708
Views
1
CrossRef citations to date
0
Altmetric
Review

Protein-Rich Pulse Ingredients: Preparation, Modification Technologies and Impact on Important Techno-Functional and Quality Characteristics, and Major Food Applications

&

References

  • Patterson, C. A.; Curran, J.; Der, T. Effect of Processing on Antinutrient Compounds in Pulses. Cereal Chem. J. 2017, 94(1), 2–10. DOI: 10.1094/CCHEM-05-16-0144-FI.
  • Adebo, O. A.; Njobeh, P. B.; Adebiyi, J. A.; Gbashi, S.; Phoku, J. Z.; Kayitesi, E. Functional Food - Improve Health through Adequate Food Chavarri Hueda, Maria. Gauteng, South Africa: IntechOpen, 2017 Fermented Pulse-Based Food Products in Developing Nations as Functional Foods and Ingredients, DOI: 10.5772/intechopen.69170.
  • Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple Benefits of Legumes for Agriculture Sustainability: An Overview. Chem. Biol. Technol. Agric. 2017, 4(1), 1–13. DOI: 10.1186/s40538-016-0085-1.
  • Jeuffroy, M. H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P. Climate of the past Geoscientific Instrumentation Methods and Data Systems Nitrous Oxide Emissions from Crop Rotations Including Wheat, Oilseed Rape and Dry Peas. Biogeosciences. 2013, 10(3), 1787–1797. DOI: 10.5194/bg-10-1787-2013.
  • Bichel, A.; Oelbermann, M.; Voroney, P.; Echarte, L. Sequestration of Native Soil Organic Carbon and Residue Carbon in Complex Agroecosystems. Carbon Manage. 2016, 7(5–6), 261–270. DOI: 10.1080/17583004.2016.1230441.
  • Angus, J. F.; Kirkegaard, A. B. J. A.; Hunt, A. B. J. R.; Ryan, M. H.; Ohlander, L.; Peoples, M. B.; Graham, B. E. H. Break Crops and Rotations for Wheat. Crop Pasture Sci. 2015, 66(6), 523–552. DOI: 10.1071/CP14252.
  • Boye, J.; Zare, F.; Pletch, A. Pulse Proteins: Processing, Characterization, Functional Properties and Applications in Food and Feed. Food Res. Int. 2010 March, 43(2), 414–431. doi:10.1016/j.foodres.2009.09.003.
  • Tharanathan, R. N.; Mahadevamma, S. Grain Legumes - A Boon to Human Nutrition. Trends Food Sci. Technol. 2003, 14(12), 507–518. DOI: 10.1016/j.tifs.2003.07.002.
  • Khattab, R. Y.; Arntfield, S. D. Nutritional Quality of Legume Seeds as Affected by Some Physical Treatments 2. Antinutritional Factors. LWT - Food Sci. Technol. 2009, 42(6), 1113–1118. DOI: 10.1016/J.LWT.2009.02.004.
  • Hall, C.; Hillen, C.; Robinson, J. G. . In Cereal Chemistry 94 1. 2017 Composition, Nutritional Value, and Health Benefits of Pulses. pp 11–31. DOI: 10.1094/CCHEM-03-16-0069-FI.
  • Han, I. H.; Swanson, B. G.; Baik, B.-K. Protein Digestibility of Selected Legumes Treated with Ultrasound and High Hydrostatic Pressure during Soaking. Cereal Chem. 2007, 84(5), 518–521. DOI: 10.1094/CCHEM-84-5-0518.
  • Singhal, A.; Karaca, A. C.; Tyler, R.; Nickerson, M. Pulse Proteins: From Processing to Structure-Function Relationships. In Grain Legumes Kumar Goyal, Aakash; London, United Kingdom: IntechOpen, 2016; DOI: 10.5772/64020.
  • Makkar, H. P. S.; Siddhuraju, P.; Becker, K. Plant Secondary Metabolites Totowa, New Jersey1588299937, 2007.
  • Guillamón, E.; Pedrosa, M. M.; Burbano, C.; Cuadrado, C.; de Sánchez, M. C.; Muzquiz, M. The Trypsin Inhibitors Present in Seed of Different Grain Legume Species and Cultivar. Food Chem. 2008, 107(1), 68–74. DOI: 10.1016/j.foodchem.2007.07.029.
  • Gebrelibanos, M.; Tesfaye, D.; Raghavendra, Y.; Sintayeyu, B. Nutritional and Health Implications of Legumes. Int. J. Pharm. Sci. Res. 2013, 4(4), 1269.
  • Rizzello, C. G.; Losito, I.; Facchini, L.; Katina, K.; Palmisano, F.; Gobbetti, M.; Coda, R. Degradation of Vicine, Convicine and Their Aglycones during Fermentation of Faba Bean Flour. Sci. Rep. 2016, 6(1), 1–11. DOI: 10.1038/srep32452.
  • Khazaei, H.; Purves, R. W.; Hughes, J.; Link, W.; O’Sullivan, D. M.; Schulman, A. H.; Björnsdotter, E.; Geu-Flores, F.; Nadzieja, M.; Andersen, S. U., et al. Eliminating Vicine and Convicine, the Main Anti-Nutritional Factors Restricting Faba Bean Usage. Trends Food Sci. Technol. 2019, 91, 549–556. DOI: 10.1016/J.TIFS.2019.07.051.
  • Cardador-Martínez, A.; Maya-Ocaña, K.; Ortiz-Moreno, A.; Herrera-Cabrera, B. E.; Dávila-Ortiz, G.; Múzquiz, M.; Martín-Pedrosa, M.; Burbano, C.; Cuadrado, C.; Jiménez-Martínez, C. Effect of Roasting and Boiling on the Content of Vicine, Convicine and L-3,4-Dihydroxyphenylalanine in Vicia Faba L. J. Food Qual. 2012, 35(6), 419–428. DOI: 10.1111/JFQ.12006.
  • Boye, J.; Zare, F.; Pletch, A. Pulse Proteins: Processing, Characterization, Functional Properties and Applications in Food and Feed. Food Res. Int. 2010 March, 43(2), 414–431. doi:10.1016/j.foodres.2009.09.003.
  • Shevkani, K.; Singh, N.; Chen, Y.; Kaur, A.; Long, Y. Pulse Proteins: Secondary Structure, Functionality and Applications. J. Food Sci. Technol. 2019, 56(6), 2787–2798. DOI: 10.1007/s13197-019-03723-8.
  • Barać, M. B.; Pešić, M. B.; Stanojević, S. P.; Kostić, A. Z.; Čabrilo, S. B. Techno-Functional Properties of Pea (Pisum Sativum) Protein Isolates-a Review. Acta Periodic. Technol. 2015, 46(46), 1–18. DOI: 10.2298/APT1546001B.
  • Tang, C.-H.; Ma, C.-Y. Effect of High Pressure Treatment on Aggregation and Structural Properties of Soy Protein Isolate. LWT - Food Sci. Technol. 2009, 42(2), 606–611. DOI: 10.1016/J.LWT.2008.07.012.
  • Meng, G.; Ma, C. Y. Characterization of Globulin from Phaseolus Angularis (Red Bean). Int. J. Food Sci. Technol. 2002, 37(6), 687–695. DOI: 10.1046/j.1365-2621.2002.00601.x.
  • Dhawan, K.; Malhotra, S.; Dahiya, B. S.; Singh, D. Seed Protein Fractions and Amino Acid Composition in Gram (Cicer Arietinum). Plant Foods Human Nutr. 1991, 41(3), 225–232. DOI: 10.1007/BF02196390.
  • Pusztai, A.; Clarke, E. M. W.; King, T. P.; Stewart, J. C. Nutritional Evaluation of Kidney Beans (Pxshaseolus Vulgaris): Chemical Composition, Lectin Content and Nutritional Value of Selected Cultivars. J. Sci. Food Agric. 1979, 30(9), 843–848. DOI: 10.1002/jsfa.2740300902.
  • El Fiel, H. E.; El Tinay, A. H.; Elsheikh, E. A. Effect of Cooking on Protein Solubility Profiles of Faba Beans (Vicia Faba L.) Grown Using Different Nutritional Regimes. Plant Foods Human Nutr. 2003, 58(1), 63–74. DOI: 10.1023/A:1024076030284.
  • Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G. O. Soy Proteins: A Review on Composition, Aggregation and Emulsification. Food Hydrocolloids. 2014, 392, 301–318. DOI: 10.1016/j.foodhyd.2014.01.013.
  • Wani, I. A.; Singh Sogi, D.; Shivhare, U. S.; Gill, B. S. Physico-Chemical and Functional Properties of Native and Hydrolyzed Kidney Bean (Phaseolus Vulgaris L.) Protein Isolates. Food Res. Int. 2015, 76, 11–18. DOI: 10.1016/j.foodres.2014.08.027.
  • Kimura, A.; Fukuda, T.; Zhang, M.; Motoyama, S.; Maruyama, N.; Utsumi, S. Comparison of Physicochemical Properties of 7S and 11S Globulins from Pea, Fava Bean, Cowpea, and French Bean with Those of SoybeansFrench Bean 7S Globulin Exhibits Excellent Properties. J. Agric. Food Chem. 2008, 56(21), 10273–10279. DOI: 10.1021/jf801721b.
  • Batista, K. A.; Prudêncio, S. H.; Fernandes, K. F. Changes in the Functional Properties and Antinutritional Factors of Extruded Hard-to-Cook Common Beans (Phaseolus Vulgaris, L.). J. Food Sci. 2010, 75(3), C286–C290. DOI: 10.1111/j.1750-3841.2010.01557.x.
  • Ghribi, A. M.; Ben, A. A.; Gafsi, I. M.; Lahiani, M.; Bejar, M.; Triki, M.; Zouari, A.; Attia, H.; Besbes, S. Toward the Enhancement of Sensory Profile of Sausage “Merguez” with Chickpea Protein Concentrate. Meat Sci. 2018, 143, 74–80. DOI: 10.1016/j.meatsci.2018.04.025.
  • Aluko, R. E.; Mofolasayo, O. A.; Watts, B. M. Emulsifying and Foaming Properties of Commercial Yellow Pea (Pisum Sativum L.) Seed Flours. J. Agric. Food Chem. 2009, 57(20), 9793–9800. DOI: 10.1021/jf902199x.
  • Mundi, S.; Aluko, R. E. Physicochemical and Functional Properties of Kidney Bean Albumin and Globulin Protein Fractions. Food Res. Int. 2012, 48(1), 299–306. DOI: 10.1016/J.FOODRES.2012.04.006.
  • Marcela, G.-M. Bioactive Peptides from Legumes as Anticancer Therapeutic Agents. Int. J. Cancer Clin. Res. 2017, 4(2). DOI: 10.23937/2378-3419/1410081.
  • López-Barrios, L.; Gutiérrez-Uribe, J. A.; Serna-Saldívar, S. O. Bioactive Peptides and Hydrolysates from Pulses and Their Potential Use as Functional Ingredients. J. Food Sci. 2014, 79(3), R273–R283. DOI: 10.1111/1750-3841.12365.
  • de Jesús Ariza-ortega, T.; Yadet Zenón-Briones, E.; Luis Castrejón-Flores, J.; Yáñez-Fernández, J.; de Las Mercedes Gómez-gómez, Y.; Del Carmen Oliver-salvador, M. Angiotensin-I-Converting Enzyme Inhibitory, Antimicrobial, and Antioxidant Effect of Bioactive Peptides Obtained from Different Varieties of Common Beans (Phaseolus Vulgaris L.) With in Vivo Antihypertensive Activity in Spontaneously Hypertensive Rats. Eur. Food Res. Technol. 2014, 239(5), 785–794. DOI: 10.1007/s00217-014-2271-3.
  • Rui, X.; Boye, J. I.; Simpson, B. K.; Prasher, S. O. Purification and Characterization of Angiotensin I-Converting Enzyme Inhibitory Peptides of Small Red Bean (Phaseolus Vulgaris) Hydrolysates. J. Funct. Foods. 2013, 5(3), 1116–1124. DOI: 10.1016/j.jff.2013.03.008.
  • Tiwari, P.; Chintagunta, A. D.; Dirisala, V. R.; Kumar, N. S. S. . 2020 Legume Derived Bioactive Peptides Sustainable Agriculture Reviews 45 Praveen, Guleria, Kumar, Vineet, and Lichtfouse, Eric (Springer, Cham), 29–52. DOI:10.1007/978-3-030-53017-4_2.
  • Salas, C. E.; Badillo-Corona, J. A.; Ramírez-Sotelo, G.; Oliver-Salvador, C. Biologically Active and Antimicrobial Peptides from Plants. Biomed Res. Int. 2015, 2015, 1–11. DOI: 10.1155/2015/102129.
  • Xue, Z.; Wen, H.; Zhai, L.; Yu, Y.; Li, Y.; Yu, W.; Cheng, A.; Wang, C.; Kou, X. Antioxidant Activity and Anti-Proliferative Effect of a Bioactive Peptide from Chickpea (Cicer Arietinum L.). Food Res. Int. 2015, 77, 75–81. DOI: 10.1016/j.foodres.2015.09.027.
  • Caccialupi, P.; Ceci, L. R.; Siciliano, R. A.; Pignone, D.; Clemente, A.; Sonnante, G. Bowman-Birk Inhibitors in Lentil: Heterologous Expression, Functional Characterisation and Anti-Proliferative Properties in Human Colon Cancer Cells. Food Chem. 2010, 120(4), 1058–1066. DOI: 10.1016/j.foodchem.2009.11.051.
  • Clemente, A.; Marín-Manzano, M. C.; Jiménez, E.; Arques, M. C.; Domoney, C. The Anti-Proliferative Effect of TI1B, a Major Bowman–Birk Isoinhibitor from Pea (Pisum Sativum L.), On HT29 Colon Cancer Cells Is Mediated through Protease Inhibition. Br. J. Nutr. 2012, 108(S1), S135–S144. DOI: 10.1017/S000711451200075X.
  • Byanju, B.; Rahman, M. M.; Hojilla-Evangelista, M. P.; Lamsal, B. P. Effect of High-Power Sonication Pretreatment on Extraction and Some Physicochemical Properties of Proteins from Chickpea, Kidney Bean, and Soybean. Int. J. Biol. Macromol. 2020, 145, 712–721. DOI: 10.1016/j.ijbiomac.2019.12.118.
  • Schutyser, M. A. I.; van der Goot, A. J. The Potential of Dry Fractionation Processes for Sustainable Plant Protein Production. Trends Food Sci. Technol. 2011, 22(4), 154–164. DOI: 10.1016/j.tifs.2010.11.006.
  • Thakur, S.; Scanlon, M. G.; Tyler, R. T.; Milani, A.; Paliwal, J. Pulse Flour Characteristics from A Wheat Flour Miller’s Perspective: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2019, 18(3), 775–797. DOI: 10.1111/1541-4337.12413.
  • Klupšaitė, D.; Juodeikienė, G. Legume: Composition, Protein Extraction and Functional Properties. A Review. Chem. Technol. 2015, 66(1), 5–12. DOI: 10.5755/j01.ct.66.1.12355.
  • Khazaei, H.; Subedi, M.; Nickerson, M.; Martínez-Villaluenga, C.; Frias, J.; Vandenberg, A. Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods. 2019, 8(9), 9. DOI: 10.3390/foods8090391.
  • Wang, H.; Johnson, L. A.; Wang, T. Preparation of Soy Protein Concentrate and Isolate from Extruded-Expelled Soybean Meals. J. Am. Oil Chem. Soc. 2004, 81(7), 713–717. DOI: 10.1007/s11746-004-966-8.
  • Karaca, A. C.; Low, N.; Nickerson, M. Emulsifying Properties of Chickpea, Faba Bean, Lentil and Pea Proteins Produced by Isoelectric Precipitation and Salt Extraction. Food Res. Int. 2011, 44(9), 2742–2750. DOI: 10.1016/j.foodres.2011.06.012.
  • Karki, B.; Lamsal, B. P.; Jung, S.; van Leeuwen, J. (Hans); Pometto, A. L.; Grewell, D.; Khanal, S. K. Enhancing Protein and Sugar Release from Defatted Soy Flakes Using Ultrasound Technology. J. Food Eng. 2010, 96(2), 270–278. DOI: 10.1016/J.Jfoodeng.2009.07.023.
  • Stone, A. K.; Karalash, A.; Tyler, R. T.; Warkentin, T. D.; Nickerson, M. T. Functional Attributes of Pea Protein Isolates Prepared Using Different Extraction Methods and Cultivars. Food Res. Int. 2015, 76, 31–38. DOI: 10.1016/j.foodres.2014.11.017.
  • Rahman, M. M.; Byanju, B.; Grewell, D.; Lamsal, B. P. High-Power Sonication of Soy Proteins: Hydroxyl Radicals and Their Effects on Protein Structure. Ultrason. Sonochem. 2020, 64(February), 105019. DOI: 10.1016/j.ultsonch.2020.105019.
  • Ultrasonic and Cavitation Principles — SONOTRONIC https://sonotronic.de/pictures/pictures-environment/ultrasonic-and-cavitation-principles-1/view (accessed Apr 4, 2020).
  • Rahman, M. M.; Lamsal, B. P. Ultrasound‐assisted Extraction and Modification of Plant‐based Proteins: Impact on Physicochemical, Functional, and Nutritional Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20(2), 1457–1480. DOI: 10.1111/1541-4337.12709.
  • Hu, H.; Cheung, I. W. Y.; Pan, S.; Li-Chan, E. C. Y. Effect of High Intensity Ultrasound on Physicochemical and Functional Properties of Aggregated Soybean β-Conglycinin and Glycinin. Food Hydrocolloids. 2015, 45, 102–110. DOI: 10.1016/j.foodhyd.2014.11.004.
  • Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and Opportunities for Ultrasound Assisted Extraction in the Food Industry — A Review. Innovative Food Sci. Emerg. Technol. 2008, 9(2), 161–169. DOI: 10.1016/J.IFSET.2007.04.014.
  • Riera, E.; Gol, Y.; Blanco, A.; Gallego, J. A.; Blasco, M.; Mulet, A. Mass Transfer Enhancement in Supercritical Fluids Extraction by Means of Power Ultrasound. Ultrasonics - Sonochem. 2004, 11(3–4), 241–244. DOI: 10.1016/j.ultsonch.2004.01.019.
  • Vinatoru, M. . In Ultrasonics Sonochemistry; , 2001 An overview of the ultrasonically assisted extraction of bioactive principles from herbs , Vol. 8, pp 303–313. DOI:10.1016/S1350-4177(01)00071-2.
  • Preece, K. E.; Hooshyar, N.; Krijgsman, A.; Fryer, P. J.; Zuidam, J. Intensified Soy Protein Extraction by Ultrasound. Chem. Eng. Process. 2017, 113, 94–101. DOI: 10.1016/j.cep.2016.09.003.
  • Lou, Z.; Wang, H.; Zhang, M.; Wang, Z. Improved Extraction of Oil from Chickpea under Ultrasound in a Dynamic System. J. Food Eng. 2010, 98(1), 13–18. DOI: 10.1016/J.JFOODENG.2009.11.015.
  • Lafarga, T.; Álvarez, C.; Bobo, G.; Aguiló-Aguayo, I. Characterization of Functional Properties of Proteins from Ganxet Beans (Phaseolus Vulgaris L. Var. Ganxet) Isolated Using an Ultrasound-Assisted Methodology. LWT. 2018, 98, 106–112. DOI: 10.1016/j.lwt.2018.08.033.
  • Jiang, L.; Wang, J.; Li, Y.; Wang, Z.; Liang, J.; Wang, R.; Chen, Y.; Ma, W.; Qi, B.; Zhang, M. Effects of Ultrasound on the Structure and Physical Properties of Black Bean Protein Isolates. Food Res. Int. 2014, 62, 595–601. DOI: 10.1016/j.foodres.2014.04.022.
  • Xiong, T.; Xiong, W.; Ge, M.; Xia, J.; Li, B.; Chen, Y. Effect of High Intensity Ultrasound on Structure and Foaming Properties of Pea Protein Isolate. Food Res. Int. 2018, 109, 260–267. DOI: 10.1016/j.foodres.2018.04.044.
  • O’Sullivan, J.; Murray, B.; Flynn, C.; Norton, I. The Effect of Ultrasound Treatment on the Structural, Physical and Emulsifying Properties of Animal and Vegetable Proteins. Food Hydrocolloids. 2016, 53, 141–154. DOI: 10.1016/J.FOODHYD.2015.02.009.
  • Karki, B.; Lamsal, B. P.; Grewell, D.; Pometto, A. L.; Van Leeuwen, J.; Khanal, S. K.; Jung, S. Functional Properties of Soy Protein Isolates Produced from Ultrasonicated Defatted Soy Flakes. J. Am. Oil Chem. Soc. 2009, 86(10), 1021–1028. DOI: 10.1007/s11746-009-1433-0.
  • Jambrak, A. R.; Lelas, V.; Mason, T. J.; Krešic, G.; Marija, B. Physical Properties of Ultrasound Treated Soy Proteins. J. Food Eng. 2009, 93(4), 386–393. DOI: 10.1016/j.jfoodeng.2009.02.001.
  • Feng, H; Barbosa-Canovas, G. V.; Weiss, J. Ultrasound Technologies for Food Bioprocessing 2013. 53 (Springer), 49–54. DOI: 10.1007/s12033-012-9516-9.
  • Zhou, M.; Liu, J.; Zhou, Y.; Huang, X.; Liu, F.; Pan, S.; Hu, H. Effect of High Intensity Ultrasound on Physicochemical and Functional Properties of Soybean Glycinin at Different Ionic Strengths. Innovative Food Sci. Emerging Technol. 2016, 34, 205–213. DOI: 10.1016/j.ifset.2016.02.007.
  • Kaya, E.; Tuncel, N. B.; Yılmaz Tuncel, N. The Effect of Ultrasound on Some Properties of Pulse Hulls. J. Food Sci. Technol. 2017, 54(9), 2779–2788. DOI: 10.1007/s13197-017-2714-5.
  • Huang, H.; Kwok, K. C.; Liang, H. H. Inhibitory Activity and Conformation Changes of Soybean Trypsin Inhibitors Induced by Ultrasound. Ultrason. Sonochem. 2008, 15(5), 724–730. DOI: 10.1016/j.ultsonch.2007.10.007.
  • Morales, P.; Berrios, J. D. J.; Varela, A.; Burbano, C.; Cuadrado, C.; Muzquiz, M.; Pedrosa, M. M. Novel Fiber-Rich Lentil Flours as Snack-Type Functional Foods: An Extrusion Cooking Effect on Bioactive Compounds. Food Funct. 2015, 6(9), 3135–3143. DOI: 10.1039/c5fo00729a.
  • Berrios, J. D. J.2012. Extrusion Processing of Main Commercial Legume Pulses. Advances in Food Extrusion Technology Maskan, M., and Altan, A. (Boca Raton: CRC Press). 209–236. DOI:10.1201/b11286-9.
  • Alonso, R.; Aguirre, A.; Marzo, F. Effects of Extrusion and Traditional Processing Methods on Antinutrients and in Vitro Digestibility of Protein and Starch in Faba and Kidney Beans. Food Chem. 2000, 68(2), 159–165. DOI: 10.1016/S0308-8146(99)00169-7.
  • Alonso, R.; Oru, E.; Zabalza, M. J.; Grant, G.; Marzo, F. Effect of Extrusion Cooking on Structure and Functional Properties of Pea and Kidney Bean. J. Sci. Food Agric. 2000, 80(3), 397–403. DOI: 10.1002/1097-0010(200002)80:3<397::AID-JSFA542>3.0.CO;2-3.
  • Batista, K. A.; Pereira, W. J.; Moreira, B. R.; Silva, C. N.; Fernandes, K. F. Effect of Autoclaving on the Nutritional Quality of Hard-to-Cook Common Beans (Phaseolus Vulgaris). Int. J. Environ. Agric. Biotechnol. 2020, 5(1), 22–30. DOI: 10.22161/ijeab.51.4.
  • Ghumman, A.; Kaur, A.; Singh, N.; Singh, B. Effect of Feed Moisture and Extrusion Temperature on Protein Digestibility and Extrusion Behaviour of Lentil and Horsegram. LWT - Food Sci. Technol. 2016, 70, 349–357. DOI: 10.1016/j.lwt.2016.02.032.
  • Masatcioglu, M. T.; Koksel, F. Functional and Thermal Properties of Yellow Pea and Red Lentil Extrudates Produced by Nitrogen Gas Injection Assisted Extrusion Cooking. J. Sci. Food Agric. 2019, 99(15), 6796–6805. DOI: 10.1002/jsfa.9964.
  • Nosworthy, M. G.; Medina, G.; Franczyk, A. J.; Neufeld, J.; Appah, P.; Utioh, A.; Frohlich, P.; House, J. D. Effect of Processing on the in Vitro and in Vivo Protein Quality of Beans (Phaseolus Vulgaris and Vicia Faba). Nutrients. 2018, 10(6), 6. DOI: 10.3390/nu10060671.
  • Ajita, T.; Jha, S. K. Extrusion Cooking Technology: Principal Mechanism and Effect on Direct Expanded Snacks-An Overview. Int. J. Food Stud. 2017, 6, 113–128. DOI: 10.7455/ijfs/6.1.2017.a10.
  • Berrios, J. D. J.; Morales, P.; Cámara, M.; Sánchez-Mata, M. C. Carbohydrate Composition of Raw and Extruded Pulse Flours. Food Res. Int. 2010, 43(2), 531–536. DOI: 10.1016/j.foodres.2009.09.035.
  • Shi, L.; Arntfield, S. D.; Nickerson, M. Changes in Levels of Phytic Acid, Lectins and Oxalates during Soaking and Cooking of Canadian Pulses. Food Res. Int. J. 2018, 107, 660–668. DOI: 10.1016/j.foodres.2018.02.056.
  • Raes, K.; Knockaert, D.; Struijs, K.; Van Camp, J. Role of Processing on Bioaccessibility of Minerals: Influence of Localization of Minerals and Anti-Nutritional Factors in the Plant. Trends Food Sci. Technol. 2014, 37(1), 32–41. DOI: 10.1016/j.tifs.2014.02.002.
  • Adeyemo, S. M.; Onilude, A. A. Enzymatic Reduction of Anti-Nutritional Factors in Fermenting Soybeans by Lactobacillus Plantarum Isolates from Fermenting Cereals. Niger. Food J. 2013, 31(2), 84–90. DOI: 10.1016/s0189-7241(15)30080-1.
  • Kalpanadevi, V.; Mohan, V. R. Effect of Processing on Antinutrients and in Vitro Protein Digestibility of the Underutilized Legume, Vigna Unguiculata (L.) Walp Subsp. Unguiculata. LWT - Food Sci. Technol. 2013, 51(2), 455–461. DOI: 10.1016/j.lwt.2012.09.030.
  • Mubarak, A. E. Nutritional Composition and Antinutritional Factors of Mung Bean Seeds (Phaseolus Aureus) as Affected by Some Home Traditional Processes. Food Chem. 2005, 89(4), 489–495. DOI: 10.1016/J.FOODCHEM.2004.01.007.
  • Shi, L.; Mu, K.; Arntfield, S. D.; Nickerson, M. T. Changes in Levels of Enzyme Inhibitors during Soaking and Cooking for Pulses Available in Canada. J. Food Sci. Technol. 2017, 54(4), 1014–1022. DOI: 10.1007/s13197-017-2519-6.
  • Osman, A. M. A.; Hassan, A. B.; Osman, G. A. M.; Mohammed, N.; Rushdi, M. A. H.; Diab, E. E.; Babiker, E. E. Effects of Gamma Irradiation And/or Cooking on Nutritional Quality of Faba Bean (Vicia Faba L.) Cultivars Seeds. J. Food Sci. Technol. 2014, 51(8), 1554–1560. DOI: 10.1007/s13197-012-0662-7.
  • Shariati-Ievari, S. Effect of Micronization on Selected Volatiles of Chickpea and Lentil Flours and Sensory Evaluation of Low Fat Beef Burgers Extended with These Micronized Pulse Flours; 2013.
  • Singh, P. K.; Sohani, S.; Panwar, N.; Bhagyawant, S. S. Effect of Radiation Processing on Nutritional Quality of Some Legume Seeds. Int. J. Biol. Pharm. Res. 2014, 5(11), 876–881.
  • Evangelho, J. A. D.; Vanier, N. L.; Pinto, V. Z.; Berrios, J. J. D.; Dias, A. R. G.; Zavareze, E. D. R. Black Bean (Phaseolus Vulgaris L.) Protein Hydrolysates: Physicochemical and Functional Properties. Food Chem. 2017, 214, 460–467. DOI: 10.1016/j.foodchem.2016.07.046.
  • Rosset, M.; Acquaro, V. R.; Beléia, A. D. P. Protein Extraction from Defatted Soybean Flour with Viscozyme L Pretreatment. J. Food Process. Preserv. 2014, 38(3), 784–790. DOI: 10.1111/jfpp.12030.
  • Dabhi, M. N.; Sangani, V. P.; Rathod, P. J. Effect of Enzyme Pretreatment on Dehulling, Cooking Time and Protein Content of Pigeon Pea (Variety BDN2). J. Food Sci. Technol. 2019, 56(10), 4552–4564. DOI: 10.1007/s13197-019-03940-1.
  • Sari, Y. W.; Bruins, M. E.; Sanders, J. P. M. Enzyme Assisted Protein Extraction from Rapeseed, Soybean, and Microalgae Meals. Ind. Crops Prod. 2013, 43, 78–83. DOI: 10.1016/J.INDCROP.2012.07.014.
  • Liu, Q.; Jiang, L.; Li, Y.; Wang, S.; Wang, M. Study on Aqueous Enzymatic Extraction of Red Bean Protein. Procedia Eng. 2011 December, 2011(15), 5035–5045. doi:10.1016/j.proeng.2011.08.936.
  • Jung, S.; Lamsal, B. P.; Stepien, V.; Johnson, L. A.; Murphy, P. A. Functionality of Soy Protein Produced by Enzyme-Assisted Extraction. J. Am. Oil Chem. Soc. 2006, 83(1), 71–78. DOI: 10.1007/s11746-006-1178-y.
  • Lamsal, B. P.; Jung, S.; Johnson, L. A. Rheological Properties of Soy Protein Hydrolysates Obtained from Limited Enzymatic Hydrolysis. LWT - Food Sci. Technol. 2007, 40(7), 1215–1223. DOI: 10.1016/j.lwt.2006.08.021.
  • Betancur-Ancona, D.; Sosa-Espinoza, T.; Ruiz-Ruiz, J.; Segura-Campos, M.; Chel-Guerrero, L. Enzymatic Hydrolysis of Hard-to-Cook Bean (Phaseolus Vulgaris L.) Protein Concentrates and Its Effects on Biological and Functional Properties. Int. J. Food Sci. Technol. 2014, 49(1), 2–8. DOI: 10.1111/ijfs.12267.
  • Eckert, E.; Han, J.; Swallow, K.; Tian, Z.; Jarpa-Parra, M.; Chen, L. Effects of Enzymatic Hydrolysis and Ultrafiltration on Physicochemical and Functional Properties of Faba Bean Protein. Cereal Chem. 2019, 96(4), 725–741. DOI: 10.1002/cche.10169.
  • Liu, C.; Bhattarai, M.; Mikkonen, K. S.; Heinonen, M. Effects of Enzymatic Hydrolysis of Fava Bean Protein Isolate by Alcalase on the Physical and Oxidative Stability of Oil-in-Water Emulsions. J. Agric. Food Chem. 2019, 67(23), 6625–6632. DOI: 10.1021/acs.jafc.9b00914.
  • Hrčková, M.; Rusňáková, M.; Zemanovič, J. Enzymatic Hydrolysis of Defatted Soy Flour by Three DifferentProteases and Their Effect on the Functional Properties of ResultingProtein Hydrolysate. Czech J. Food Sci. 2002, 20(1), 7–14. DOI: 10.17221/3503-CJFS.
  • Marathe, S. J.; Jadhav, S. B.; Bankar, S. B.; Kumari Dubey, K.; Singhal, R. S. Improvements in the Extraction of Bioactive Compounds by Enzymes. Curr. Opin. Food Sci. 2019, 25, 62–72. DOI: 10.1016/j.cofs.2019.02.009.
  • Segura-Campos, M.; Ruiz-Ruiz, J.; Chel-Guerrero, L.; Betancur-Ancona, D. Antioxidant Activity of Vigna Unguiculata L. Walp and Hard-to-Cook Phaseolus Vulgaris L. Protein Hydrolysates. CyTA - J. Food. 2013, 11(3), 208–215. DOI: 10.1080/19476337.2012.722687.
  • Liu, S.; Han, Y.; Zhou, Z. Lactic Acid Bacteria in Traditional Fermented Chinese Foods. Food Res. Int. 2011, 44(3), 643–651. DOI: 10.1016/J.FOODRES.2010.12.034.
  • Krishna, C. Solid-State Fermentation Systems-An Overview. Crit. Rev. Biotechnol. 2005, 25(1–2), 1–30. DOI: 10.1080/07388550590925383.
  • Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Effect of Solid-State Fermentation with Cordyceps Militaris SN-18 on Physicochemical and Functional Properties of Chickpea (Cicer Arietinum L.) Flour. LWT - Food Sci. Technol. 2015, 63(2), 1317–1324. DOI: 10.1016/J.LWT.2015.04.046.
  • Bartkiene, E.; Krungleviciute, V.; Juodeikiene, G.; Vidmantiene, D.; Maknickiene, Z. Solid State Fermentation with Lactic Acid Bacteria to Improve the Nutritional Quality of Lupin and Soya Bean. J. Sci. Food Agric. 2015, 95(6), 1336–1342. DOI: 10.1002/jsfa.6827.
  • Chi, C. H.; Cho, S. J. Improvement of Bioactivity of Soybean Meal by Solid-State Fermentation with Bacillus Amyloliquefaciens versus Lactobacillus Spp. And Saccharomyces Cerevisiae. LWT - Food Sci. Technol. 2016, 68, 619–625. DOI: 10.1016/j.lwt.2015.12.002.
  • Hayes, M.; García-Vaquero, M. Bioactive Compounds from Fermented Food Products. Food Eng. Series 2016, 293–310. DOI: 10.1007/978-3-319-42457-6_14.
  • Wu, H.; Rui, X.; Li, W.; Chen, X.; Mei Jiang, M. D. Mung Bean (Vigna Radiata) as Probiotic Food through Fermentation with Lactobacillus Plantarum B1-6. LWT - Food Sci. Technol. 2015, 63(1), 445–451. DOI: 10.1016/J.LWT.2015.03.011.
  • Coda, R.; Melama, L.; Rizzello, C. G.; Curiel, J. A.; Sibakov, J.; Holopainen, U.; Pulkkinen, M.; Sozer, N. Effect of Air Classification and Fermentation by Lactobacillus Plantarum VTT E-133328 on Faba Bean (Vicia Faba L.) Flour Nutritional Properties. Int. J. Food Microbiol. 2015, 193, 34–42. DOI: 10.1016/j.ijfoodmicro.2014.10.012.
  • Çabuk, B.; Nosworthy, M. G.; Stone, A. K.; Korber, D. R.; Tanaka, T.; House, J. D.; Nickerson, M. T. Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technol. Biotechnol. 2018, 56(2), 257–264. DOI: 10.17113/ftb.56.02.18.5450.
  • Worku, A.; Sahu, O. Significance of Fermentation Process on Biochemical Properties of Phaseolus Vulgaris (Red Beans). Biotechnol. Rep. 2017, 16, 5. DOI: 10.1016/J.BTRE.2017.09.001.
  • Osman, M. A. Effect of Traditional Fermentation Process on the Nutrient and Antinutrient Contents of Pearl Millet during Preparation of Lohoh. J. Saudi Soc. Agric. Sci. 2011, 10(1), 1–6. DOI: 10.1016/j.jssas.2010.06.001.
  • Kaczmarska, K. T.; Chandra-Hioe, M. V.; Zabaras, D.; Frank, D.; Arcot, J. Effect of Germination and Fermentation on Carbohydrate Composition of Australian Sweet Lupin and Soybean Seeds and Flours. J. Agric. Food Chem. 2017, 65(46), 10064–10073. DOI: 10.1021/acs.jafc.7b02986.
  • Adewumi, G. A.; Odunfa, S. A. Effect of Controlled Fermentation on the Oligosaccharides Content of Two Common Nigerian Vigna Unguiculata Beans (Drum and Oloyin). Afr. J. Biotechnol. 2009, 8(11), 2626–2630. DOI: 10.4314/ajb.v8i11.60799.
  • Xing, Q.; Dekker, S.; Kyriakopoulou, K.; Boom, R. M.; Smid, E. J.; Schutyser, M. A. I. Enhanced Nutritional Value of Chickpea Protein Concentrate by Dry Separation and Solid State Fermentation. Innovative Food Sci. Emerging Technol. 2020, 59, 102269. DOI: 10.1016/j.ifset.2019.102269.
  • Wu, P.; Guo, Y.; Golly, M. K.; Ma, H.; He, R.; Luo, S.; Zhang, C.; Zhang, L.; Zhu, J. Feasibility Study on Direct Fermentation of Soybean Meal by Bacillus Stearothermophilus under Non‐sterile Conditions. J. Sci. Food Agric. 2019, 99(7), 3291–3298. DOI: 10.1002/jsfa.9542.
  • Çabuk, B.; Nosworthy, M. G.; Stone, A. K.; Korber, D. R.; Tanaka, T.; House, J. D.; Nickerson, M. T. Effect of Fermentation on the Protein Digestibility and Levels of Non-Nutritive Compounds of Pea Protein Concentrate. Food Technol. Biotechnol. 2018, 56(2), 257. DOI: 10.17113/FTB.56.02.18.5450.
  • Chandra-Hioe, M. V.; Wong, C. H. M.; Arcot, J. The Potential Use of Fermented Chickpea and Faba Bean Flour as Food Ingredients. Plant Foods Human Nutr. 2016, 71(1), 90–95. DOI: 10.1007/s11130-016-0532-y.
  • Doblado, R.; Frisa, J.; Munoz, R.; Vidal-Valverde, C. Fermentation of Vigna Sinensis Var. Carilla Flours by Natural Microo Ora and Lactobacillus Species. J. Food Prot. 2003, 66(12), 2313–2320. DOI: 10.4315/0362-028X-66.12.2313.
  • Byanju, B.; Hojilla‐Evangelista, M. P.; Lamsal, B. P. Fermentation Performance and Nutritional Assessment of Physically Processed Lentil and Green Pea Flour. J. Sci. Food Agric. November 2020, 2021, 1–15. DOI: 10.1002/jsfa.11229.
  • Kumitch, H. M.; Stone, A.; Nosworthy, M. G.; Nickerson, M. T.; House, J. D.; Korber, D. R.; Tanaka, T. Effect of Fermentation Time on the Nutritional Properties of Pea Protein‐enriched Flour Fermented by Aspergillus Oryzae and Aspergillus Niger. Cereal Chem. 2020, 97(1), 104–113. DOI: 10.1002/cche.10234.
  • Limón, R. I.; Peñas, E.; Torino, M. I.; Martínez-Villaluenga, C.; Dueñas, M.; Frias, J. Fermentation Enhances the Content of Bioactive Compounds in Kidney Bean Extracts. Food Chem. 2015, 172, 343–352. DOI: 10.1016/j.foodchem.2014.09.084.
  • Pulkkinen, M.; Coda, R.; Lampi, A.-M.; Varis, J.; Katina, K.; Piironen, V. Possibilities of Reducing Amounts of Vicine and Convicine in Faba Bean Suspensions and Sourdoughs. Eur. Food Res. Technol. 2019, 245(7), 1507–1518. DOI: 10.1007/S00217-019-03282-4.
  • Sahab, N. R. M.; Subroto, E.; Balia, R. L.; Utama, G. L. γ-Aminobutyric Acid Found in Fermented Foods and Beverages: Current Trends. Heliyon. 2020, 6(11), e05526. DOI: 10.1016/J.HELIYON.2020.E05526.
  • Curiel, J. A.; Coda, R.; Centomani, I.; Summo, C.; Gobbetti, M.; Rizzello, C. G. Exploitation of the Nutritional and Functional Characteristics of Traditional Italian Legumes: The Potential of Sourdough Fermentation. Int. J. Food Microbiol. 2015, 196, 51–61. DOI: 10.1016/j.ijfoodmicro.2014.11.032.
  • Liao, W.-C.; Wang, C.-Y.; Shyu, Y.-T.; Yu, R.-C.; Ho, K.-C. Influence of Preprocessing Methods and Fermentation of Adzuki Beans on γ-Aminobutyric Acid (GABA) Accumulation by Lactic Acid Bacteria. J. Funct. Foods. 2013, 5(3), 1108–1115. DOI: 10.1016/j.jff.2013.03.006.
  • Rizzello, C. G.; Nionelli, L.; Coda, R.; Gobbetti, M. Synthesis of the Cancer Preventive Peptide Lunasin by Lactic Acid Bacteria during Sourdough Fermentation. Nutr. Cancer. 2011, 64(1), 111–120. DOI: 10.1080/01635581.2012.630159.
  • Andrade Silva, L.; Honorio Pereira Lopes Neto, J.; Roberta Cardarelli, H. Exopolysaccharides Produced by Lactobacillus Plantarum: Technological Properties, Biological Activity, and Potential Application in the Food Industry. Ann. Microbiol. 2019, 69(4), 321–328. DOI: 10.1007/s13213-019-01456-9.
  • Oerlemans, M. M. P.; Akkerman, R.; Ferrari, M.; Walvoort, M. T. C.; de Vos, P. Benefits of Bacteria-Derived Exopolysaccharides on Gastrointestinal Microbiota, Immunity and Health. J. Funct. Foods. 2021, 76, 104289. DOI: 10.1016/J.JFF.2020.104289.
  • Xu, Y.; Coda, R.; Shi, Q.; Ivi Tuomainen, P.; Katina, K.; Tenkanen, M. Exopolysaccharides Production during the Fermentation of Soybean and Fava Bean Flours by Leuconostoc Mesenteroides DSM 20343. J. Agric. Food Chem. 2017, 65(13), 2805–2815. DOI: 10.1021/acs.jafc.6b05495.
  • Thushan Sanjeewa, W. G.; Wanasundara, J. P. D.; Pietrasik, Z.; Shand, P. J. Characterization of Chickpea (Cicer Arietinum L.) Flours and Application in Low-Fat Pork Bologna as a Model System. Food Res. Int. 2010, 43(2), 617–626. DOI: 10.1016/j.foodres.2009.07.024.
  • Prinyawiwatkul, W.; Beuchat, L. R.; Mcwatters, K. H.; Phillips, R. D. Changes in Fatty Acid, Simple Sugar, and Oligosaccharide Content of Cowpea (Vigna Unguiculata) Flour as a Result of Soaking, Boiling, and Fermentation with Rhizopus Microsporus var. oligosporus. Food Chemistry. 1996, 57(3), 405–413.
  • Modi, V. K.; Mahendrakar, N. S.; Rao, D. N.; Sachindra, N. M. Quality of Buffalo Meat Burger Containing Legume Flours as Binders. Meat Sci. 2003, 66(1), 143–149. DOI: 10.1016/S0309-1740(03)00078-0.
  • Dzudie, T.; Scher, J.; Hardy, J. Common Bean Flour as an Extender in Beef Sausages. J. Food Eng. 2002, 52(2), 143–147. DOI: 10.1016/S0260-8774(01)00096-6.
  • Aslinah, L. N. F.; Mat Yusoff, M.; Ismail-Fitry, M. R. Simultaneous Use of Adzuki Beans (Vigna Angularis) Flour as Meat Extender and Fat Replacer in Reduced-Fat Beef Meatballs (Bebola Daging). J. Food Sci. Technol. 2018, 55(8), 3241–3248. DOI: 10.1007/s13197-018-3256-1.
  • ImpossibleTM Foods: Meat Made from Plants https://impossiblefoods.com/ (accessed Mar 15, 2020).
  • Joshi, V.; Kumar, S. Meat Analogues: Plant Based Alternatives to Meat Products- A Review. Int.J. Food Ferment. Technol. 2015, 5(2), 107. DOI: 10.5958/2277-9396.2016.00001.5.
  • Samard, S.; Ryu, G. H. Physicochemical and Functional Characteristics of Plant Protein-Based Meat Analogs. J. Food Process. Preserv. 2019, 43(10), 1–11. DOI: 10.1111/jfpp.14123.
  • Sethi, S.; Tyagi, S. K.; Anurag, R. K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53(9), 3408–3423. DOI: 10.1007/s13197-016-2328-3.
  • Boye, J. I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S. H. Comparison of the Functional Properties of Pea, Chickpea and Lentil Protein Concentrates Processed Using Ultrafiltration and Isoelectric Precipitation Techniques. Food Res. Int. 2010, 43(2), 537–546. DOI: 10.1016/j.foodres.2009.07.021.
  • Sosulski, F. W.; Chakraborty, P.; Humbert, E. S. Legume-Based Imitation and Blended Milk Products. Can. Inst. Food Sci. Technol. J. 1978, 11(3), 117–123. DOI: 10.1016/s0315-5463(78)73224-4.
  • What Is a Pea Protein Beverage? - Nutrilicious http://www.nutrilicious.ca/pea-protein-beverage/ (accessed Mar 28, 2020).
  • Our Products – InnovoPro https://innovopro.com/products/ (accessed Mar 28, 2020).
  • Elsamani, M. O.; Habbani, S. S.; Babiker, E. E.; Mohamed Ahmed, I. A. Biochemical, Microbial and Sensory Evaluation of White Soft Cheese Made from Cow and Lupin Milk. LWT - Food Sci. Technol. 2014, 59(1), 553–559. DOI: 10.1016/j.lwt.2014.04.027.
  • Elsamani, O.; Elsamani, M. O.; Omer Elsamani, M. Organoleptic and Physicochemical Properties of Vegetable Milk Based Bio-Ice Cream Supplemented with Skimmed Milk Powder. Int. J. Nutr. Food Sci. 2016, 5(5), 361–366. DOI: 10.11648/j.ijnfs.20160505.17.
  • Millar, K. A.; Barry-Ryan, C.; Burke, R.; Hussey, K.; McCarthy, S.; Gallagher, E. Effect of Pulse Flours on the Physiochemical Characteristics and Sensory Acceptance of Baked Crackers. Int. J. Food Sci. Technol. 2017, 52(5), 1155–1163. DOI: 10.1111/ijfs.13388.
  • Bourré, L.; McMillin, K.; Borsuk, Y.; Boyd, L.; Lagassé, S.; Sopiwnyk, E.; Jones, S.; Dyck, A.; Malcolmson, L. Effect of Adding Fermented Split Yellow Pea Flour as a Partial Replacement of Wheat Flour in Bread. Legume Sci. 2019, 1(1), 1. DOI: 10.1002/leg3.2.
  • Simons, C. W.; Hall, C. Consumer Acceptability of Gluten-Free Cookies Containing Raw Cooked and Germinated Pinto Bean Flours. Food Sci. Nutr. 2018, 6(1), 77–84. DOI: 10.1002/fsn3.531.
  • Saadat, S.; Akhtar, S.; Ismail, T.; Sharif, M. K.; Shabbir, U.; Ahmad, N.; Ali, A. Multilegume Bar Prepared from Extruded Legumes Flour to Address Protein Energy Malnutrition. Ital. J. Food Sci. 2020, 32(1), 167–180. DOI: 10.14674/IJFS-1559.
  • Yadav, L.; Bhatnagar, V. Effect of Legume Supplementation on Physical and Textural Characteristics of Ready to Eat Cereal Bars. Asian J. Dairy Food Res. 2017, 36(3), 246–250. DOI: 10.18805/ajdfr.v36i03.8973.
  • Alvarez, M. D.; Fuentes, R.; Guerrero, G.; Canet, W. Characterization of Commercial Spanish Hummus Formulation: Nutritional Composition, Rheology, and Structure. Int. J. Food Prop. 2017, 20(4), 845–863. DOI: 10.1080/10942912.2016.1186692.
  • Wallace, T.; Murray, R.; Zelman, K. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients. 2016, 8(12), 766. DOI: 10.3390/nu8120766.
  • Martínez-Preciado, A. H.; Ponce-Simental, J. A.; Schorno, A. L.; Contreras-Pacheco, M. L.; Michel, C. R.; Rivera-Ortiz, K. G.; Soltero, J. F. A. Characterization of Nutritional and Functional Properties of “‘blanco Sinaloa’” Chickpea (Cicer Arietinum L.) Variety, and Study of the Rheological Behavior of Hummus Pastes. J. Food Sci. Technol. 2020, 57(5), 1856–1865. DOI: 10.1007/s13197-019-04220-8.
  • Guzel-Seydim, Z. B.; Kok-Tas, T.; Greene, A. K.; Seydim, A. C. Review: Functional Properties of Kefir. Crit. Rev. Food Sci. Nutr. 2011, 51(3), 261–268. DOI: 10.1080/10408390903579029.
  • Saadi, L. O.; Zaidi, F.; Oomah, B. D.; Haros, M.; Yebra, M. J.; Hosseinian, F. Pulse Ingredients Supplementation Affects Kefir Quality and Antioxidant Capacity during Storage. LWT - Food Sci. Technol. 2017, 86, 619–626. DOI: 10.1016/j.lwt.2017.08.011.
  • Lim, X. X.; Koh, W. Y.; Uthumporn, U.; Maizura, M.; Wan Rosli, W. I. The Development of Legume-Based Yogurt by Using Water Kefir as Starter Culture. Int. Food Res. J. 2019, 26(4), 1219–1228.
  • Adamidou, S.; Nengas, I.; Grigorakis, K.; Nikolopoulou, D.; Jauncey, K. Chemical Composition and Antinutritional Factors of Field Peas (Pisum Sativum), Chickpeas (Cicer Arietinum), and Faba Beans (Vicia Faba) as Affected by Extrusion Preconditioning and Drying Temperatures. Cereal Chem. J. 2011, 88(1), 80–86. DOI: 10.1094/CCHEM-05-10-0077.
  • Rathod, R. P.; Annapure, U. S. Effect of Extrusion Process on Antinutritional Factors and Protein and Starch Digestibility of Lentil Splits. LWT - Food Sci. Technol. 2016, 66, 114–123. DOI: 10.1016/j.lwt.2015.10.028.
  • Dueñas, M.; Fernández, D.; Hernández, T.; Estrella, I.; Muñoz, R. Bioactive Phenolic Compounds of Cowpeas (Vigna Sinensis L). Modifications by Fermentation with Natural Microflora and with Lactobacillus Plantarum ATCC 14917. J. Sci. Food Agric. 2005, 85(2), 297–304. DOI: 10.1002/jsfa.1924.
  • Fernandez-Orozco, R.; Frias, J.; Muñoz, R.; Zielinski, H.; Piskula, M. K.; Kozlowska, H.; Vidal-Valverde, C. Fermentation as a Bio-Process to Obtain Functional Soybean Flours. J. Agric. Food Chem. 2007, 55(22), 8972–8979. DOI: 10.1021/jf071823b.
  • Ojokoh, A. O.; Yimin, W. Effect of Fermentation on Chemical Composition and Nutritional Quality of Extruded and Fermented Soya Products. Int. J. Food Eng. 2011, 7(4), 1–16. DOI: 10.2202/1556-3758.1857.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.