179
Views
1
CrossRef citations to date
0
Altmetric
Review

Natural Bioactive Compounds from Foods Inhibited Pigmentation Especially Potential Application of Fucoxanthin to Chloasma: a Mini-Review

&

References

  • Liu, T.; Bai, M.; Liu, B.; Miao, M. Characteristic Analysis of TCM External Treatment of Chloasma[C]//IOP Conference Series: Materials Science and Engineering. IOP Publ. 2019, 612(2), 022046.
  • Anderson, L.; Rodrigues, M. Quality of Life in a Cohort of Melasma Patients in Australia. Aust. J. Dermatol Aust. J. Dermatol. 2018, 60(2), 160–162. DOI: 10.1111/ajd.12969.
  • Seth, V. M.; Pandya, A. G. Melasma: A Comprehensive Update Part II. J. Am. Acad. Dermatol. 2011, 65(4), 699–711. DOI: 10.1016/j.jaad.2011.06.001.
  • Miot, L. D.; Miot, H. A.; Polettini, J.; Silva, M. G.; Marques, M. E. Morphologic Changes and the Expression of Alpha-Melanocyte Stimulating Hormone and Melanocortin-1 Receptor in Melasma Lesions: A Comparative Study. Am. J. Dermatol Am. J. Dermatol. 2010, 32(7), 676–682. DOI: 10.1097/DAD.0b013e3181cd4396.
  • Passeron, T.; Picardo, M. Melasma, a Photoaging Disorder. Pigm. Cell Melanoma Res. 2018, 31(4), 461–465. DOI: 10.1111/pcmr.12684.
  • Ogbechie-Godec, O. A.; Elbuluk, N. Melasma: An Up-To-Date Comprehensive Review. Dermatol. Ther. 2017, 7(3), 305–318. DOI: 10.1007/s13555-017-0194-1.
  • LEE, A. Y. Recent Progress in Melasma Pathogenesis. Pigm. Cell Melanoma Res. 2015, 28(6), 648–660. DOI: 10.1111/pcmr.12404.
  • Mohanla, D.; Chandel, S.; Kumar, P. Ultraviolet Radiations: Skin Defense-Damage Mechanism. Adv. Exp. Med. Biol. 2017, 996, 71–87.
  • Nahhas, A. F.; Abdelmalek, Z. A.; Kohii, I.; Braunberger, T. L.; Lim, H. W.; Hamzavi, I. H. The Potential Role of Antioxidants in Mitigating Skin Hyperpigmentation Resulting from Ultraviolet and Visible Light-Induced Oxidative Stress. Photodermatol. Photoimmunol. Photomed. 2019, 35(6), 420–428. DOI: 10.1111/phpp.12423.
  • Choubey, V.; Sarkar, R.; Garg, V.; Kaushik, S.; Ghunawat, S.; Sonthalia, S. Role of Oxidative Stress in Melasma: A Prospective Study on Serum and Blood Markers of Oxidative Stress in Melasma Patients. Int. J. Dermatol. Int. J. Dermatol Int. J. Dermatol. Int. J. Dermatol. 2017, 56(9), 939–943. DOI: 10.1111/ijd.13695.
  • Murray, M.; Dordevic, A. L.; Ryan, L.; Bonham, M. P. An Emerging Trend in Functional Foods for the Prevention of Cardiovascular Disease and Diabetes: Marine Algal Polyphenols. Crit. Rev. Food Sci. Nutr. 2017, 58(8), 1342–1358. DOI: 10.1080/10408398.2016.1259209.
  • Uehara, S.; Sakata, O.; Ryu, A.; Arakane, K. The Inhibitory Effects of Proanthocyanidin-Rich Extract from Grape Seeds on Melanogenesis in vitro and in vivo.Proceedings of The Pharmaceutical Society of Japan 119th Annual Meeting, Japan, 19992:111.
  • Sharma, R. A.; Gescher, A. J.; Steward, W. P. Curcumin: The Story so Far. Euro. J. Cancer. 2005, 41(13), 1955–1968. DOI: 10.1016/j.ejca.2005.05.009.
  • Yussif, N. M.; Koranyb, N. S.; Abbassc, M. M. Evidence of the Effect of Intraepidermic Vitamin C Injection on Melanocytes and Keratinocytes in Gingival Tissues: In vivo Study. Dentistry. 2017, 7(03), 417. DOI: 10.4172/2161-1122.1000417.
  • Braicu, C.; Ladomery, M. R.; Chedea, V. S.; Irimie, A.; Berindan-Neagoe, I. The Relationship Between the Structure and Biological Actions of Green Tea Catechins. Food Chem. 2013, 141(3), 3282–3289. DOI: 10.1016/j.foodchem.2013.05.122.
  • Moon, E. J.; Kim, A. J.; Kim, S. Y. Sarsasapogen Increases Melanin Synthesis via Induction of Tyrosinase and Microphthalmia-Associated Transcription Factor Expression in Melan-A Cells. Biomol. TherBiomol. Ther. 2012, 20(3), 340–345. DOI: 10.4062/biomolther.2012.20.3.340.
  • Heo, S. J.; Jeon, Y. J. Protective Effect of Fucoxanthin Isolated from Sargassum Siliquastrum on UV-B Induced Cell Damage. J. Photochem. Photobiol. B Biol. 2009, 95(2), 101–107. DOI: 10.1016/j.jphotobiol.2008.11.011.
  • Connan, S. F.; Goulard, V.; Stiger, E.; Deslandes, E. A.; Ar Gall, E. Interspecific and Temporal Variation in Phlorotannin Levels in an Assemblage of Brown Algae. Botanica. Marina. 2004, 47(5), 410–416. DOI: 10.1515/BOT.2004.057.
  • Heffernan, N.; Brunton, N.; FitzGerald, R.; Smyth, T. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins. Mar. Drugs. 2015, 13(1), 509–528. DOI: 10.3390/md13010509.
  • Shibata, T. S.; Kawaguchi, Y.; Hama, M.; Inagaki, K.; Yamaguchi, T.; Nakamura, T. Local and Chemical Distribution of Phlorotannins in Brown Algae. J. Appl. Phycol. 2004, 16(4), 291–296. DOI: 10.1023/B:JAPH.0000047781.24993.0a.
  • Chowdhury, M. T. H.; Bangoura, I.; Kang, J. Y.; Cho, J. Y.; Joo, J.; Choi, Y. S.; Hwang, D. S.; Hong, Y.-K. Comparison of Ecklonia Cava, Ecklonia Stolonifera and Eisenia Bicyclis for Phlorotannin Extraction. J. Environ. Biol J. Environ. Biol. 2014, 35(4), 713–719.
  • Kim, J.; Yoon, M.; Yang, H.; Jo, J.; Han, D.; Jeon, Y.-J.; Cho, S. Enrichment and Purification of Marine Polyphenol Phlorotannins Using Macroporous Adsorption Resins. Food Chem. 2014, 162, 135–142. DOI: 10.1016/j.foodchem.2014.04.035.
  • Shibata, T.; Kawaguchi, S.; Hama, Y.; Inagaki, M.; Yamaguchi, K.; Nakamura, T. Local and Chemical Distribution of Phlorotannins in Brown Algae. J. Appl. Phycol. 2004, 16(4), 291–296. DOI: 10.1023/B:JAPH.0000047781.24993.0a.
  • Kim, S. M.; Kang, K.; Jeon, J. S.; Jho, E. H.; Kim, C. Y.; Nho, C. W.; Um, B.-H. Isolation of Phlorotannins from Eisenia Bicyclis and Their Hepatoprotective Effect Against Oxidative Stress Induced by Tert-Butyl Hyperoxide. Appl. Biochem. Biotechnol. 2011, 165(5–6), 1296–1307. DOI: 10.1007/s12010-011-9347-3.
  • Creis, E.; Delage, L.; Charton, S.; Goulitquer, S.; Leblanc, C.; Potin, P.; Ar Gall, E. Constitutive or Inducible Protective Mechanisms Against UV-B Radiation in the Brown Alga Fucus Vesiculosus. A Study Gene Expression Phlorotannin. Content Responses. 2015, 10(6), e0128003. DOI: 10.1371/journal.pone.0128003.
  • Cuong, D. X.; Boi, V. N.; Van, T. T. T.; Hau, L. N. Effect of Storage Time on Phlorotannin Content and Antioxidant Activity of Six Sargassum Species from Nhatrang Bay, Vietnam. J. Appl. Phycol. 2015, 28(1), 567–572. DOI: 10.1007/s10811-015-0600-y.
  • Bocanegra, A. S.; Bastida, S.; Benedí, J.; Ródenas, S.; Sánchez-Muniz, F. J. Characteristics and Nutritional and Cardiovascular-Health Properties of Seaweeds. Med. Food med. Food. 2009, 12(2), 236–258. DOI: 10.1089/jmf.2008.0151.
  • Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein; Regenstein, J. M. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14(4), 446–465. DOI: 10.1111/1541-4337.12136.
  • Li, Y. X.; Wijesekara, I.; Li, Y.; Kim; Kim, S.-K. S.K. Phlorotannins as Bioactive Agents from Brown Algae. Process Biochem. 2011, 46(12), 2219–2224. DOI: 10.1016/j.procbio.2011.09.015.
  • Collins, K.; Fitzgerald, G.; Stanton, C.; Ross, R. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases. Mar. Drugs. 2016, 14(3), 60. DOI: 10.3390/md14030060.
  • Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50(3), 586–621. DOI: 10.1002/anie.201000044.
  • Kozlowski, D.; Trouillas, P.; Calliste, C.; Marsal, P.; Lazzaroni, R.; Duroux, J. C. Density Functional Theory Study of the Conformational,electronic, and Antioxidant Properties of Natural Chalcones. J. Phys. Chem. 2007, 111(1), 138–1145.
  • Trouillas, P.; Marsal, P.; Svobodova, A.; Vostalova, J.; Gazak, R.; Hrbac, J.; Sedmera, P.; Ken, V.; Lazzaroni, R.; Duroux, J. L., et al. Mechanism of the Antioxidant Action of Silybin and 2,3-Dehydrosilybin Flavonolignans: A Joint Experimental and Theoretical Study. J. Phys. Chem. 2018, 112(5), 1054–1063. DOI: 10.1021/jp075814h.
  • Libow, L. F.; Scheide, S.; Deleo, V. A. Ultraviolet Radiation Acts as an Independent Mitogen for Normal Human Melanocytes in Culture. Pigm. Cell Res Pigm. Cell Res. 1988, 1(6), 397–401. DOI: 10.1111/j.1600-0749.1988.tb00142.x.
  • Gilchrest, B. A.; Park, H. Y.; Eller, M. S.; Yaar, M. Mechanisms of Ultraviolet Light-Induced Pigmentation. Photochem. Photobiol. 1996, 63(1), 1–10. DOI: 10.1111/j.1751-1097.1996.tb02988.x.
  • Bagchi, D.; Garg, A.; Krohn, R. L.; Bagchi, M.; Bagchi, D. J.; Balmoori, J.; Stohs, S. J. Protective Effects of Grape Seed Proanthocyanidins and Selected Antioxidants Against TPA-Induced Hepatic and Brain Lipid Peroxidation and DNA Fragmentation, and Peritoneal Macrophage Activation in Mice. Gen. Pharmacol. 1998, 30(5), 771–776. DOI: 10.1016/S0306-3623(97)00332-7.
  • Yamakoshi, J.; Otsuka, F.; Sano, A.; Tokutake, S.; Saito, M.; Kikuchi, M.; Kubota, Y. Lightening Effect on Ultraviolet-Induced Pigmentation of Guinea Pig Skin by Oral Administration of Proanthocyanidin-Rich Extract from Grape Seeds. Pigm. Cell Res. 2003, 16, 629–638. DOI: 10.1046/j.1600-0749.2003.00093.x.
  • Bagchi, D.; Garg, A.; Krohn, R.; Bagchi, M.; Bagchi, D.; Balmoori, J.; Stohs, S. Protective Effects of Grape Seed Proanthocyanidins and Selected Antioxidants Against TPA-Induced Hepatic and Brain Lipid Peroxidation and DNA Fragmentation, and Peritoneal Macrophage Activation in Mice. Gen. Pharmacol: Vasc. Sys. 1998, 30(5), 771–776. DOI: 10.1016/S0306-3623(97)00332-7.
  • Taraz, M.; Niknam, S.; Ehsani, A. H. Tranexamic Acid in Treatment of Melasma: A Comprehensive Review of Clinical Studies. Dermatol. Ther. 2017, 30(3), e12465. DOI: 10.1111/dth.12465.
  • Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharmaceutics. 2007, 4(6), 807–818. DOI: 10.1021/mp700113r.
  • Menon, V. P.; Sudheer, A. R. Antioxidant and Anti-Inflammatory Properties of Curcumin. Mol. Targets Ther. Uses Curcumin Health. 2007, 595, 105–125.
  • Payton, F.; Sandusky, P.; Alworth, W. L. NMR Study of the Solution Structure of Curcumin. J. Nat. Prod. 2007, 70(2), 143–146. DOI: 10.1021/np060263s.
  • Jenkins, D. C.; Charles, I. G.; Thomsen, L. L.; Moss, D. W.; Holmes, L. S.; Baylis, S. A.; Moncada, S.; Westmore, K.; Emson, P. C.; Moncada, S. Roles of Nitric Oxide in Tumor Growth. P. NatL. A. Sci. India B. 1995, 92(10), 4392–4396. DOI: 10.1073/pnas.92.10.4392.
  • Landino, L. M.; Crews, B. C.; Timmons, M. D.; Morrow, J. D.; Marnett, L. J. Peroxynitrite, the Coupling Product of Nitric Oxide and Superoxide, Activates Prostaglandin Biosynthesis. P. NatL. A. Sci. India B. 1996, 93(26), 15069–15074. DOI: 10.1073/pnas.93.26.15069.
  • Pielesz, A.; Binias, D.; Bobinski, R.; Sarna, E.; Paluch, J.; Waksmańska, W. The Role of Topically Applied- Irascorbic Acid in ex-Vivo Examination of Burr Injured Human Skin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 185, 185-270-285. DOI:10.1016/j.saa.2017.05.055.
  • Magrì, A.; Germano, G.; Lorenzato, A.; Lamba, S.; Chilà, R.; Montone, M.; Bardelli, A.; Ceruti, T.; Sassi, F.; Arena, S., et al. High-Dose Vitamin C Enhances Cancer Immunotherapy. Sci. Transl. MedSci. Transl. Med. 2020, 12(532), 8707. DOI: 10.1126/scitranslmed.aay8707.
  • Nishikimi, M.; Fukuyama, R.; Minoshima, S.; Shimizu, N.; Yagi, K. Cloning and Chromosomal Mapping of the Human Nonfunctional Gene for L-Gulono-Gamma-Lactone Oxidase, the Enzyme for L-Ascorbic Acid Biosynthesis Missing in Man. Biol. Chem. 1994, 269(18), 13685–13688. DOI: 10.1016/S0021-9258(17)36884-9.
  • McArdle, F.; Rhodes, L. E.; Parslew, R.; Jack, C. I.; Friedmann, P. S.; Jackson, M. J. UVR-Induced Oxidative Stress in Human Skin in Vivo: Effects of Oral Vitamin C Supplementation. Free Radical Biol. Med. 2002, 33(10), 1355–1362. DOI: 10.1016/S0891-5849(02)01042-0.
  • Wang, K.; Jiang, H.; Li, W.; Qiang, M.; Dong, T.; Li, H. Role of Vitamin C in Skin Diseases. Front. Physiol. 2018, 9, 819. DOI: 10.3389/fphys.2018.00819.
  • Godic, A.; Poljšak, B.; Adamic, M.; Dahmane, R. The Role of Antioxidants in Skin Cancer Prevention and Treatment. Med. cell. 2014, 2014, 860479. DOI: 10.1155/2014/860479.
  • Choi, Y. K.; Rho, Y. K.; Yoo, K. H.; Lim, Y. Y.; Li, K.; Kim, B. J.; Seo, S. J.; Kim, M. N.; Hong, C. K.; Kim, D.-S. Effects of Vitamin C Vs. Multivitamin on Melanogenesis: Comparative Study in vitro and in vivo. Pharmacol. Ther. 2010, 49(2), 218–226. DOI: 10.1111/j.1365-4632.2009.04336.x.
  • Gadkari, P. V.; Balaraman, M. Catechins: Sources, Extraction and Encapsulation: A Review. Food Bioprod. Process. 2015, 93, 122–138. DOI: 10.1016/j.fbp.2013.12.004.
  • Chacko, S. M.; Thambi, P. T.; Kuttan, R.; Nishigaki, I. Beneficial Effects of Green Tea: A Literature Review. Chin. Med chin. Med. 2010, 5(1), 1–9.
  • Maruyama, H.; Kawakami, F.; Lwin, T. T.; Imai, M.; Shamsa, F. Biochemical Characterization of Ferulic Acid and Caffeic Acid Which Effectively Inhibit Melanin Synthesis via Different Mechanisms in B16 Melanoma Cells. Biol. Pharm. Bull. 2018, 41(5), 806–810. DOI: 10.1248/bpb.b17-00892.
  • Qi, Y.; Liu, J.; Liu, Y.; Yan, D.; Wu, H.; Li, R.; Ren, X. Polyphenol Oxidase Plays a Critical Role in Melanin Formation in the Fruit Skin of Persimmon. Food Chem. 2020, 330, 127253.
  • Kiyama, R. Estrogenic Biological Activity and Underlying Molecular Mechanisms of Green Tea Constituents. Trends Food Sci. Technol. 2020, 95, 247–260. DOI: 10.1016/j.tifs.2019.11.014.
  • Kim, Y. C.; Choi, S. Y.; Park, E. Y. Anti-Melanogenic Effects of Black, Green, and White Tea Extracts on Immortalized Melanocytes. Alexandria J. Vet. Sci. 2015, 16(2), 135–143. DOI: 10.4142/jvs.2015.16.2.135.
  • Mayer, A. M. Polyphenol Oxidases in Plants and Fungi: Going Places a Review. Phytochem. Rev. 2006, 67(21), 2318–2331. DOI: 10.1016/j.phytochem.2006.08.006.
  • Kim, B. H.; Park, K. C.; Park, J. H.; Lee, C. G.; Ye, S. K.; Park, J. Y. Inhibition of Tyrosinase Activity and Melanin Production by the Chalcone Derivative 1-(2-Cyclohexylmethoxy-6-Hydroxy-Phenyl)-3-(4-Hydroxymethyl-Phenyl)-Propenone. Biochem Bioph. Res. Co.480, 4, 648–654. DOI: 10.1016/j.bbrc.2016.10.110.
  • Rauf, A.; Imran, M.; Suleria, H. A. R.; Ahmad, B.; Peters, D. G.; Mubarak, M. S. A Comprehensive Review of the Health Perspectives of Resveratrol. Food Funct. 2017, 8(12), 4284–4305. DOI: 10.1039/C7FO01300K.
  • Li, W.; Ma, X.; Li, N.; Liu, H.; Dong, Q.; Zhang, J.; Wang, W.; Liu, Y.; Liang, Q.; Zhang, S., et al. Resveratrol Inhibits Hexokinases II Mediated Glycolysis in Non-Small Cell Lung Cancer via Targeting Akt Signaling Pathway. Exp. Cell Res. 2016, 349(2), 320–327. DOI: 10.1016/j.yexcr.2016.11.002.
  • Wang, L. X.; Li, H. Effects of Resveratrol on the Nrf2 and HO-1 Expression in Diabetic Vascular Endothelial Cells. Int. J. Clin. Exp. Med. 2017, 10(1), 684–691.
  • Ku, C. R.; Cho, Y. H.; Hong, Z. Y.; Lee, H.; Lee, S. J.; Hong, S.-S.; Lee, E. J. The Effects of High Fat Diet and Resveratrol on Mitochondrial Activity of Brown Adipocytes. Endocrinol. Metab. 2016, 31(2), 328–335. DOI: 10.3803/EnM.2016.31.2.328.
  • Tian, Y.; Ma, J.; Wang, W.; Zhang, L.; Xu, J.; Wang, K.; Li, D. Resveratrol Supplement Inhibited the NF-κB Inflammation Pathway Through Activating AMPKα-SIRT1 Pathway in Mice with Fatty Liver. Mol. Cell. Biochem. 2016, 422(1–2), 75–84. DOI: 10.1007/s11010-016-2807-x.
  • Wu, Y.; Jia, L. L.; Zheng, Y. N.; Xu, X. G.; Luo, Y. J.; Wang, B.; Li, Y. H. Resveratrate Protects Human Skin from Damage Due to Repetitive Ultraviolet Irradiation. J. Eur. Acad. Dermatol. 2012, 27(3), 345–350.
  • Hearing, V. J.; Tsukamoto, K. Enzymatic Control of Pigmentation in Mammals. FASEB J. 1991, 5(14), 2902–2909. DOI: 10.1096/fasebj.5.14.1752358.
  • Newton, R. A.; Cook, A. L.; Roberts, D. W.; Helen Leonard, J.; Sturm, R. A. Post-Transcriptional Regulation of Melanin Biosynthetic Enzymes by cAmp and Resveratrol in Human Melanocytes. J. Invest. Dermatol. 2007, 127(9), 2216–2227. DOI: 10.1038/sj.jid.5700840.
  • Ohguchi, K.; T Anaka, T.; Ito, T.; Iinuma, M.; Matsumoto, K.; Akao, Y.; Nozawa, Y. Inhibitory Effects of Resveratrol Derivatives from Dipterocarpaceae Plants on Tyrosinase Activity. Biosci. Biotechnol. Biochem. 2003, 67, 1587–1589.
  • Lee, T. H.; Seo, J. O.; Baek, S. H.; Kim, S. Y. Inhibitory Effects of Resveratrol on Melanin Synthesis in Ultraviolet B-Induced Pigmentation in Guinea Pig Skin. Biomol. Ther. 2014, 22(1), 35–40. DOI: 10.4062/biomolther.2013.081.
  • Zhang, W. Y.; Gao, B. Y.; Lei, X. Q. Progress on Physicochemical and Biological Properties, Preparation Techniques and Physiological Activities on Fucoxanthin. Mar. Drugs. 2015, 34(3), 81–94.
  • Lourenço-Lopes, C.; Fraga-Corral, M.; Jimenez-Lopez, C.; Carpena, M.; Pereira, A. G.; Garcia-Oliveira, P.; Prieto, M. A.; Simal-Gandara, J. Biological Action Mechanisms of Fucoxanthin Extracted from Algae for Application in Food and Cosmetic Industries. Trends Food Sci. Technol. 2021, 117, 08-01. DOI:10.1016/j.tifs.2021.03.012.
  • D’Orazio, N.; Eugenio, G.; Gammone, G.; de Girolamo, M.; Ficoneri, C.; Riccioni, G. Fucoxantin: A Treasure from the Sea. Mar. Drugs. 2012, 10(3), 6046-6016. DOI: 10.3390/md10030604.
  • Ren, R.; Azuma, Y.; Ojima, T.; Hashimoto, T.; Mizuno, M.; Nishitani, Y.; Yoshida, M.; Azuma, T.; Kanazawa, K. Modulation of Platelet Aggregation-Related Eicosanoid Production by Dietary F-Fucoidan from Brown Alga Laminaria Japonica in Human Subjects. Br. J. Nutr. 2013, 110(5), 880–890. DOI: 10.1017/S000711451200606X.
  • Earl, H.; Harrison. Mechanisms Involved in the Intestinal Absorption of Dietary Vitamin a and Provitamin a Carotenoids. Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids. 2012, 1821(1), 70–77. DOI: 10.1016/j.bbalip.2011.06.002.
  • Miyashita, K.; Nishikawa, S.; Beppu, F.; Tsukui, T.; Abe, M.; Hosokawa, M. The Allenic Carotenoid Fucoxanthin, a Novel Marine Nutraceutical from Brown Seaweeds. J. Sci. Food Agric. 2011, 91(7), 1166–1174. DOI: 10.1002/jsfa.4353.
  • Asai, A.; Yonekura, L.; Nagao, A. Low Bioavailability of Dietary Epoxyxanthophylls in Humans. Br. J. Nutr. 2008, 100(2), 273–277. DOI: 10.1017/S0007114507895468.
  • Roberts, R.; Green, J.; Lewis, B. L .Lutein and Zeaxanthin in Eye and Skin Health. Clin. Dermatol. 2009, 27(2), 195–201. DOI: 10.1016/j.clindermatol.2008.01.011.
  • Palombo, P.; Fabrizi, G.; Ruocco, V.; Ruocco, E.; Fluhr, J.; Roberts, R.; Morganti, P. Beneficial Long-Term Effects of Combined Oral/Topical Antioxidant Treatment with the Carotenoids Lutein and Zeaxanthin on Human Skin: A Double-Blind, Placebo-Controlledstudy. Skin Pharmacol. Physiol. 2007, 20(4), 199–210. DOI: 10.1159/000101807.
  • Wang, S. H.; Xue, C. H. Chemical Structure, Properties and Bioactivities of Fucoxanthin. Sci. Technol. Food Ind. 2010, 31(6), 408–410.
  • Bae, M.; Kim, M. B.; Park, Y. K.; Lee, J. Y. Health Benefits of Fucoxanthin in the Prevention of Chronic Diseases. BBA - Mol. Cell. Biol. Lipids. 2020, 1865(11), 158618. DOI: 10.1016/j.bbalip.2020.158618.
  • Sarmiento‐padilla, A. L.; Moreira, S.; Hugo Rocha, A. O.; Rafael, G.; Govea‐salas, M.; Pinales‐márquez, C. D.; Ruiz, H. A.; Rodríguez‐jasso, R. M. Circular Bioeconomy in the Production of Fucoxanthin from Aquatic Biomass: Extraction and Bioactivities. Chem. Technol. Amp; BiotechnolChem. Technol. Amp; Biotechnol. 2021, 97(6), 1363–1378. DOI: 10.1002/jctb.6930.
  • Nunes, N.; Leça, J. M.; Pereira, A. C.; Pereira, V.; Ferraz, S.; Barreto, M. C.; Marques, J. C.; de Carvalho, M. A. A. P. Evaluation of Fucoxanthin Contents in Seaweed Biomass by Vortex-Assisted Solid-Liquid Microextraction Using High-Performance Liquid Chromatography with Photodiode Array Detection. Algal. Res. 2019, 42, 101603. DOI: 10.1016/j.algal.2019.101603.
  • Foo, S. C.; Yusoff, F. M.; Ismail, M.; Basri, M.; Yau, S. K.; Khong, N. M. H.; Chan, K. W.; Ebrahimi, M. Antioxidant Capacities of Fucoxanthin-Producing Algae as Influenced by Their Carotenoid and Phenolic Contents. J. Biotechnol. 2016, 241, 175–183. DOI: 10.1016/j.jbiotec.2016.11.026.
  • Fernandes, F.; Barbosa, M.; Oliveira, A. P.; Azevedo, I. C.; Sousa-Pinto, I.; Valentão, P.; Andrade, P. B. Culture Medium Influence on Growth, Fatty Acid, and Pigment Composition of Choricystis Minor Var. Minor: A Suitable Microalga for Biodiesel Production. J. Appl. Phycol. 2016, 28(6), 3689–3696. DOI: 10.1007/s10811-016-0883-7.
  • Diehl, N.; Karsten, U.; Bischof, K. Impacts of Combined Temperature and Salinity Stress on the Endemic Arctic Brown Seaweed Laminaria Solidungula J. Agardh. Agardh. Polar Biology. 2020, 43(6), 647–656. DOI: 10.1007/s00300-020-02668-5.
  • Pardilhó, S. L.; Machado, S. F.; Bessada, S. M. F.; Almeida, M.; Oliveira, M. B.; Dias, J. Marine Macroalgae Waste from Northern Portugal: A Potential Source of Natural Pigments. Waste Biomass Valorization. 2020, 12(1), 239–249. DOI: 10.1007/s12649-020-01016-2.
  • Susanto, E.; Fahmi, A. S.; Abe, M.; Hosokawa, M.; Miyashita, K. Lipids, Fatty Acids, and Fucoxanthin Content from Temperate and Tropical Brown Seaweeds. Aquat. Procedia. 2016, 7, 66–75. DOI: 10.1016/j.aqpro.2016.07.009.
  • Abu-Ghannam, N.; Shannon, E. Seaweed Carotenoid, Fucoxanthin, as a Functional Food. Microb. Funct. Foods Nutraceuticals. 2017, 1, 39–54.
  • Satomi, Y.; Nishino, H. Implication of Mitogen-Activated Protein Kinase in the Induction of G1 Cell Cycle Arrest and Gadd45 Expression by the Carotenoid Fucoxanthin in Human Cancer Cells. BBA-Gen. Subj. 2009, 1790(4), 260–266. DOI: 10.1016/j.bbagen.2009.01.003.
  • Maeda, H.; Hosokawa, M.; Sashima, T.; Funayama, K.; Miyashita, K. Effect of Medium-Chain Triacylglycerols on Anti-Obesity Effect of Fucoxanthin. J. Oleo Sci. 2007, 56(12), 615–621. DOI: 10.5650/jos.56.615.
  • Sugawara, T.; Matsubara, K.; Akagi, R.; Mori, M.; Hirata, T. Antiangiogenic Activity of Brown Algae Fucoxanthin and Its Deacetylated Product, Fucoxanthinol. J. Agric. Food Chem. 2006, 54(26), 9805–9810. DOI: 10.1021/jf062204q.
  • Sakai, S.; Sugawara, T.; Matsubara, K.; Hirata, T. Inhibitory Effect of Carotenoids on the Degranula-Tion of Mast Cells via Suppression of Antigen-Induced Aggregation of High Affinity IgE Receptors. J. Biol. Chem. 2009, 284(41), 28172–28179. DOI: 10.1074/jbc.M109.001099.
  • Costin, G. E.; Hearing, V. J. Human Skin Pigmentation: Melanocytes Modulate Skin Color in Response to Stress. F ASEB J. 2007, 21(4), 976–994. DOI: 10.1096/fj.06-6649rev.
  • Imokawa, G.; KOBAYASHI, T.; MIYAGISHI, M.; HIGASHI, K.; YADA, Y. The Role of Endothelin-1 in Epidermal Hyper-Pigmentation and Signaling Mechanisms of Mitogenesis and Mel-Anogenesis. Pigm. Cell Res. 1997, 10(4), 218–228. DOI: 10.1111/j.1600-0749.1997.tb00488.x.
  • Ang, E. J.; Kim, S. C.; Lee, J. H.; Lee, J. R.; Kim, I. K.; Baek, S. Y.; Kim, Y. W. Fucoxanthin, the Constituent of Laminaria Japonica, Triggers AMPK Mediated Cytoprotection and Autophagy in Hepatocytes Under Oxidative Stress. BMC Complementary Altern. Med. 2018, 18(1), 97–107. DOI: 10.1186/s12906-018-2164-2.
  • Marconi, A.; Franchi, J.; Bonté, F.; Romagnoli, G.; Maurelli, R.; Failla, C. M.; Dumas, M.; Marconi, A.; Fila, C.; Pincelli, C. Expression and Function of Neurotrophins and Their Receptors in Cultured Human Keratinocytes. J. Invest. Dermatol. 2003, 121(6), 1515–1521. DOI: 10.1111/j.1523-1747.2003.12624.x.
  • Scott, G.; Leopardi, S.; Printup, S.; Malhi, N.; Seiberg, M.; LaPoint, R. Proteinase-Activated Receptor-2 Stimulates Prostaglandin Production in Keratinocytes: Analysis of Prostaglandin Receptors on Human Melanocytes and Effects of PGE2 and PGF2α on Melanocyte Dendricity. J. Invest. Dermatol. 2004, 122(5), 1214–1224. DOI: 10.1111/j.0022-202X.2004.22516.x.
  • Yamaguchi, Y.; Hearing, V. J. Physiological Factors That Regulate Skin Pigmentation. BioFactors. 2009, 35(2), 193–199. DOI: 10.1002/biof.29.
  • Yaar, M.; Eller, M. S.; DiBenedetto, P.; Reenstra, W. R.; Zhai, S.; McQuaid, T.; Archambault, M.; Gilchrest, B. A. The Trk Family of Receptors Mediates Nerve Growth Factor and Neurotrophin-3 Effects in Melanocytes. J. Clin. Invest. 1994, 94(4), 1550–1562. DOI: 10.1172/JCI117496.
  • Maoka, T.; Tanaka, J.; Shan, S.-J.; Maoka, T. Anti-Pigmentary Activity of Fucoxanthin and Its Influence on Skin mRna Expression of Melanogenic Molecules. J. Pharm. Pharmacol. September. 2010, 62(9), 1137–1145. DOI: 10.1111/j.2042-7158.2010.01139.x.
  • Truzzi, F.; Marconi, A.; Lotti, R.; Dallaglio, K.; French, L. E.; Hempstead, B. L.; Pincelli, C. Neurotrophins and Their Receptors Stimulate Mela-Noma Cell Proliferation and Migration. J. Invest. Dermatol. 2008, 128(8), 2031–2040. DOI: 10.1038/jid.2008.21.
  • Scott, G.; Fricke, A.; Fender, A.; McClelland, L.; Jacobs, S. Prostaglandin E2 Regulates Melanocyte Dendrite Formation Through Activation of PKCζ. Exp. Cell Res. 2017, 313(18), 3840–3850. DOI: 10.1016/j.yexcr.2007.07.039.
  • Song, H. S.; Sim, S. S. Acteoside Inhibits Alpha-MSH-Induced Melanin Production in B16 Melanoma Cells by Inactivation of Adenyl Cyclase. J. Pharm. Pharmacol. 2009, 61, 1347–1351.
  • Seckin, H. Y.; Kalkan, G.; Bas, Y.; Akbaş, A.; Önder, Y.; Özyurt, H.; Şahin, M. Oxidative Stress Status in Patients with Melasma. Cutaneous Ocul. Toxicol. 2014, 33(3), 212–217. DOI: 10.3109/15569527.2013.834496.
  • Stratton, R. D. Diagnostic Imaging and Differential Diagnosis. Oxid. Stress Antioxid. Prot . 2016, 2, 11–20.
  • Gawel, S.; Wardas, M.; Niedworok, E.; Wardas, P. [Malondialdehyde (MDA) as a Lipid Peroxidation Marker]. Wiadomosci lekarskie. 2004, 57(9–10), 453–455.
  • Heo, S. J.; Jeon, Y. J. Protective Effect of Fucoxanthin Isolated from Sargassum Siliquastrum on UVB Induced Cell Damage. J. Photochem. Photobiol., B. 2019, 95, 101–107.
  • Mio, M.; Kosuke, T.; Naoki, H. Protective and Therapeutic Effects of Fucoxanthin Against Sunburn Caused by UV Irradiation. J. Pharmacol. Sci. 2016, 132, 55–64.
  • Sangeetha, R. K.; Bhaskar, N.; Baskaran, V. Comparative Effects of β-Carotene and Fucoxanthinon Retinol Deficiency Induced Oxidative Stress in Rats. Mol. Cell. Biochem. 2009, 331(1–2), 59–67. DOI: 10.1007/s11010-009-0145-y.
  • Nishino, H. Cancer Prevention by Carotenoids. Fundam. Mol. Mech. Mutagen. 1998, 71, 159–163.
  • Miyashita, K.; Beppu, F.; Hosokawa, M.; Liu, X.; Wang, S. Nutraceutical Characteristics of the Brown Seaweed Carotenoid Fucoxanthin. Arch.Biochem.Biophy. 2020, 686, 108364. DOI: 10.1016/j.abb.2020.108364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.