmetric
Review

Emulsion-Based Formulations for Delivery of Vitamin E: Fabrication, Characterization, in Vitro Release, Bioaccessibility and Bioavailability

ORCID Icon, , , , , & show all

References

  • Galli, F.; Azzi, A.; Birringer, M.; Cook-Mills, J. M.; Eggersdorfer, M.; Frank, J.; Cruciani, G.; Lorkowski, S.; Ozer, N. K.; Vitamin, E. Emerging Aspects and New Directions. Free Radic. Biol. Med. 2017, 102, 16–36. DOI: 10.1016/j.freeradbiomed.2016.09.017.
  • Hadi, H. E.; Vettor, R.; Rossato, M. Vitamin E as a Treatment for Nonalcoholic Fatty Liver Disease: Reality or Myth? Antioxidants. 2018, 7(1), 12. DOI: 10.3390/antiox7010012.
  • Gugliandolo, A.; Bramanti, P.; Mazzon, E. Role of Vitamin E in the Treatment of Alzheimer’s Disease: Evidence from Animal Models. Int. J. Mol. Sci. 2017, 18(12), 2504. DOI: 10.3390/ijms18122504.
  • Mangialasche, F.; Westman, E.; Kivipelto, M.; Muehlboeck, J. S.; Cecchetti, R.; Baglioni, M.; Tarducci, R.; Gobbi, G.; Floridi, P.; Soininen, H. Classification and Prediction of Clinical Diagnosis of Alzheimer’s Disease Based on MRI and Plasma Measures of α‐/γ‐tocotrienols and γ‐tocopherol. J. Intern. Med. 2013, 273(6), 602–621. DOI: 10.1111/joim.12037.
  • Raederstorff, D.; Wyss, A.; Calder, P. C.; Weber, P.; Eggersdorfer, M. Vitamin E Function and Requirements in Relation to PUFA. Br. J. Nutr. 2015, 114(8), 1113–1122. DOI: 10.1017/s000711451500272x.
  • Brigelius‐Flohé, R.; Traber, M. G.; Vitamin, E. Function and Metabolism. FASEB J. 1999, 13(10), 1145–1155. DOI: 10.1096/fasebj.13.10.1145.
  • Reboul, E. Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight. Antioxidants (Basel). 2017, 6(4). DOI: 10.3390/antiox6040095.
  • Mayer, S.; Weiss, J.; McClements, D. J. Behavior of Vitamin E Acetate Delivery Systems under Simulated Gastrointestinal Conditions: Lipid Digestion and Bioaccessibility of Low-energy Nanoemulsions. J. Colloid Interface Sci. 2013, 404, pp. 215–222. DOI: 10.1016/j.jcis.2013.04.048.
  • Rozman, B.; Zvonar, A.; Falson, F.; Gasperlin, M. Temperature-sensitive Microemulsion Gel: An Effective Topical Delivery System for Simultaneous Delivery of Vitamins C and E. AAPS Pharm. Sci. Tech. 2009, 10(1), 54–61. DOI: 10.1208/s12249-008-9172-3.
  • Lu, W.; Kelly, A. L.; Miao, S. Emulsion-based Encapsulation and Delivery Systems for Polyphenols. Trends Food Sci. Technol. 2016, 47, 1–9. DOI: 10.1016/j.tifs.2015.10.015.
  • Lu, Y.; Mao, L.; Hou, Z.; Miao, S.; Gao, Y. Development of Emulsion Gels for the Delivery of Functional Food Ingredients: From Structure to Functionality. Food Eng. Rev. 2019, 11(4), 245–258. DOI: 10.1007/s12393-019-09194-z.
  • Parthasarathi, S.; Muthukumar, S. P.; Anandharamakrishnan, C. The Influence of Droplet Size on the Stability, in Vivo Digestion, and Oral Bioavailability of Vitamin E Emulsions. Food Funct. 2016, 7(5), 2294–2302. DOI: 10.1039/c5fo01517k.
  • Bouchemal, K.; Briançon, S.; Perrier, E.; Fessi, H. Nano-emulsion Formulation Using Spontaneous Emulsification: Solvent, Oil and Surfactant Optimisation. Int J Pharmaceuts. 2004, 280 (1–2), 241–251. DOI:10.1016/j.ijpharm.2004.05.016.
  • Burgos-Díaz, C.; Wandersleben, T.; Marqués, A. M.; Rubilar, M. Multilayer Emulsions Stabilized by Vegetable Proteins and Polysaccharides. Curr. Opin. Colloid Interface Sci. 2016, 25, 51–57. DOI: 10.1016/j.cocis.2016.06.014.
  • Guzey, D.; McClements, D. J.; McClements, D.J.J.A.i.c; Formation, Stability and Properties of Multilayer Emulsions for Application in the Food Industry. Adv. Colloid Interface Sci. 2006, 128, 227–248. 10.1016/j.cis.2006.11.021.
  • Jiménez-Colmenero, F. J. F. R. I. Potential Applications of Multiple Emulsions in the Development of Healthy and Functional Foods. Food Res. Int. 2013, 52(1), 64–74. DOI: 10.1016/j.foodres.2013.02.040.
  • Low, L. E.; Siva, S. P.; Ho, Y. K.; Chan, E. S.; Tey, B. T. Recent Advances of Characterization Techniques for the Formation, Physical Properties and Stability of Pickering Emulsion. Adv. Colloid Interface Sci. 2020, 277, 102117. DOI: 10.1016/j.cis.2020.102117.
  • Botella-Martínez, C.; Pérez-Álvarez, J. Á.; Sayas-Barberá, E.; Fernández-López, J.; Viuda-Martos, M. Assessment of Chemical, Physicochemical, and Lipid Stability Properties of Gelled Emulsions Elaborated with Different Oils Chia (Salvia Hispanica L.) Or Hemp (Cannabis Sativa L.) And Pseudocereals. Foods. 2021, 10(7), 1463. DOI: 10.3390/foods10071463.
  • Chen, J.; Li, F.; Li, Z.; McClements, D. J.; Xiao, H. Encapsulation of Carotenoids in Emulsion-based Delivery Systems: Enhancement of β-carotene Water-dispersibility and Chemical Stability. Food Hydrocoll. 2017, 69, 49–55. DOI: 10.1016/j.foodhyd.2017.01.024.
  • Malone, M. E.; Appelqvist, I. A. Gelled Emulsion Particles for the Controlled Release of Lipophilic Volatiles during Eating. J. Control. Release. 2003, 90(2), 227–241. DOI: 10.1016/S0168-3659(03)00179-2.
  • Kakran, M.; Antipina, M. N. Emulsion-based Techniques for Encapsulation in Biomedicine, Food and Personal Care. Curr. Opin. Pharmacol. 2014, 18, 47–55. DOI: 10.1016/j.coph.2014.09.003.
  • McClements, D. J.; Decker, E. A.; Weiss, J. Emulsion-based Delivery Systems for Lipophilic Bioactive Components. J. Food Sci. 2007, 72(8), R109–124. DOI: 10.1111/j.1750-3841.2007.00507.x.
  • Qian, C.; McClements, D. J. Formation of Nanoemulsions Stabilized by Model Food-grade Emulsifiers Using High-pressure Homogenization: Factors Affecting Particle Size. Food Hydrocoll. 2011, 25(5), 1000–1008. DOI: 10.1016/j.foodhyd.2010.09.017.
  • Benetti, J. V. M.; Do Prado Silva, J. T.; Nicoletti, V. R. SPI Microgels Applied to Pickering Stabilization of O/W Emulsions by Ultrasound and High-pressure Homogenization: Rheology and Spray Drying. Food Res. Int. 2019, 122, 383–391. DOI: 10.1016/j.foodres.2019.04.020.
  • Akbas, E.; Soyler, B.; Oztop, M. H. Formation of Capsaicin Loaded Nanoemulsions with High Pressure Homogenization and Ultrasonication. LWT. 2018, 96, 266–273. DOI: 10.1016/j.lwt.2018.05.043.
  • Floury, J.; Desrumaux, A.; Lardières, J. Effect of High-pressure Homogenization on Droplet Size Distributions and Rheological Properties of Model Oil-in-water Emulsions. Innov. Food Sci. Emerg. 2000, 1(2), 127–134. DOI: 10.1016/S1466-8564(00)00012-6.
  • Saez, V.; Souza, I. D. L.; Mansur, C. R. E. Lipid Nanoparticles (SLN & NLC) for Delivery of Vitamin E: A Comprehensive Review. Int. J. Cosmet. Sci. 2018, 40(2), 103–116. DOI: 10.1111/ics.12452.
  • El Kinawy, O. S.; Petersen, S.; Ulrich, J. Technological Aspects of Nanoemulsion Formation of Low‐fat Foods Enriched with Vitamin E by High-pressure Homogenization. Chem. Eng. Technol. 2012, 35(5), 937–940. DOI: 10.1002/ceat.201100608.
  • Alayoubi, A.; Abu-Fayyad, A.; Rawas-Qalaji, M. M.; Sylvester, P. W.; Nazzal, S. Effect of Lipid Viscosity and High-pressure Homogenization on the Physical Stability of “Vitamin E” Enriched Emulsion. Pharm. Dev. Technol. 2015, 20(5), 555–561. DOI: 10.3109/10837450.2014.898655.
  • Yang, Y.; McClements, D. J. Encapsulation of Vitamin E in Edible Emulsions Fabricated Using a Natural Surfactant. Food Hydrocoll. 2013, 30(2), 712–720. DOI: 10.1016/j.foodhyd.2012.09.003.
  • Lee, L.; Norton, I. T. Comparing Droplet Breakup for a High-pressure Valve Homogeniser and a Microfluidizer for the Potential Production of Food-grade Nanoemulsions. J. Food Eng. 2013, 114(2), 158–163. DOI: 10.1016/j.jfoodeng.2012.08.009.
  • Bai, L.; McClements, D. J. Development of Microfluidization Methods for Efficient Production of Concentrated Nanoemulsions: Comparison of Single-and Dual-channel Microfluidizers. J Colloid. Interf. Sci. 2016, 466, 206–212. DOI: 10.1016/j.jcis.2015.12.039.
  • Goh, P. S.; Ng, M. H.; Choo, Y. M.; Amru, N. B.; Chuah, C. H. Production of Nanoemulsions from Palm-Based Tocotrienol Rich Fraction by Microfluidization. Molecules. 2015, 20(11), 19936–19946. DOI: 10.3390/molecules201119666.
  • Agudelo-Cuartas, C.; Granda-Restrepo, D.; Sobral, P. J.; Hernandez, H.; Castro, W. J. H. Characterization of Whey Protein-based Films Incorporated with Natamycin and Nanoemulsion of α-tocopherol. Heliyon. 2020, 6(4), e03809. DOI: 10.1016/j.heliyon.2020.e03809.
  • Siddiqui, S. W.; Unwin, P. J.; Xu, Z.; Kresta, S. M. The Effect of Stabilizer Addition and Sonication on Nanoparticle Agglomeration in a Confined Impinging Jet Reactor. Colloid. Surface A. 2009, 350(1–3), 38–50. DOI: 10.1016/j.colsurfa.2009.08.031.
  • Wei, Y. S.; Niu, Z. C.; Wang, F. Q.; Feng, K.; Zong, M. H.; Wu, H. A Novel Pickering Emulsion System as the Carrier of Tocopheryl Acetate for Its Application in Cosmetics. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110503. DOI: 10.1016/j.msec.2019.110503.
  • Xiao, J.; Li, Y.; Huang, Q. Recent Advances on Food-grade Particles Stabilized Pickering Emulsions: Fabrication, Characterization and Research Trends. Trends Food Sci. Technol. 2016, 55, 48–60. DOI: 10.1016/j.tifs.2016.05.010.
  • Fernandes, F. A. N.; Oliveira, V. S.; Gomes, W. F.; Rodrigues, S. Degradation Kinetics of Vitamin E during Ultrasound Application and the Adjustment in Avocado Purée by Tocopherol Acetate Addition. LWT. 2016, 69, 6. DOI: 10.1016/j.lwt.2016.01.067.
  • Jasmina, H.; Džana, O.; Alisa, E.; Edina, V.; Ognjenka, R. Preparation of Nanoemulsions by High-energy and Lowenergy Emulsification Methods. CMBEBIH. 2017, 317–322. DOI: 10.1007/978-981-10-4166-2_48.
  • López-Montilla, J. C.; Herrera-Morales, P. E.; Pandey, S.; Shah, D. O. Spontaneous Emulsification: Mechanisms, Physicochemical Aspects, Modeling, and Applications. J. Disper. Sci. Technol. 2002, 23(1–3), 219–268. DOI: 10.1080/01932690208984202.
  • Solans, C.; Morales, D.; Homs, M. Spontaneous Emulsification. Curr. Opin. Colloid Interface Sci. 2016, 22, 88–93. DOI: 10.1016/j.cocis.2016.03.002.
  • Saberi, A. H.; Fang, Y.; McClements, D. J. Fabrication of Vitamin E-enriched Nanoemulsions by Spontaneous Emulsification: Effect of Propylene Glycol and Ethanol on Formation, Stability, and Properties. Food Res. Int. 2013, 54(1), 812–820. DOI: 10.1016/j.foodres.2013.08.028.
  • Solans, C.; Solé, I. Nano-emulsions: Formation by Low-energy Methods. Curr. Opin. Colloid Interface Sci. 2012, 17(5), 246–254. DOI: 10.1016/j.cocis.2012.07.003.
  • Saberi, A. H.; Fang, Y.; McClements, D. J. Fabrication of Vitamin E-enriched Nanoemulsions: Factors Affecting Particle Size Using Spontaneous Emulsification. J. Colloid Interface Sci. 2013, 391, 95–102. DOI: 10.1016/j.jcis.2012.08.069.
  • Julianto, T.; Yuen, K. H.; Noor, A. M. Improved Bioavailability of Vitamin E with a Self Emulsifying Formulation. Int J Pharmaceuts. 2000, 200 (1), 53–57. DOI:10.1016/S0378-5173(00)00337-9.
  • Kim, E.-H.; Cho, W.-G. Nanoemulsions Containing Vitamin E Acetate Prepared by PIC (Phase Inversion Composition) Methods: Factors Affecting Droplet Sizes. J Korean Soc Appl Bi. 2013, 30 (4), 602–611. DOI:10.12925/jkocs.2013.30.4.602.
  • Ostertag, F.; Weiss, J.; McClements, D. J. Low-energy Formation of Edible Nanoemulsions: Factors Influencing Droplet Size Produced by Emulsion Phase Inversion. J. Colloid Interface Sci. 2012, 388(1), 95–102. DOI: 10.1016/j.jcis.2012.07.089.
  • Mayer, S.; Weiss, J.; McClements, D. J. Vitamin E-enriched Nanoemulsions Formed by Emulsion Phase Inversion: Factors Influencing Droplet Size and Stability. J. Colloid Interface Sci. 2013, 402, 122–130. DOI: 10.1016/j.jcis.2013.04.016.
  • Hategekimana, J.; Chamba, M. V. M.; Shoemaker, C. F.; Majeed, H.; Zhong, F. Vitamin E Nanoemulsions by Emulsion Phase Inversion: Effect of Environmental Stress and Long-term Storage on Stability and Degradation in Different Carrier Oil Types. Colloid. Surface A. 2015, 483, 70–80. DOI: 10.1016/j.colsurfa.2015.03.020.
  • Ha, T. V. A.; Kim, S.; Choi, Y.; Kwak, H.-S.; Lee, S. J.; Wen, J.; Oey, I.; Ko, S. Antioxidant Activity and Bioaccessibility of Size-different Nanoemulsions for Lycopene-enriched Tomato Extract. Food Chem. 2015, 178, 115–121. DOI: 10.1016/j.foodchem.2015.01.048.
  • Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D. J. Formation and Stabilization of Nanoemulsion-based Vitamin E Delivery Systems Using Natural Surfactants: Quillaja Saponin and Lecithin. J. Food Eng. 2014, 142, 57–63. DOI: 10.1016/j.jfoodeng.2014.06.015.
  • Xu, F.; Pandya, J. K.; Chung, C.; McClements, D. J.; Kinchla, A. J. Emulsions as Delivery Systems for Gamma and Delta Tocotrienols: Formation, Properties and Simulated Gastrointestinal Fate. Food Res. Int. 2018, 105, 570–579. DOI: 10.1016/j.foodres.2017.11.033.
  • Hung, C. F.; Fang, C. L.; Liao, M. H.; Fang, J. Y. The Effect of Oil Components on the Physicochemical Properties and Drug Delivery of Emulsions: Tocol Emulsion versus Lipid Emulsion. Int. J. Pharm. 2007, 335(1–2), 193–202. DOI: 10.1016/j.ijpharm.2006.11.016.
  • Lv, S.; Gu, J.; Zhang, R.; Zhang, Y.; Tan, H.; McClements, D. J. Vitamin E Encapsulation in Plant-based Nanoemulsions Fabricated Using Dual-channel Microfluidization: Formation, Stability, and Bioaccessibility. J. Agric. Food Chem. 2018, 66(40), 10532–10542. DOI: 10.1021/acs.jafc.8b03077.
  • Luo, X.-A.; Zhao, P.; Zhang, H.; Feng, S.-Y.; Chen, K.-X.; Chen, Z.-X. Improved Hydrolysis of α-tocopherol Acetate Emulsion and Its Bioaccessibility in the Presence of Polysaccharides and PEG2000. Colloid. Surface A. 2019, 581, 123837. DOI: 10.1016/j.colsurfa.2019.123837.
  • Song, L.-S.; Zhang, Z.-X.; Wang, Y.; Liu, Y.; Zhang, R.; Lu, L.-J. Effects of Nano-emulsion Preparations of Tocopherols and Tocotrienols on Oxidative Stress and Osteoblast Differentiation. Arch Biol Sci. 2017, 691, 149–156. DOI:10.2298/abs160208090s.
  • Feng, W.; Yue, C.; Liang, L.; Liang, L.; Liang, L. Preparation and Characterization of Emulsion-filled Gel Beads for the Encapsulation and Protection of Resveratrol and α-tocopherol. Food Res. Int. 2018, 108, 161–171. DOI: 10.1016/j.foodres.2018.03.035.
  • Mirzaei-Mohkam, A.; Garavand, F.; Dehnad, D.; Keramat, J.; Nasirpour, A. Optimisation, Antioxidant Attributes, Stability and Release Behaviour of Carboxymethyl Cellulose Films Incorporated with Nanoencapsulated Vitamin E. Prog. Org. Coat. 2019, 134, 333–341. DOI: 10.1016/j.porgcoat.2019.05.026.
  • Zhang, F.; Khan, M. A.; Cheng, H.; Liang, L. J. Co-encapsulation of α-tocopherol and Resveratrol within Zein Nanoparticles: Impact on Antioxidant Activity and Stability. J. Food Eng. 2019, 247, 9–18. DOI: 10.1016/j.jfoodeng.2018.11.021.
  • Fang, Z.; Xu, X.; Cheng, H.; Li, J.; Guang, C. E.; Liang, L. Comparison of Whey Protein Particles and Emulsions for the Encapsulation and Protection of α-tocopherol. J. Food Eng. 2019, 247, 56–63. DOI: 10.1016/j.jfoodeng.2018.11.028.
  • Luo, Y.; Zhang, B.; Whent, M.; Yu, L. L.; Wang, Q. Preparation and Characterization of Zein/chitosan Complex for Encapsulation of α-tocopherol, and Its in Vitro Controlled Release Study. Colloids Surf. B. 2011, 85(2), 145–152. DOI: 10.1016/j.colsurfb.2011.02.020.
  • Bao, H.; Ni, Y.; Dong, H.; Liang, L. α-Tocopherol and Resveratrol in Emulsion-filled Whey Protein Gels: Co-encapsulation and in Vitro Digestion. Int. Dairy J. 2020, 104, 104649. DOI: 10.1016/j.idairyj.2020.104649.
  • Neves, I. C. O.; Silva, S. H.; Oliveira, N. L.; Lago, A. M. T.; Ng, N.; Sultani, A.; Campelo, P. H.; Veríssimo, L. A. A.; de Resende, J. V.; Rogers, M. A. Effect of Carrier Oil on α-tocopherol Encapsulation in Ora-pro-nobis (Pereskia Aculeata Miller) Mucilage-whey Protein Isolate Microparticles. Food Hydrocoll. 2020, 105, 105716. DOI: 10.1016/j.foodhyd.2020.105716.
  • Cao, C.; Xu, L.; Xie, P.; Hu, J.; Qi, J.; Zhou, Y.; Cao, L. The Characterization and Evaluation of the Synthesis of Large-ring Cyclodextrins (CD 9–CD 22) and α-tocopherol with Enhanced Thermal Stability. RSC Adv. 2020, 10(11), 6584–6591. DOI: 10.1039/C9RA10748G.
  • Sahafi, S. M.; Goli, S. A. H.; Kadivar, M.; Varshosaz, J.; Shirvani, A. Pomegranate Seed Oil Nanoemulsion Enriched by α-tocopherol; the Effect of Environmental Stresses and Long-term Storage on Its Physicochemical Properties and Oxidation Stability. Food Chem. 2021, 345, 128759. DOI: 10.1016/j.foodchem.2020.128759.
  • Chang, X.; Feng, W.; He, L.; Chen, X.; Liang, L. Fabrication and Characterisation of Whey Protein Isolate–propolis–alginate Complex Particles for Stabilising α-tocopherol-contained Emulsions. Int. Dairy J. 2020, 109, 104756. DOI: 10.1016/j.idairyj.2020.104756.
  • Pinto, F.; de Barros, D. P.; Fonseca, L. P. Design of Multifunctional Nanostructured Lipid Carriers Enriched with α-tocopherol Using Vegetable Oils. Ind. Crops Prod. 2018, 118, 149–159. DOI: 10.1016/j.indcrop.2018.03.042.
  • Dasgupta, N.; Ranjan, S.; Mundra, S.; Ramalingam, C.; Kumar, A. Fabrication of Food Grade Vitamin E Nanoemulsion by Low Energy Approach, Characterization and Its Application. Int. J. Food Prop. 2016, 19(3), 700–708. DOI: 10.1080/10942912.2015.1042587.
  • Sabliov, C. M.; Fronczek, C.; Astete, C.; Khachaturyan, M.; Khachatryan, L.; Leonardi, C. Effects of Temperature and UV Light on Degradation of α‐tocopherol in Free and Dissolved Form. J. Am. Oil Chem. Soc. 2009, 86(9), 895. DOI: 10.1007/s11746-009-1411-6.
  • Chen, H.; Mao, L.; Hou, Z.; Yuan, F.; Gao, Y. Roles of Additional Emulsifiers in the Structures of Emulsion Gels and Stability of Vitamin E. Food Hydrocoll. 2020, 99, 105372. DOI: 10.1016/j.foodhyd.2019.105372.
  • Reboul, E.; Richelle, M.; Perrot, E.; Desmoulins-Malezet, C.; Pirisi, V.; Borel, P. Bioaccessibility of Carotenoids and Vitamin E from Their Main Dietary Sources. J. Agric. Food Chem. 2006, 54(23), 8749–8755. DOI: 10.1021/jf061818.
  • Tan, Y.; McClements, D. J. Improving the Bioavailability of Oil-soluble Vitamins by Optimizing Food Matrix Effects: A Review. Food Chem. 2021, 348, 129148. DOI: 10.1016/j.foodchem.2021.129148.
  • Wichchukit, S.; Oztop, M.; McCarthy, M.; McCarthy, K. Whey Protein/alginate Beads as Carriers of a Bioactive Component. Food Hydrocoll. 2013, 33(1), 66–73. DOI: 10.1016/j.foodhyd.2013.02.013.
  • Song, Y. B.; Lee, J. S.; Lee, H. G. Alpha-tocopherol-loaded Ca-pectinate Microcapsules: Optimization, in Vitro Release, and Bioavailability. Colloids Surf. B Biointerfaces. 2009, 73(2), 394–398. DOI: 10.1016/j.colsurfb.2009.06.014.
  • Harlen, W. C.; Muchtadi, T.; Palupi, N. S. Bioavailability of Alpha-tocopherol in Palm Oil Emulsion Drink on Rats (Rattus Norvegicus) Blood Plasma and Liver. Agritech Jurnal Teknologi Pertanian. 2017, 37(3), 352–361.
  • Lv, S.; Zhang, Y.; Tan, H.; Zhang, R.; McClements, D. J. Vitamin E Encapsulation within Oil-in-water Emulsions: Impact of Emulsifier Type on Physicochemical Stability and Bioaccessibility. J. Agric. Food Chem. 2019, 67(5), 1521–1529. DOI: 10.1021/acs.jafc.8b06347.
  • Diane, J. M. M.; Burgess, J. Vitamin E Nanoemulsions Characterization and Analysis. Int. J. Pharmaceut. 2014, 465(1–2), 455–463. DOI: 10.1016/j.ijpharm.2014.02.034.
  • Morais, J. M.; Burgess, D. J. In Vitro Release Testing Methods for Vitamin E Nanoemulsions. Int. J. Pharmaceut. 2014, 475(1–2), 393–400. DOI: 10.1016/j.ijpharm.2014.08.063.
  • Jiang, M.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Preparation of a Starch-based Carrier for Oral Delivery of Vitamin E to the Small Intestine. Food Hydrocoll. 2019, 91, 26–33. DOI: 10.1016/j.foodhyd.2019.01.021.
  • Liang, L.; Line, V. L. S.; Remondetto, G. E.; Subirade, M. In Vitro Release of α-tocopherol from Emulsion-loaded β-lactoglobulin Gels. Int. Dairy J. 2010, 20(3), 176–181. DOI: 10.1016/j.idairyj.2009.09.008.
  • de Souza, I. D. L.; Saez, V.; de Campos, V. E. B.; Mansur, C. R. E. Size and Vitamin E Release of Nanostructured Lipid Carriers with Different Liquid Lipids, Surfactants and Preparation Methods. Macromo Symp. 2019, 3831, p. 1800011. DOI:10.1002/masy.201800011.
  • Yang, Y.; McClements, D. J. Vitamin E Bioaccessibility: Influence of Carrier Oil Type on Digestion and Release of Emulsified Alpha-tocopherol Acetate. Food Chem. 2013, 141(1), 473–481. DOI: 10.1016/j.foodchem.2013.03.033.
  • Anwar, K.; Iqbal, J.; Hussain, M. M. Mechanisms Involved in Vitamin E Transport by Primary Enterocytes and in Vivo Absorption. J. Lipid Res. 2007, 48(9), 2028–2038. DOI: 10.1194/jlr.M700207-JLR200.
  • White, D. A.; Fisk, I. D.; Makkhun, S.; Gray, D. A. In Vitro Assessment of the Bioaccessibility of Tocopherol and Fatty Acids from Sunflower Seed Oil Bodies. J. Agric. Food Chem. 2009, 57(13), 5720–5726. DOI: 10.1021/jf9003412.
  • Cheng, H.; Fan, Q.; Liu, T.; Wusigale, L. L.; Liang, L. Co-encapsulation of α-tocopherol and Resveratrol in Oil-in-water Emulsion Stabilized by Sodium Caseinate: Impact of Polysaccharide on the Stability and Bioaccessibility. J. Food Eng. 2020, 264, 109685. DOI: 10.1016/j.jfoodeng.2019.109685.
  • Yang, Y.; McClements, D. J. Vitamin E and Vitamin E Acetate Solubilization in Mixed Micelles: Physicochemical Basis of Bioaccessibility. J. Colloid Interface Sci. 2013, 405, 312–321. DOI: 10.1016/j.jcis.2013.05.018.
  • Wu, -N.-N.; Huang, X.; Yang, X.-Q.; Guo, J.; Yin, S.-W.; He, X.-T.; Wang, L.-J.; Zhu, J.-H.; Qi, J.-R.; Zheng, E.-L. In Vitro Assessment of the Bioaccessibility of Fatty Acids and Tocopherol from Soybean Oil Body Emulsions Stabilized with ι-carrageenan. J. Agric. Food Chem. 2012, 60(6), 1567–1575. DOI: 10.1021/jf204776q.
  • Huo, T.; Ferruzzi, M. G.; Schwartz, S. J.; Failla, M. L. Impact of Fatty Acyl Composition and Quantity of Triglycerides on Bioaccessibility of Dietary Carotenoids. J. Agric. Food Chem. 2007, 55(22), 8950–8957. DOI: 10.1021/jf071687a.
  • Pouton, C. W.; Porter, C. J. Formulation of Lipid-based Delivery Systems for Oral Administration: Materials, Methods and Strategies. Adv. Drug Deliv. Rev. 2008, 60(6), 625–637. DOI: 10.1016/j.addr.2007.10.010.
  • Yang, Y.; Decker, E. A.; Xiao, H.; McClements, D. J. Enhancing Vitamin E Bioaccessibility: Factors Impacting Solubilization and Hydrolysis of α-tocopherol Acetate Encapsulated in Emulsion-based Delivery Systems. Food Funct. 2015, 6(1), 83–96. DOI: 10.1039/C4FO00725E.
  • Eicher, S.; Morrill, J.; Velazco, J. Bioavailability of α-tocopherol Fed with Retinol and Relative Bioavailability of d-α-tocopherol or dl-α-tocopherol Acetate. J. Dairy Sci. 1997, 80(2), 393–399. DOI: 10.3168/jds.S0022-0302(97)75949-6.
  • Brisson, L.; Castan, S.; Fontbonne, H.; Nicoletti, C.; Puigserver, A.; Ajandouz, E. H. Alpha-tocopheryl Acetate Is Absorbed and Hydrolyzed by Caco-2 Cells: Comparative Studies with Alpha-tocopherol. Chem. Phys. Lipids. 2008, 154(1), 33–37. DOI: 10.1016/j.chemphyslip.2008.04.002.
  • Failla, M. L.; Chitchumronchokchai, C.; Ferruzzi, M. G.; Goltz, S. R.; Campbell, W. W. Unsaturated Fatty Acids Promote Bioaccessibility and Basolateral Secretion of Carotenoids and α-tocopherol by Caco-2 Cells. Food Funct. 2014, 5(6), 1101–1112. DOI: 10.1039/C3FO60599J.
  • Ahmed, K.; Li, Y.; McClements, D. J.; Xiao, H. Nanoemulsion- and Emulsion-based Delivery Systems for Curcumin: Encapsulation and Release Properties. Food Chem. 2012, 132(2), 799–807. DOI: 10.1016/j.foodchem.2011.11.039.
  • Nagao, A.; Kotake-Nara, E.; Hase, M. Effects of Fats and Oils on the Bioaccessibility of Carotenoids and Vitamin E in Vegetables. Biosci. Biotech. Bioch. 2013, 77(5), 1055–1060. DOI: 10.1271/bbb.130025.
  • Kossena, G. A.; Boyd, B. J.; Porter, C. J.; Charman, W. N. Separation and Characterization of the Colloidal Phases Produced on Digestion of Common Formulation Lipids and Assessment of Their Impact on the Apparent Solubility of Selected Poorly Water-soluble Drugs. J. Pharm. Sci. 2003, 92(3), 634–648. DOI: 10.1002/jps.10329.
  • Yang, Y.; Xiao, H.; McClements, D. J. Impact of Lipid Phase on the Bioavailability of Vitamin E in Emulsion-based Delivery Systems: Relative Importance of Bioaccessibility, Absorption, and Transformation. J. Agric. Food Chem. 2017, 65(19), 3946–3955. DOI: 10.1021/acs.jafc.7b00955.
  • Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D. J. Nanoemulsion Delivery Systems for Oil-soluble Vitamins: Influence of Carrier Oil Type on Lipid Digestion and Vitamin D3 Bioaccessibility. Food Chem. 2015, 187, 499–506. DOI: 10.1016/j.foodchem.2015.04.065.
  • Nielsen, P.; Müllertz, A.; Norling, T.; Kristensen, H. The Effect of α-tocopherol on the in Vitro Solubilisation of Lipophilic Drugs. Int. J. Pharm. 2001, 222(2), 217–224. DOI: 10.1016/S0378-5173(01)00701-3.
  • McClements, D. J. Development of Next-generation Nutritionally Fortified Plant-based Milk Substitutes: Structural Design Principles. Foods. 2020, 9(4), 421. DOI: 10.3390/foods9040421.
  • Tan, Y.; Zhang, Z.; Zhou, H.; Xiao, H.; McClements, D. J. Factors Impacting Lipid Digestion and β-carotene Bioaccessibility Assessed by Standardized Gastrointestinal Model (INFOGEST): Oil Droplet Concentration. Food Funct. 2020, 11(8), 7126–7137. DOI: 10.1039/D0FO01506G.
  • Gasa-Falcon, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Martín-Belloso, O. Impact of Emulsifier Nature and Concentration on the Stability of β-carotene Enriched Nanoemulsions during in Vitro Digestion. Food Funct. 2019, 10(2), 713–722. DOI: 10.1039/C8FO02069H.
  • Gasa-Falcon, A.; Arranz, E.; Odriozola-Serrano, I.; Martín-Belloso, O.; Giblin, L. Delivery of β-carotene to the in Vitro Intestinal Barrier Using Nanoemulsions with Lecithin or Sodium Caseinate as Emulsifiers. LWT. 2021, 135, 110059. DOI: 10.1016/j.lwt.2020.110059.
  • Walia, N.; Chen, L. J. F. C. Pea Protein Based Vitamin D Nanoemulsions: Fabrication, Stability and in Vitro Study Using Caco-2 Cells. Food Chem. 2020, 305, 125475. DOI: 10.1016/j.foodchem.2019.125475.
  • Firoozy, M.; Anarjan, N. Preparation of Maltodextrin Stabilized α-tocopherol Nanoemulsions Using Solvent-displacement Technique. Food Sci. Technol. Int. 2019, 25(5), 404–413. DOI: 10.1177/1082013219825893.
  • Chawda, P. J.; Shi, J.; Xue, S.; Young Quek, S. Co-encapsulation of Bioactives for Food Applications. Food Qual. Saf. 2017, 1(4), 302–309. DOI: 10.1093/fqsafe/fyx028.
  • Goncalves, A.; Roi, S.; Nowicki, M.; Dhaussy, A.; Huertas, A.; Amiot, M.-J.; Reboul, E. Fat-soluble Vitamin Intestinal Absorption: Absorption Sites in the Intestine and Interactions for Absorption. Food Chem. 2015, 172, 155–160. DOI: 10.1016/j.foodchem.2014.09.021.
  • Fang, Z.; Bao, H.; Ni, Y.; Choijilsuren, N.; Liang, L. Partition and Digestive Stability of α-tocopherol and Resveratrol/naringenin in Whey Protein Isolate Emulsions. Int. Dairy J. 2019, 93, 116–123. DOI: 10.1016/j.idairyj.2019.01.017.
  • Cichewicz, A.; Pacleb, C.; Connors, A.; Hass, M. A.; Lopes, L. B. Cutaneous Delivery of α-tocopherol and Lipoic Acid Using Microemulsions: Influence of Composition and Charge. J. Pharm. Pharm. Sci. 2013, 65(6), 817–826. DOI: 10.1111/jphp.12045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.