844
Views
9
CrossRef citations to date
0
Altmetric
Review

Tropical Marine Fish Surimi By-products: Utilisation and Potential as Functional Food Application

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • FAO. The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2020.
  • Santana, P.; Huda, N.; Yang, T. Physicochemical Properties and Sensory Characteristics of Sausage Formulated Powder. J. Food Sci. Technol. 2015, 52(3), 1507–1515. DOI: 10.1007/s13197-013-1145-1.
  • Guenneugues, P.; Ianelli, J. Surimi and Surimi Seafood; CRC Press: New York, USA, 2013; pp 26–52.
  • Guenneugues, P.; 2019. Surimi Market Update. [online]. https://surimitech123.com/wp-content/uploads/2019/10/1h-Surimi-Market-Update-September-2019-Surimi-Forum-Madrid-September-2019.pdf (accessed Oct 10, 2020.
  • Kim, J. S.; Park, J. W. Maximising the Value of Marine By-Products; CRC Press: New York, USA, 2007; pp 196–228.
  • Torres, J. A.; Chen, Y.-C.; Rodrigo-García, J.; Jaczynski, J. Maximising the Value of Marine By-products; CRC Press: Boca Raton, USA, 2007; pp 65–88.
  • Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Nagai, T.; Tanaka, M. Characterisation of Acid-soluble Collagen from Skin and Bone of Bigeye Snapper (Priacanthus Tayenus). Food Chem. 2005, 89(3), 363–372. DOI: 10.1016/j.foodchem.2004.02.042.
  • Taheri, A.; Kenari, A. M. A.; Gildberg, A.; Behnam, S. Extraction and Physicochemical Characterization of Greater Lizardfish (Saurida Tumbil) Skin and Bone Gelatin. J. Food Sci. 2009, 74(3), 160–165. DOI: 10.1111/j.1750-3841.2009.01106.x.
  • Nithin, K. P.; Reddy, A. M.; Sudhakara, N. S.; Prabhu, R. M. Physical and Chemical Properties of Filleting Waste from Grouper and Goat Fish. Int. J. Environ. Sci. Technol. 2013, 2(4), 760–764.
  • Chuaychan, S.; Benjakul, S.; Nuthong, P. Element Distribution and Morphology of Spotted Golden Goatfish Fish Scales as Affected by Demineralisation. Food Chem. 2016, 197, 814–820. DOI: 10.1016/j.foodchem.2015.11.044.
  • Gajanan, P. G.; Elavarasan, K.; Shamasundar, B. A. Bioactive and Functional Properties of Protein Hydrolysates from Fish Frame Processing Waste Using Plant Proteases. Environ. Sci. Pollut. Res. 2016, 23(24), 24901–24911. DOI: 10.1007/s11356-016-7618-9.
  • Nawaz, A.; Engpeng, L.; Irshad, S.; Xiong, Z.; Shahbaz, H. M.; Siddique, F. Valorization of Fisheries By-products: Challenges and Technical Concerns to Food Industry. Trends Food Sci. Technol. 2020, 99, 34–43. DOI: 10.1016/j.tifs.2020.02.022.
  • Arruda, L. F.; Borghesi, R.; Oetterer, M. Use of Fish Waste as Silage - A Review. Braz. Arch. Biol. Technol. 2007, 50(5), 879–886. DOI: 10.1590/S1516-89132007000500016.
  • Haider, M. S.; Ashraf, M.; Azmat, H.; Khalique, A.; Javid, A.; Atique, U.; Zia, M.; Iqbal, K. J.; Akram, S. Nutritive Evaluation of Fish Acid Silage in Labeo Rohita Fingerlings Feed. J. Appl. Anim. Res. 2016, 44(1), 158–164. DOI: 10.1080/09712119.2015.1021811.
  • Bonilla-Méndez, J. R.; Hoyos-Concha, J. L. Methods of Extraction, Refining and Concentration of Fish Oil as a Source of Omega-3 Fatty Acids. CCorpoica Cienc. Y Tecnol. Agropecu. 2018, 19(3), 645–668. DOI: 10.21930/rcta.vol19num2art:684.
  • Ido, A.; Kaneta, M. Fish Oil and Fish Meal Production from Urban Fisheries Biomass in Japan. Sustainability. 2020, 12(8), 1–13. DOI: 10.3390/su12083345.
  • Radziemska, M.; Vaverková, M. D.; Adamcová, D.; Brtnický, M. Valorization of Fish Waste Compost as a Fertilizer for Agricultural Use. Waste Biomass Valorization. 2019, 10, 2537–2545. DOI: 10.1007/s12649-018-0288-8.
  • Nalinanon, S.; Benjakul, S.; Visessanguan, W.; Kishimura, H. Use of Pepsin for Collagen Extraction from the Skin of Bigeye Snapper (Priacanthus Tayenus). Food Chem. 2007, 104(2), 593–601. DOI: 10.1016/j.foodchem.2006.12.035.
  • Nooralabettu, K. P.; D’cunha, A.; Miranda, P.; Nayak, S. Anantharamakrishna. Isolation and Characterisation of Visceral Trypsin of Japanese Threadfin Bream (Nemipterus Japonicus). Bio Technol. Indian J. 2010, 5(2), 133–139.
  • Hanani, Z. N.; Roos, Y. H.; Kerry, J. P. Use and Application of Gelatin as Potential Biodegradable Packaging Materials for Food Products. Int. J. Biol. Macromol. 2014, 71, 94–102. DOI: 10.1016/j.ijbiomac.2014.04.027.
  • Aider, M. Chitosan Application for Active Bio-based Films Production and Potential in the Food Industry: Review. LWT- Food Sci. Technol. 2010, 43(6), 837–842. DOI: 10.1016/j.lwt.2010.01.021.
  • Slimane, E. B.; Sadok, S. Collagen from Cartilaginous Fish By-Products for a Potential Application in Bioactive Film Composite. Mar. Drugs. 2018, 16(6), 211. DOI: 10.3390/md16060211.
  • Wiriyaphan, C.; Xiao, H.; Decker, E. A.; Yongsawatdigul, J. Chemical and Cellular Antioxidative Properties of Threadfin Bream (Nemipterus Spp.) Surimi Byproduct Hydrolysates Fractionated by Ultrafiltration. Food Chem. 2015, 167, 7–15. DOI: 10.1016/j.foodchem.2014.06.077.
  • Atef, M.; Ojagh, S. M. Health Benefits and Food Applications of Bioactive Compounds from Fish Byproducts: A Review. J. Funct. Foods. 2017, 35, 673–681. DOI: 10.1016/j.jff.2017.06.034.
  • Choksawangkarn, W.; Phiphattananukoon, S.; Jaresitthikunchai, J.; Roytrakul, S. Antioxidative Peptides from Fish Sauce By-product: Isolation and Characterization. Agric. Nat. Resour. 2018, 52(5), 460–466. DOI: 10.1016/j.anres.2018.11.001.
  • Abachi, S.; Bazinet, L.; Beaulieu, L. Antihypertensive and Angiotensin-I-Converting Enzyme (Ace)-inhibitory Peptides from Fish as Potential Cardioprotective Compounds. Mar. Drugs. 2019, 17(11), 613. DOI: 10.3390/md17110613.
  • Zou, P.; Wang, J.; He, G. Purification, Identification, and in Vivo Activity of Angiotensin I-converting Enzyme Inhibitory Peptide, from Ribbonfish (Trichiurus Haumela) Backbone. J. Food Sci. 2013, 79(1), 1–7. DOI: 10.1111/1750-3841.12269.
  • Chen, J.; Liu, Y.; Yi, R.; Li, R.; Gao, R.; Xu, N.; Zheng, M. Characterization of Collagen Enzymatic Hydrolysates Derived from Lizardfish (Synodus Fuscus) Scales. J. Aquat. Food Prod. Technol. 2016, 26(1), 86–94. DOI: 10.1080/10498850.2015.1094687.
  • Dara, P. K.; Elavarasan, K.; Shamasundar, B. A. Improved Utilization of Croaker Skin Waste and Freshwater Carps Visceral Waste: Conversion of Waste to Health Benefitting Peptides. Int. J. Pept. Res. Ther. 2020, 26(4), 2641–2651. DOI: 10.1007/s10989-020-10053-3.
  • Salem, R. B. S.; Ktari, N.; Bkhairia, I.; Nasri, R.; Mora, L.; Kallel, R.; Hamdi, S.; Jamoussi, K.; Boudaouara, T.; El-Feki, A., et al. In Vitro and in Vivo Anti-diabetic and Anti-hyperlipidemic Effects of Protein Hydrolysates from Octopus Vulgaris in Alloxanic Rats. Food Res. Int. 2018, 106, 952–963. DOI: 10.1016/j.foodres.2018.01.068.
  • Nurdiani, R.; Vasiljevic, T.; Singh, T. K.; Donkor, O. N. Bioactive Peptides from Fish By-products with Anticarcinogenic Potential. Int. Food Res.J. 2017, 24(5), 1840–1849.
  • Dong, Y.; Sheng, G.; Fu, J.; Wen, K. Chemical Characterization and Anti-anaemia Activity of Fish Protein Hydrolysate from Saurida Elongata. J. Sci. Food Agric. 2005, 85, 2033–2039. DOI: 10.1002/jsfa.2219.
  • Shen, X. R.; Chen, X. L.; Xie, H. X.; He, Y.; Chen, W.; Luo, Q.; Yuan, W. H.; Tang, X.; Hou, D. W.; Jiang, D. W., et al. Beneficial Effects of A Novel Shark-skin Collagen Dressing for the Promotion of Seawater Immersion Wound Healing. Mil. Med. Res. 2017, 4(1), 33. DOI: 10.1186/s40779-017-0143-4.
  • Yang, T.; Zhang, K.; Li, B.; Hou, H. Effects of Oral Administration of Peptides with Low Molecular Weight from Alaska Pollock (Theragra Chalcogramma) on Cutaneous Wound Healing. J. Funct. Foods. 2018, 48, 682–691. DOI: 10.1016/j.jff.2018.08.006.
  • Nemati, M.; Huda, N.; Ariffin, F. Development of Calcium Supplement from Fish Bone Wastes of Yellowfin Tuna (Thunnus Albacares) and Characterization of Nutritional Quality. Int. Food Res. J. 2017, 24(6), 2419–2426.
  • Idowu, A. T.; Benjakul, S.; Sinthusamran, S.; Sae-leaw, T.; Suzuki, N.; Kitani, Y.; Sookchoo, P. Effect of Alkaline Treatment on Characteristics of Bio-Calcium and Hydroxyapatite Powders Derived from Salmon Bone. Appl. Sci. 2020, 10(12), 4141. DOI: 10.3390/app10124141.
  • Çatak, J. Determination of Niacin Profiles in Some Animal and Plant Based Foods by High Performance Liquid Chromatography: Association with Healthy Nutrition. J. Anim. Sci. Technol. 2019, 61(3), 138–146. DOI: 10.5187/jast.2019.61.3.138.
  • Santos, V. P.; Marques, N. S. S.; Maia, P. C. S. F.; de Lima, M. A. B.; Franco, L. O.; Campos-Takaki, G. M. Seafood Waste as Attractive Source of Chitin and Chitosan Production and Their Applications. Int. J. Mol. Sci. 2020, 21(12), 4290. DOI: 10.3390/ijms21124290.
  • Bechtel, P. J.; Johnson, R. B. Nutritional Properties of Pollock, Cod, and Salmon Processing By-products. J. Aquat. Food Prod. Technol. 2004, 13(2), 125–142. DOI: 10.1300/J030v13n02_11.
  • Chalamaiah, M.; Kumar, B. D.; Hemalatha, R.; Jyothirmayi, T. Fish Protein Hydrolysates: Proximate Composition, Amino Acid Composition, Antioxidant Activities and Applications: A Review. Food Chem. 2012, 135(4), 3020–3038. DOI: 10.1016/j.foodchem.2012.06.100.
  • Zamora-Sillero, J.; Gharsallaoui, A.; Prentice, C. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: An Overview. Mar. Biotechnol. 2018, 20(2), 118–130. DOI: 10.1007/s10126-018-9799-3.
  • Astutik, D. M.; Sulmartiwi, L.; Saputra, E.; Pujiastuti, D. Y. The Effect Addition of Kappa Carrageenan Flour to the Level of Gel Strength and Acceptability of Dumpling from Threadfin Bream Fish (Nemipterus Nematophorus) Surimi. IOP Conf. Ser.: Earth Environ. Sci. 2020, 441(1), 012003. DOI: 10.1088/1755-1315/441/1/012003.
  • Benjakul, S.; Visessanguan, W.; Chantarasuwan, C. Effect of High-temperature Setting on Gelling Characteristic of Surimi from Some Tropical Fish. Int. J. Food Sci. 2004, 39(6), 671–680. DOI: 10.1111/j.1365-2621.2004.00825.x.
  • Kittikun, A.; Bourneow, C.; Benjakul, S. Hydrolysis of Surimi Wastewater for Production of Transglutaminase by Enterobacter Sp. C2361 and Providencia Sp. C1112. Food Chem. 2012, 135(3), 1183–1191. DOI: 10.1016/j.foodchem.2012.05.044.
  • Benjakul, S.; Visessanguan, W.; Tueksuban, J.; Tanaka, M. Effect of Some Protein Additives on Proteolysis and Gel-forming Ability of Lizardfish (Saurida Tumbil). Food Hydrocoll. 2004, 18(3), 395–401. DOI: 10.1016/S0268-005X(03)00127-9.
  • Khan, M. A.; Hossain, M. A.; Hara, K.; Osatomi, K.; Ishihara, T.; Nozaki, Y. Effect of Enzymatic Fish‐scrap Protein Hydrolysate on Gel‐forming Ability and Denaturation of Lizard Fish Saurida Wanieso Surimi during Frozen Storage. Fish. Sci. 2003, 69(6), 1271–1280. DOI: 10.1111/j.0919-9268.2003.00755.x.
  • Klomklao, S.; Benjakul, S.; Kishimura, H.; Osakod, K.; Simpsone, B. K. Trypsin Inhibitor from Yellowfin Tuna (Thunnus Albacores) Roe: Effects on Gel Properties of Surimi from Bigeye Snapper (Priacanthus Macracanthus). LWT - Food Sci. Technol. 2016, 65, 122–127. DOI: 10.1016/j.lwt.2015.07.074.
  • Santana, P.; Huda, N.; Yang, T. A. Technology for Production of Surimi Powder and Potential of Applications. Int. Food Res. J. 2012, 19(4), 1313–1323.
  • Singh, A.; Prabowo, F. F.; Benjakul, S.; Pranoto, Y.; Chantakuna, K. Combined Effect of Microbial Transglutaminase and Ethanolic Coconut Husk Extract on the Gel Properties and In-vitro Digestibility of Spotted Golden Goatfish (Parupeneus Heptacanthus) Surimi Gel. Food Hydrocoll. 2020, 109, 106107. DOI: 10.1016/j.foodhyd.2020.106107.
  • Mehta, N. K.; Chouksey, M. K.; Balage, S. K.; Tripathi, G.; Nayak, B. B. Physicochemical and Gel Properties of Myofibrillar Protein from Sin Croaker (Johnius Dussumieri) Fish during Ice Storage. J. Aquat. Food Prod. Technol. 2017, 26(1), 1,71–85. DOI: 10.1080/10498850.2015.1092485.
  • Mishrak, S.; Dora, C. Effect of Frozen Storage on the Functional Property of Ribbon Fish (Trichiurus Savala) Cuvier. J. Food Process. Preserv. 2010, 34(s1), 364–372. DOI: 10.1111/j.1745-4549.2009.00427.x.
  • Ding, H. C.; Li, X. P.; Li, R. Z.; Yi, S. M.; Xu, Y. X.; Mi, H. B.; Li, J. R. Changes of Water State and Gel Characteristics of Hairtail (Trichiurus Lepturus) Surimi during Thermal Processing. J. Texture Stud. 2019, 50(4), 332–340. DOI: 10.1111/jtxs.12393.
  • Chen, Y.; Xu, A.; Yang, R.; Jia, Y.; Zhang, J.; Xu, D.; Yang, W. Myofibrillar Protein Structure and Gel Properties of Trichiurus Haumela Surimi Subjected to High Pressure or High Pressure Synergistic Heat. Food Bioproc. Technol. 2020, 13(4), 589–598. DOI: 10.1007/s11947-020-02416-x.
  • KML. Pony Fish Surimi. https://kmlfood.com/product/pony-fish-surimi/ Accessed18 October 2020
  • Nopianti, R.; Huda, N.; Ismail, N. A Review on the Loss of the Functional Properties of Proteins during Frozen Storage and the Improvement of Gel-forming Properties of Surimi. Am. J. Food Technol. 2011, 6(1), 19–30. DOI: 10.3923/ajft.2011.19.30.
  • Suresh, P. V.; Prabhu, G. N. Seafoods. In Valorization of Food Processing By-products; Chandrasekaran, M., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp 685–736.
  • Stevens, J. R.; Newton, R. W.; Tlusty, M.; Little, D. C. The Rise of Aquaculture By-products: Increasing Food Production, Value, and Sustainability through Strategic Utilisation. Mar. Policy. 2018, 90, 115–124. DOI: 10.1016/j.marpol.2017.12.027.
  • Malaweera, B. O.; Wijesundara, W. M. N. M. Use of Seafood Processing By-products in the Animal Feed Industry. Seafood Process. By-Prod. 2013, 315–339. DOI: 10.1007/978-1-4614-9590-1_15.
  • Herpandi, N. H.; Rosma, A.; Nadiah, W. The Tuna Fishing Industry: A New Outlook on Fish Protein Hydrolysate. Compr. Rev. Food Sci. Food Saf. 2011, 10(4), 195–207. DOI: 10.1111/j.1541-4337.2011.00155.x.
  • Ashraf, S. A.; Adnan, M.; Patel, M.; Siddiqui, A. J.; Sachidanandan, M.; Snoussi, M.; Fish-Based, H. S. Bioactives as Potent Nutraceuticals: Exploring the Therapeutic Perspective of Sustainable Food from the Sea. Mar. Drugs. 2020, 18(5), 265. DOI: 10.3390/md18050265.
  • Morrissey, M. T.; Tan, S. M. World Resources for Surimi. In Surimi and Surimi Seafood; Park, J.W., Ed.; CRC Press: New York, USA, 2000; pp 1–22.
  • Naqash, S. Y.; Nazeer, R. A. Antioxidant Activity of Hydrolysates and Peptide Fractions of Nemipterus Japonicus and Exocoetus Volitans Muscle. J. Aquat. Food Prod. Technol. 2010, 19(3), 180–192. DOI: 10.1080/10498850.2010.506256.
  • Raihan, N.; Abbasiliasi, S.; Tan, J. S.; Masomia, M.; Ibrahim, T. A. T.; Ariff, A. B.; Mustafa, S. pH Shift Solubilization and Precipitation Protein Extraction from the Wastes of the Threadfin Bream, Nemipterus Japonicus. J. Biochem. Microbiol. Biotechnol. 2019, 7(1), 10–16.
  • Dileep, A. O.; Shamasundar, B. A.; Binsi, P. K.; Badii, F.; Howell, N. K. Composition, Physicochemical and Rheological Properties of Fresh Bigeye Snapper Fish (Priacanthus Hamrur) Mince. J. Food Biochem. 2011, 36(5), 577–586. DOI: 10.1111/j.1745-4514.2011.00592.x.
  • Panpipat, W.; Chaijan, M. Functional Properties of pH-shifted Protein Isolates from Bigeye Snapper (Priacanthus Tayenus) Head By-product. Int. J. Food Prop. 2017, 20(3), 596–610. DOI: 10.1080/10942912.2016.1171778.
  • Rathnakumar, K.; Pancharaja, N. Development of Health Mix from Lizardfish and Its Nutritional Characteristics. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7(3), 3136–3144. DOI: 10.20546/ijcmas.2018.703.362.
  • Zhong, C.; Nakanishi, M.; Geng, J. T.; Okazaki, E.; Weng, W. Y.; Osako, K. Comparison of Non-volatile Taste-active Components in Fish Sauce Produced from Lizardfish Saurida Wanieso Viscera under Different Conditions. Fish. Sci. 2015, 81, 581–590. DOI: 10.1007/s12562-015-0865-8.
  • Wangtueai, S.; Noomhorm, A. Processing Optimization and Characterization of Gelatin from Lizardfish (Saurida Spp.) Scales. LWT - Food Sci. Technol. 2009, 42(4), 825–834. DOI: 10.1016/j.lwt.2008.11.014.
  • Cheow, C. S.; Norizah, M. S.; Kyaw, Z. Y.; Howell, N. K. Preparation and Characterisation of Gelatins from the Skins of Sin Croaker (Johnius Dussumieri) and Shortfin Scad (Decapterus Macrosoma). Food Chem. 2007, 101(1), 386–391. DOI: 10.1016/j.foodchem.2006.01.046.
  • Ramachandran, D.; Mohan, M.; Sankar, T. V. Physicochemical Characteristics of Muscle Proteins from Barracuda (Sphyraena Jello) of Different Weight Groups. LWT-Food Sci. Technol. 2007, 40(8), 1414–1426. DOI: 10.1016/j.lwt.2006.09.010.
  • Harianti, . Characterization Chemical Composition of Skin and Head Bones Barracuda (Sphyraena Jello) as Collagen Raw Material. Conf. Ser.: Earth Environ. Sci. 564 (012046)doi:10.1088/1755-1315/564/1/012046. . 2020.
  • Prasad, M. M.; Khasim, D. I.; Basu, S.; Gupta, S. S. Proximate Chemical Composition and Occurrence of Some Pathogenic Bacteria in Frozen Fish from Upper East Coast of India. In Proceedings of the First Workshop on Scientific Results of FORV Sagar Sampada Mathew, K. J.; Central Marine Fisheries Research Institute: Cochin, 1990; pp 441–444.
  • Heu, M. S.; Kim, H. J.; Yoon, M. S.; Park, D. Y.; Park, K. H.; Kim, J. S. Food Component Characterization of Muscle from Salmon Frame. J. Korean Soc. Food Sci. Nutr. 2008, 37(11), 1452–1456. DOI: 10.3746/jkfn.2008.37.11.1452.
  • Hemung, B. O.; Yongsawatdigul, J. Partial Purification and Characterization of Transglutaminase from Threadfin Bream (Nemipterus Sp.) Liver. J. Food Biochem. 2007, 32, 182–200. DOI: 10.1111/j.1745-4514.2008.00154.x.
  • Khantaphant, S.; Benjakul, S. Comparative Study on the Proteases from Fish Pyloric Caeca and the Use for Production of Gelatin Hydrolysate with Antioxidative Activity. Comp. Biochem. Physiol, Part B. 2008, 151(4), 410–419. DOI: 10.1016/j.cbpb.2008.08.011.
  • Liu, J. Y.; Yoshida, A.; Gao, Y. L.; Shirota, K.; Shiina, Y.; Noguchi, E.; Kuwahara, K.; Osatami, K. Purification and Characterization of a Sarcoplasmic Serine Proteinase from Threadfin Bream Nemipterus Virgatus Muscle. Food Chem. 2019, 284, 198–204. DOI: 10.1016/j.foodchem.2019.01.024.
  • Hau, P. V.; Benjakul, S. Purification and Characterization of Trypsin from Pyloric Caeca of Bigeye Snapper (Pricanthus Macracanthus). J. Food Biochem. 2006, 30(4), 478–495. DOI: 10.1111/j.1745-4514.2006.00089.x.
  • Phanturat, P.; Benjakul, S.; Visessanguan, W.; Roytrakul, S. Use of Pyloric Caeca Extract from Bigeye Snapper (Priacanthus Macracanthus) for the Production of Gelatin Hydrolysate with Antioxidative Activity. LWT-Food Sci. Technol. 2010, 43(1), 86–97. DOI: 10.1016/j.lwt.2009.06.010.
  • Zhong, C.; Sun, L. C.; Geng, J. T.; Okazaki, E.; Cao, M. J.; Weng, W. Y.; Osako, K. Characterization of Endogenous Proteases from Lizardfish (Saurida Wanieso) Viscera and Associated Salt-dependent Properties. Int. Food Res. J. 2016, 23(3), 1145–1153.
  • Souza, A. A. G.; Amaral, I. P. G.; Santo, A. R. E.; Carvalho, L. B.; Bezerra, R. S. Trypsin-like Enzyme from Intestine and Pyloric Caeca of Spotted Goatfish (Pseudupeneus Maculatus). Food Chem. 2005, 100, 1429–1434. DOI: 10.1016/j.foodchem.2005.12.016.
  • Pranoto, Y.; Istigani, M.; Santoso, U.; Lestari, L. A.; Erwanto, Y.; Rohman, A. Physicochemical Properties of Gelatin Extracted from Fivelined Threadfin Bream (Nemipterus Tambuloides) Skins. ICoA Conference Proceedings Matsuyama, Japan. 2015.
  • Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Prodpran, T.; Tanaka, M. Characterization of Edible Films from Skin Gelatin of Brownstripe Red Snapper and Bigeye Snapper. Food Hydrocoll. 2006, 20(4), 492–501. DOI: 10.1016/j.foodhyd.2005.04.007.
  • Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Isolation and Characterization of Collagen from Bigeye Snapper (Priacanthus Macracanthus) Skin. J. Sci. Food Agric. 2005, 85(7), 1203–1210. DOI: 10.1002/jsfa.2072.
  • Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Tanak, M. Effects of Plasticizers on the Properties of Edible Films from Skin Gelatin of Bigeye Snapper and Brownstripe Red Snapper. Eur. Food Res. Technol. 2006, 222(3–4), 229–235. DOI: 10.1007/s00217-005-0004-3.
  • Wangtueai, S.; Siebenhandl-Ehn, S.; Haltrich, D. Optimization of the Preparation of Gelatin Hydrolysates with Antioxidative Activity from Lizardfish (Saurida Spp.) Scales Gelatin. Chiang Mai J. Sci. 2016, 43(1), 68–79.
  • Sarbon, N. M.; Cheow, C. S.; Kyaw, Z. W.; Howell, N. K. Effects of Different Types and Concentration of Salts on the Rheological and Thermal Properties of Sin Croaker and Shortfin Scad Skin Gelatin. Int. Food Res. J. 2014, 21(1), 317–324.
  • Kumar, D. P.; Chandra, M. V.; Elavarasan, K.; Shamasundar, B. A. Structural Properties of Gelatin Extracted from Croaker Fish (Johnius Sp) Skin Waste. Int. J. Food Prop. 2017, 20(sup3), 2612–2625. DOI: 10.1080/10942912.2017.1381702.
  • Norziah, M. H.; Kee, H. Y.; Norita, M. Response Surface Optimization of Bromelain-assisted Gelatin Extraction from Surimi Processing Waste. Food Biosci. 2014, 5, 9–18. DOI: 10.1016/j.fbio.2013.10.001.
  • Ismail, N.; Suryani, N. H. Isolation of Threadfin Bream (Nemipterus Japonicus) Waste Collagen Using Natural Acid from Calamansi (Citrofortunella Microcarpa) Juice. Int. Food Res. J. 2015, 22(6), 2294–2301.
  • Nalinanon, S.; Benjakul, S.; Kishimura, H.; Osako, K. Type I Collagen from the Skin of Ornate Threadfin Bream (Nemipterus Hexodon): Characteristics and Effect of Pepsin Hydrolysis. Food Chem. 2011, 125(2), 500–507. DOI: 10.1016/j.foodchem.2010.09.040.
  • Benjakul, S.; Oungbho, K.; Visessanguan, W.; Thiansilakul, Y.; Roytrakul, S. Characteristics of Gelatin from the Skins of Bigeye Snapper, Priacanthus Tayenus and Priacanthus Macracanthus. Food Chem. 2009, 116(2), 445–451. DOI: 10.1016/j.foodchem.2009.02.063.
  • Thuy, L. T. M.; Okazaki, E.; Osako, K. Isolation and Characterization of Acid-soluble Collagen from the Scales of Marine Fishes from Japan and Vietnam. Food Chem. 2012, 149, 264–270. DOI: 10.3390/md10051066.
  • Nguyen, H. T. N.; Moniruzzaman, S. M.; Takahashi, K.; Okazaki, E.; Osako, K 2019 . The Physico-chemical Properties of Biodegradable Films from Lizardfish (Saurida Wanieso) Viscera (Stomach and Intestines). J-STAGE 19–31. DOI: 10.11322/tjsrae.19-31_OA.
  • Matmaroh, K.; Benjakul, S.; Prodpran, T.; Encarnacian, A. B.; Kishimura, H. Characteristics of Acid Soluble Collagen and Pepsin Soluble Collagen from Scale of Spotted Golden Goatfish (Parupeneus Heptacanthus). Food Chem. 2011, 129(3), 1179–1186. DOI: 10.1016/j.foodchem.2011.05.099.
  • Ismail, N.; Afiqah, M. Effect of Extraction on the Physico-chemical Characteristics of Collagen from Sin Croaker (Johniecop Sina) Waste. Int. Food Res J. 2018, 25(3), 1074–1080.
  • Gadi, D. S.; Trilaksani, W.; Nurhayati, T. The Histological, Extraction and Characterization Collagens Yellow-pike Conger Muarenesox Talabon. J. Tropic. Sci. Mar. Technol. 2017, 9(2), 665–683. (in Indonesian).
  • Piyadhammaviboon, P.; Wongngam, W.; Benjakul, S.; Yongsawatdigul, J. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activities of Protein Hydrolysates Prepared from Threadfin Bream (Nemipterus Spp.) Surimi By-products. J. Aquat. Food Prod. Technol. 2012, 21(3), 265–278. DOI: 10.1080/10498850.2011.594935.
  • Moniruzzaman, S. M.; Takahashi, K.; Nesa, N. U.; Keratimanoch, S.; Okazaki, E.; Osako, K. Characterization of Acid- and Pepsin-soluble Collagens Extracted from Scales of Carp and Lizardfish Caught in Japan, Bangladesh and Vietnam with a Focus on Thermostability. Food Sci. Technol. Res. 2019, 25(2), 331–340. DOI: 10.3136/fstr.25.331.
  • Nazeer, R. A.; Deeptha, R. Antioxidant Activity and Amino Acid Profiling of Protein Hydrolysates from the Skin of Sphyraena Barracuda and Lepturacanthus Savala. Int. J. Food Prop. 2013, 16(3), 600–611. DOI: 10.1080/10942912.2011.553757.
  • Nazeer, R. A.; Deeptha, R.; Jaiganesh, R. Radical Scavenging Activity of Seela (Sphyraena Barracuda) and Ribbon Fish (Lepturacanthus Savala) Backbone Protein Hydrolysates. Int. J. Pept. Res. Ther. 2011, 17(3), 209–216. DOI: 10.1007/s10989-011-9260-1.
  • Rajaram, D.; Nazeer, R. A. Antioxidant Properties of Protein Hydrolysates Obtained from Marine Fishes Lepturacanthus Savala and Sphyraena Barracuda. Int. J. Biotechnol. Biochem. 2010, 6(3), 435.
  • Wiriyaphan, C.; Chitsomboon, B.; Yongsawadigul, J. Isolation and Identification of Antioxidative Peptides from Hydrolysate of Threadfin Bream Surimi Processing Byproduct. J. Funct. Foods. 2013, 5, 1654–1664. DOI: 10.1016/j.jff.2013.07.009.
  • Chuaychan, S.; Benjakul, S. Effect of Maltodextrin on Characteristics and Antioxidative Activity of Spray-dried Powder of Gelatin and Gelatin Hydrolysate from Scales of Spotted Golden Goatfish. J. Food Sci. Technol. 2016, 53(9), 3583–3592. DOI: 10.1007/s13197-016-2340-7.
  • Wiriyaphan, C.; Chitsomboon, B.; Yongsawadigul, J. Antioxidant Activity of Protein Hydrolysates Derived from Threadfin Bream Surimi Byproducts. Food Chem. 2012, 132(1), 104–111. DOI: 10.1016/j.foodchem.2011.10.040.
  • Wu, S.; Sun, J.; Tong, Z.; Lan, X.; Zhao, Z.; Liao, D. Optimization of Hydrolysis Conditions for the Production of Angiotensin-I Converting Enzyme-inhibitory Peptides and Isolation of a Novel Peptide from Lizard Fish (Saurida Elongata) Muscle Protein Hydrolysate. Mar.Drugs. 2012, 10(12), 1066–1080. DOI: 10.3390/md10051066.
  • Chen, J.; Liu, Y.; Wang, G.; Sun, S.; Liu, R.; Hong, B.; Gao, R.; Bai, K. Processing Optimization and Characterization of Angiotensin-Ι-Converting Enzyme Inhibitory Peptides from Lizardfish (Synodus Macrops) Scale Gelatin. Mar. Drugs. 2018, 16(7), 228. DOI: 10.3390/md16070228.
  • Ismail, N.; Jamilah, S.; Saari, N.; Yaakob, C. M. Optimization of Hydrolysis Conditions for the Production of Threadfin Bream (Nemipterus Japonicus) Hydrolysate by Alcalase. J. Muscle Foods. 2005, 16, 87–102. DOI: 10.1111/j.1745-4573.2005.07404.x.
  • Ismail, N.; Ruba’iee, A. N. A.; Ya, K. Z. Storage Stability and Antioxidant Properties of Chicken Ball Incorporated with Threadfin Bream (Nemipterus Japonicas) Hydrolysate. J. Acad. UiTM Negeri Sembilan. 2019, 7(2), 1–8.
  • Ismail, N.; Sahibon, N. S. Evaluation of Bouillon Cube Prepared with the Addition of Threadfin Bream (Nemipterus Japonicas) Hydrolysate. Tropic. Agric. Sci. 2018, 41(3), 1315–1328.
  • Ismail, N.; Jamilah, B.; Saari, N.; Man, Y. B. C. Sensory Characteristics of Threadfin Bream (Nemipterus Japonicus) Hydrolysate. J. Aquat. Food Prod. Technol. 2005, 14(3), 45–59. DOI: 10.1300/J030v14n03_04.
  • Chuaychan, S.; Benjakul, S.; Sae-leaw, T. Gelatin Hydrolysate Powder from the Scales of Spotted Golden Goatfish: Effect of Drying Conditions and Juice Fortification. Drying Technol. 2016, 35(10), 1195–1203. DOI: 10.1080/07373937.2016.1236129.
  • Murthy, L. N.; Phadke, G. G.; Mohan, C. O.; Chandra, M. V.; Annamalai, J.; Visnuvinayagam, S.; Unnikrishnan, P.; Ravishankar, C. N. Characterization of Spray-dried Hydrolyzed Proteins from Pink Perch Meat Added with Maltodextrin and Gum Arabic. J. Aquat. Food Prod. Technol. 2017, 26(8), 913–928. DOI: 10.1080/10498850.2017.1362684.
  • Mótyán, J. A.; Tóth, F.; Tőzsér, J. Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules. 2013, 3(4), 923–942. DOI: 10.3390/biom3040923.
  • Kieliszek, M.; Misiewicz, A. Microbial Transglutaminase and Its Application in the Food Industry. A Review. Folia Microbiol. (Praha). 2014, 59(3), 241–250. DOI: 10.1007/s12223-013-0287-x.
  • Jafari, H.; Lista, A.; Siekapen, M. M.; Ghaffari-Bohlouli, P.; Nie, L.; Alimoradi, H.; Shavandi, A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers. 2020, 12(10), 2230. DOI: 10.3390/polym12102230.
  • Mahboob, S. Isolation and Characterization of Collagen from Fish Waste Material- Skin, Scales and Fins of Catla Catla and Cirrhinus Mrigala. J. Food Sci. Technol. 2015, 52(7), 4296–4305. DOI: 10.1007/s13197-014-1520-6.
  • Tiago, H.; Silva, T. H.; Moreira-Silva, J.; Marques, A. L. P.; Domingues, A.; Bayon, Y.; Reis, R. L. Marine Origin Collagens and Its Potential Applications. Mar. Drugs. 2014, 12(12), 5881–5901. DOI: 10.3390/md12125881.
  • Cheng, F.; Hsu, F.; Chang, H.; Lin, L.; Sakata, R. Effect of Different Acids on the Extraction of Pepsin-solubilised Collagen Containing Melanin from Silky Fowl Feet. Food Chem. 2009, 113(2), 563–567. DOI: 10.1016/j.foodchem.2008.08.043.
  • Pati, F.; Adhikari, B.; Dhara, S. Isolation and Characterization of Fish Scale Collagen of Higher Thermal Stability. Bioresour. Technol. 2010, 101(10), 3737–3742. DOI: 10.1016/j.biortech.2009.12.133.
  • Itoh, Y.; Maekawa, T.; Suwansakornkul, P.; Obatake, A. Seasonal Variation in Gel Forming Characteristics of Three Lizard Species. Fish. Sci. 1995, 61(6), 942–947. DOI: 10.2331/fishsci.61.942.
  • Ward, A. G.; Courts, A. The Science and Technology of Gelatin; Academic Press: New York, 1977; pp 564.
  • Benjakul, S.; Yarnpakdee, S.; Visessanguan, W.; Phatcharat, S. Combination Effects of Whey Protein Concentrate and Calcium Chloride on the Properties of Goatfish Surimi Gel. J. Texture Stud. 2010, 41(3), 341–357. DOI: 10.1111/j.1745-4603.2010.00228.x.
  • Djailani, F.; Trilaksani, W.; Nurhayati, T. Extraction Optimization and Characterization of Collagen from Yellow Pike Conger Swim Bladder with Acid-hydro-exctraction Method. J. Indonesian Fish. Prod. Technol. 2016, 10(2), 156–167. (in Indonesian).
  • Arnesen, J. A.; Gildberg, A. Preparation and Characterisation of Gelatine from the Skin of Harp Seal (Phoca Groendlandica). Bioresour. Technol. 2002, 82(2), 191–194. DOI: 10.1016/S0960-8524(01)00164-X.
  • Ranathunga, S.; Rajapakse, N.; Kim, S. Purification and Characterization of Antioxidative Peptide Derived from Muscle of Conger Eel (Conger Myriaster). Eur. Food Res. Technol. 2006, 222(3–4), 310–315. DOI: 10.1007/s00217-005-0079-x.
  • Singh, A.; Benjakul, S.; Huda, N. Characteristics and Nutritional Value of Biscuits Fortified with Debittered Salmon (Salmo Salar) Frame Hydrolysate. Int. J. Food Sci. Technol. 2020, 55(12), 3553–3562. DOI: 10.1111/IJFS.14688.
  • Masniyom, P. Deterioration and Shelf-life Extension of Fish and Fishery Products by Modified Atmosphere Packaging. Songklanakarin J. Sci. Technol. 2011, 33, 181–192.
  • Ghaly, A. E.; Dave, D.; Budge, S.; Brooks, M. S. Fish Spoilage Mechanisms and Preservation Techniques: Review. Am. J. Appl. Sci. 2010, 7(7), 859–877. DOI: 10.3844/ajassp.2010.859.877.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.