3,157
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0

ORCID Icon, ORCID Icon, ORCID Icon, , , , , , ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon & show all

References

  • Boyacι-Gündüz, C. P.; Ibrahim, S. A.; Wei, O. C.; Galanakis, C. M. Transformation of the Food Sector : Security and Resilience During the COVID-19 Pandemic. Foods. 2021, 10, 497. DOI: 10.3390/foods10030497.
  • Galanakis, C. M. The Food Systems in the Era of the Coronavirus (COVID-19) Pandemic Crisis. Foods. 2020, 9, 523. DOI: 10.3390/foods9040523.
  • Chowdhury, R. B.; Moore, G. A.; Weatherley, A. J.; Arora, M. Key Sustainability Challenges for the Global Phosphorus Resource, Their Implications for Global Food Security, and Options for Mitigation. J. Clean. Prod. 2017, 140, 945–963. DOI: 10.1016/J.JCLEPRO.2016.07.012.
  • El Bilali, H. Research on Agro-Food Sustainability Transitions: A Systematic Review of Research Themes and an Analysis of Research Gaps. J. Clean. Prod. 2019, 221, 353–364. DOI: 10.1016/J.JCLEPRO.2019.02.232.
  • Rowan, N. J.; Galanakis, C. M. Unlocking Challenges and Opportunities Presented by COVID-19 Pandemic for Cross-Cutting Disruption in Agri-Food and Green Deal Innovations: Quo Vadis? Sci. Total Environ. 2020, 748, 141362. DOI: 10.1016/J.SCITOTENV.2020.141362.
  • Chapman, J.; Power, A.; Netzel, M. E.; Sultanbawa, Y.; Smyth, H. E.; Truong, V. K.; Cozzolino, D. Challenges and Opportunities of the Fourth Revolution: A Brief Insight into the Future of Food. Crit. Rev. Food Sci. Nutr. 2021, 62, 2845–2853. DOI: 10.1080/10408398.2020.1863328.
  • Pu, H.; Kamruzzaman, M.; Sun, D. -W. Selection of Feature Wavelengths for Developing Multispectral Imaging Systems for Quality, Safety and Authenticity of Muscle Foods-A Review. Trends Food Sci. Technol. 2015, 45, 86–104. DOI: 10.1016/J.TIFS.2015.05.006.
  • Sobral, M. M. C.; Cunha, S. C.; Faria, M. A.; Ferreira, I. M. P. L. V. O. Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants. Compr. Rev. Food Sci. Food Saf. 2018, 17, 309–333. DOI: 10.1111/1541-4337.12327.
  • Chen, Y. -N.; Sun, D. -W.; Cheng, J. -H.; Gao, W. -H. Recent Advances for Rapid Identification of Chemical Information of Muscle Foods by Hyperspectral Imaging Analysis. Food Eng. Rev. 2016, 8, 336–350. DOI: 10.1007/s12393-016-9139-1.
  • Hassoun, A.; Ojha, S.; Tiwari, B.; Rustad, T.; Nilsen, H.; Heia, K.; Cozzolino, D.; El-Din Bekhit, A.; Biancolillo, A.; Wold, J. P. Monitoring Thermal and Non-Thermal Treatments During Processing of Muscle Foods: A Comprehensive Review of Recent Technological Advances. Appl. Sci. 2020, 10, 6802. DOI: 10.3390/app10196802.
  • Hassoun, A.; Måge, I.; Schmidt, W. F.; Temiz, H. T.; Li, L.; Kim, H. -Y.; Nilsen, H.; Biancolillo, A.; Aït-Kaddour, A.; Sikorski, M., et al. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods Over the Past Five Years. Foods. 2020, 9, 1069. DOI: 10.3390/foods9081069.
  • Hematyar, N.; Rustad, T.; Sampels, S.; Kastrup Dalsgaard, T. Relationship Between Lipid and Protein Oxidation in Fish. Aquac. Res. 2019, 50, 1393–1403. DOI: 10.1111/are.14012.
  • Rathod, N. B.; Ranveer, R. C.; Benjakul, S.; Kim, S.; Pagarkar, A. U.; Patange, S.; Ozogul, F. Recent Developments of Natural Antimicrobials and Antioxidants on Fish and Fishery Food Products. Compr. Rev. Food Sci. Food Saf. 2021, 1541–4337.12787. DOI:10.1111/1541-4337.12787.
  • Luo, J.; Taylor, C.; Nebl, T.; Ng, K.; Bennett, L. E. Effects of Macro-Nutrient, Micro-Nutrient Composition and Cooking Conditions on in vitro Digestibility of Meat and Aquatic Dietary Proteins. Food Chem. 2018, 254, 292–301. DOI: 10.1016/J.FOODCHEM.2018.01.164.
  • Hassoun, A.; Heia, K.; Lindberg, S.; Nilsen, H. Spectroscopic Techniques for Monitoring Thermal Treatments in Fish and Other Seafood : A Review of Recent Developments and Applications. Foods. 2020, 9, 767. DOI: 10.3390/foods9060767.
  • Kubo, M. T.; Siguemoto, É. S.; Funcia, E. S.; Augusto, P. E.; Curet, S.; Boillereaux, L.; Sastry, S. K.; Gut, J. A. Non-Thermal Effects of Microwave and Ohmic Processing on Microbial and Enzyme Inactivation: A Critical Review. Curr. Opin. Food Sci. 2020, 35, 36–48. DOI: 10.1016/j.cofs.2020.01.004.
  • Bhat, Z. F.; Morton, J. D.; Bekhit, A. E. A.; Kumar, S.; Bhat, H. F. Thermal Processing Implications on the Digestibility of Meat, Fish and Seafood Proteins. Compr. Rev. Food Sci. Food Saf. 2021, 1541–4337.12802. DOI:10.1111/1541-4337.12802.
  • Rastogi, N. K. Recent Trends and Developments in Infrared Heating in Food Processing. Crit. Rev. Food Sci. Nutr. 2012, 52, 737–760. DOI: 10.1080/10408398.2010.508138.
  • Troy, D. J.; Ojha, K. S.; Kerry, J. P.; Tiwari, B. K. Sustainable and Consumer-Friendly Emerging Technologies for Application Within the Meat Industry: An Overview. Meat Sci. 2016, 120, 2–9. DOI: 10.1016/J.MEATSCI.2016.04.002.
  • Jiang, H.; Liu, Z.; Wang, S. Microwave Processing: Effects and Impacts on Food Components. Crit. Rev. Food Sci. Nutr. 2018, 58, 2476–2489. DOI: 10.1080/10408398.2017.1319322.
  • Guo, Q.; Sun, D. -W.; Cheng, J. -H.; Han, Z. Microwave Processing Techniques and Their Recent Applications in the Food Industry. Trends Food Sci. Technol. 2017, 67, 236–247. DOI: 10.1016/J.TIFS.2017.07.007.
  • Guzik, P.; Kulawik, P.; Zając, M.; Migdał, W. Microwave Applications in the Food Industry: An Overview of Recent Developments. Crit. Rev. Food Sci. Nutr. 2022, 62, 7989–8008. DOI: 10.1080/10408398.2021.1922871.
  • Zhang, L.; Lan, R.; Zhang, B.; Erdogdu, F.; Wang, S. A Comprehensive Review on Recent Developments of Radio Frequency Treatment for Pasteurizing Agricultural Products. Crit. Rev. Food Sci. Nutr. 2021, 61, 380–394. DOI: 10.1080/10408398.2020.1733929.
  • Zhang, Y.; Li, S.; Jin, S.; Li, F.; Tang, J.; Jiao, Y. Radio Frequency Tempering Multiple Layers of Frozen Tilapia Fillets: The Temperature Distribution, Energy Consumption, and Quality. Innov. Food Sci. Emerg. Technol. 2021, 68, 102603. DOI: 10.1016/j.ifset.2021.102603.
  • Makroo, H. A.; Rastogi, N. K.; Srivastava, B. Ohmic Heating Assisted Inactivation of Enzymes and Microorganisms in Foods: A Review. Trends Food Sci. Technol. 2020, 97, 451–465. DOI: 10.1016/j.tifs.2020.01.015.
  • Alkanan, Z. T.; Altemimi, A. B.; Al-Hilphy, A. R. S.; Watson, D. G.; Pratap-Singh, A.; Alkanan, Z. T.; Altemimi, A. B.; Al-Hilphy, A. R. S.; Watson, D. G. Ohmic Heating in the Food Industry: Developments in Concepts and Applications During 2013–2020. Appl. Sci. 2021, 11, 2507. DOI: 10.3390/APP11062507.
  • Aboud, S. A.; Altemimi, A. B.; Al-HiIphy, A. R. S.; Yi-Chen, L.; Cacciola, F. A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules. 2019, 24, 1–20. DOI: 10.3390/molecules24224125.
  • Zhao, Y. M.; de Alba, M.; Sun, D. W.; Tiwari, B. Principles and Recent Applications of Novel Non-Thermal Processing Technologies for the Fish Industry—a Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 728–742. DOI: 10.1080/10408398.2018.1495613.
  • Olatunde, O. O.; Benjakul, S. Nonthermal Processes for Shelf-Life Extension of Seafoods: A Revisit. Compr. Rev. Food Sci. Food Saf. 2018, 17, 892–904. DOI: 10.1111/1541-4337.12354.
  • Ali, A.; Wei, S.; Liu, Z.; Fan, X.; Sun, Q.; Xia, Q.; Liu, S.; Hao, J.; Deng, C. Non-Thermal Processing Technologies for the Recovery of Bioactive Compounds from Marine By-Products. LWT. 2021, 147, 111549. DOI: 10.1016/J.LWT.2021.111549.
  • Chakka, A. K.; Sriraksha, M. S.; Ravishankar, C. N. Sustainability of Emerging Green Non-Thermal Technologies in the Food Industry with Food Safety Perspective: A Review. LWT. 2021, 151, 112140. DOI: 10.1016/J.LWT.2021.112140.
  • Picart-Palmade, L.; Cunault, C.; Chevalier-Lucia, D.; Belleville, M. P.; Marchesseau, S. Potentialities and Limits of Some Non-Thermal Technologies to Improve Sustainability of Food Processing. Front Nutr. 2019, 5. DOI: 10.3389/fnut.2018.00130.
  • Rosario, D. K. A.; Rodrigues, B. L.; Bernardes, P. C.; Conte-Junior, C. A. Principles and Applications of Non-Thermal Technologies and Alternative Chemical Compounds in Meat and Fish. Crit. Rev. Food Sci. Nutr. 2021, 61, 1163–1183. DOI: 10.1080/10408398.2020.1754755.
  • Renaud, C.; de Lamballerie, M.; Guyon, C.; Astruc, T.; Venien, A.; Pottier, L. Effects of High-Pressure Treatment on the Muscle Structure of Salmon (Salmo Salar). Food Chem. 2022, 367, 130721. DOI: 10.1016/J.FOODCHEM.2021.130721.
  • Lian, F.; De Conto, E.; Del Grippo, V.; Harrison, S. M.; Fagan, J.; Lyng, J. G.; Brunton, N. P. High-Pressure Processing for the Production of Added-Value Claw Meat from Edible Crab (Cancer Pagurus). Foods. 2021, 10, 955. DOI: 10.3390/foods10050955.
  • Cropotova, J.; Tappi, S.; Genovese, J.; Rocculi, P.; Laghi, L.; Dalla Rosa, M.; Rustad, T. Study of the Influence of Pulsed Electric Field Pre-Treatment on Quality Parameters of Sea Bass During Brine Salting. Innov. Food Sci. Emerg. Technol. 2021, 70, 102706. DOI: 10.1016/J.IFSET.2021.102706.
  • Arshad, R. N.; Abdul-Malek, Z.; Roobab, U.; Munir, M. A.; Naderipour, A.; Qureshi, M. I.; El-Din Bekhit, A.; Liu, Z. W.; Aadil, R. M. Pulsed Electric Field: A Potential Alternative Towards a Sustainable Food Processing. Trends Food Sci. Technol. 2021, 111, 43–54. DOI: 10.1016/j.tifs.2021.02.041.
  • Ojha, K. S.; Aznar, R.; O’Donnell, C.; Tiwari, B. K. Ultrasound Technology for the Extraction of Biologically Active Molecules from Plant, Animal and Marine Sources. TrAc - Trends Anal. Chem. 2020, 122, 115663. DOI: 10.1016/j.trac.2019.115663.
  • Hassoun, A.; Karoui, R. Monitoring Changes in Whiting (Merlangius Merlangus) Fillets Stored Under Modified Atmosphere Packaging by Front Face Fluorescence Spectroscopy and Instrumental Techniques. Food Chem. 2016, 200, 343–353. DOI: 10.1016/j.foodchem.2016.01.028.
  • Bouletis, A. D.; Arvanitoyannis, I. S.; Hadjichristodoulou, C. Application of Modified Atmosphere Packaging on Aquacultured Fish and Fish Products: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2263–2285. DOI: 10.1080/10408398.2013.862202.
  • Asl, P. J.; Rajulapati, V.; Gavahian, M.; Kapusta, I.; Putnik, P.; Khaneghah, A. M.; Marszałek, K. Non-Thermal Plasma Technique for Preservation of Raw or Fresh Foods: A Review. Food Control. 2022, 134, 108560. DOI: 10.1016/J.FOODCONT.2021.108560.
  • Zhan, X.; Sun, D. W.; Zhu, Z.; Wang, Q. J. Improving the Quality and Safety of Frozen Muscle Foods by Emerging Freezing Technologies: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2925–2938. DOI: 10.1080/10408398.2017.1345854.
  • Esmaeilian, S.; Rotabakk, B. T.; Lerfall, J.; Jakobsen, A. N.; Abel, N.; Sivertsvik, M.; Olsen, A. The Use of Soluble Gas Stabilization Technology on Food – a Review. Trends Food Sci. Technol. 2021, 118, 154–166. DOI: 10.1016/J.TIFS.2021.09.015.
  • Artavia, G.; Cortés-Herrera, C.; Granados-Chinchilla, F. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis. Foods. 2021, 10, 1081. DOI: 10.3390/FOODS10051081.
  • Hassoun, A.; Karoui, R. Quality Evaluation of Fish and Other Seafood by Traditional and Nondestructive Instrumental Methods: Advantages and Limitations. Crit. Rev. Food Sci. Nutr. 2017, 57, 1976–1998. DOI: 10.1080/10408398.2015.1047926.
  • Delgado-Pando, G.; Allen, P.; Troy, D. J.; McDonnell, C. K. Objective Carcass Measurement Technologies: Latest Developments and Future Trends. Trends Food Sci. Technol. 2021, 111, 771–782. DOI: 10.1016/j.tifs.2020.12.016.
  • Wu, D.; Zhang, M.; Chen, H.; Bhandari, B. Freshness Monitoring Technology of Fish Products in Intelligent Packaging. Crit. Rev. Food Sci. Nutr. 2021, 61, 1279–1292. DOI: 10.1080/10408398.2020.1757615.
  • Khaled, A. Y.; Parrish, C. A.; Adedeji, A. Emerging Nondestructive Approaches for Meat Quality and Safety Evaluation—a Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3438–3463. DOI: 10.1111/1541-4337.12781.
  • Liu, Y.; Pu, H.; Sun, D. W. Hyperspectral Imaging Technique for Evaluating Food Quality and Safety During Various Processes: A Review of Recent Applications. Trends Food Sci. Technol. 2017, 69, 25–35. DOI: 10.1016/j.tifs.2017.08.013.
  • Temiz, H. T.; Ulaş, B. A Review of Recent Studies Employing Hyperspectral Imaging for the Determination of Food Adulteration. Photochem. 2021, 1, 125–146. DOI: 10.3390/PHOTOCHEM1020008.
  • Saha, D.; Manickavasagan, A. Machine Learning Techniques for Analysis of Hyperspectral Images to Determine Quality of Food Products: A Review. Curr. Res. Food Sci. 2021, 4, 28–44. DOI: 10.1016/J.CRFS.2021.01.002.
  • Domínguez, I.; Garrido Frenich, A.; Romero-González, R. Mass Spectrometry Approaches to Ensure Food Safety. Anal. Methods. 2020, 12, 1148–1162. DOI: 10.1039/C9AY02681A.
  • Freitas, J.; Silva, P.; Perestrelo, R.; Vaz-Pires, P.; Câmara, J. S. Improved Approach Based on MALDI-TOF MS for Establishment of the Fish Mucus Protein Pattern for Geographic Discrimination of Sparus Aurata. Food Chem. 2022, 372, 131237. DOI: 10.1016/j.foodchem.2021.131237.
  • Man, K. Y.; Chan, C. O.; Tang, H. H.; Dong, N. P.; Capozzi, F.; Wong, K. H.; Kwok, K. W. H.; Chan, H. M.; Mok, D. K. W. Mass Spectrometry-Based Untargeted Metabolomics Approach for Differentiation of Beef of Different Geographic Origins. Food Chem. 2021, 338, 127847. DOI: 10.1016/j.foodchem.2020.127847.
  • Mhlanga, D. Artificial Intelligence in the Industry 4.0, and Its Impact on Poverty, Innovation, Infrastructure Development, and the Sustainable Development Goals: Lessons from Emerging Economies? Sustain. 2021, 13, 5788. DOI: 10.3390/su13115788.
  • Maynard, A. D. Navigating the Fourth Industrial Revolution. Nat. Nanotechnol. 2015, 10, 1005–1006. DOI: 10.1038/nnano.2015.286.
  • Sima, V.; Gheorghe, I. G.; Subić, J.; Nancu, D. Influences of the Industry 4.0 Revolution on the Human Capital Development and Consumer Behavior: A Systematic Review. Sustain. 2020, 12, 4035. DOI: 10.3390/SU12104035.
  • Hassoun, A.; Aït-Kaddour, A.; Abu-Mahfouz, A. M.; Rathod, N. B.; Bader, F.; Barba, F. J.; Cropotova, J.; Galanakis, C. M.; Jambrak, A. R.; Lorenzo, M., et al. The Fourth Industrial Revolution in the Food Industry — Part I: Industry 4.0 Technologies. Crit. Rev. Food Sci. Nutr. 2022, 1–17. DOI:10.1080/10408398.2022.2034735.
  • Hassoun, A.; Bekhit, A. E.; Jambrak, A. R.; Regenstein, J. M.; Chemat, F.; Morton, J. D.; Gudjónsdóttir, M.; Carpena, M.; Prieto, A.; Varela, P., et al. The Fourth Industrial Revolution in the Food Industry — Part II : Emerging Food Trends Trends. Crit. Rev. Food Sci. Nutr. 2022, 1–31. DOI:10.1080/10408398.2022.2106472.
  • Hassoun, A.; Cropotova, J.; Trif, M.; Rusu, A. V.; Bobi, O.; Nayik, G. A.; Jagdale, Y. D.; Saeed, F.; Afzaal, M.; Regenstein, J. M. Consumer Acceptance of New Food Trends Resulting from the Fourth Industrial Revolution Technologies: A Narrative Review of Literature and Future Perspectives. Front Nutr. 2022, 9, 972154. DOI: 10.3389/fnut.2022.972154.
  • Jambrak, A. R.; Nutrizio, M.; Djekić, I.; Pleslić, S.; Chemat, F. Internet of Nonthermal Food Processing Technologies (Iontp): Food Industry 4.0 and Sustainability. Appl. Sci. 2021, 11, 686. DOI: 10.3390/app11020686.
  • Liu, Y.; Ma, X.; Shu, L.; Hancke, G. P.; Abu-Mahfouz, A. M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Informatics. 2021, 17, 4322–4334. DOI: 10.1109/TII.2020.3003910.
  • Hassoun, A.; Jagtap, S.; Garcia-Garcia, G.; Trollman, H.; Pateiro, M.; Lorenzo, M.; Trif, M.; Vasile, A.; Muhammad, R.; Simat, V., et al. Taylor and Francis Custom Citation. J. Food Eng. 2023, 337, 111216. DOI: 10.1016/j.jfoodeng.2022.111216.
  • Hernández-Hernández, H. M.; Moreno-Vilet, L.; Villanueva-Rodríguez, S. J. Current Status of Emerging Food Processing Technologies in Latin America: Novel Non-Thermal Processing. Innov. Food Sci. Emerg. Technol. 2019, 58, 102233. DOI: 10.1016/j.ifset.2019.102233.
  • Hassoun, A.; Sahar, A.; Lakhal, L.; Aït-Kaddour, A. Fluorescence Spectroscopy as a Rapid and Non-Destructive Method for Monitoring Quality and Authenticity of Fish and Meat Products: Impact of Different Preservation Conditions. LWT. 2019, 103, 279–292. DOI: 10.1016/j.lwt.2019.01.021.
  • Feng, C. -H.; Makino, Y.; Oshita, S.; García Martín, J. F. Hyperspectral Imaging and Multispectral Imaging as the Novel Techniques for Detecting Defects in Raw and Processed Meat Products: Current State-Of-The-Art Research Advances. Food Control. 2018, 84, 165–176. DOI: 10.1016/J.FOODCONT.2017.07.013.
  • Fu, X.; Chen, J. A Review of Hyperspectral Imaging for Chicken Meat Safety and Quality Evaluation: Application, Hardware, and Software. Compr. Rev. Food Sci. Food Saf. 2019, 18, 535–547. DOI: 10.1111/1541-4337.12428.
  • Jagtap, S.; Bader, F.; Garcia-Garcia, G.; Trollman, H.; Fadiji, T.; Salonitis, K. Food Logistics 4.0: Opportunities and Challenges. Logistics. 2021, 5, 2. DOI: 10.3390/LOGISTICS5010002.
  • Aceto, G.; Persico, V.; Pescapé, A. A Survey on Information and Communication Technologies for Industry 4.0: State-Of-The-Art, Taxonomies, Perspectives, and Challenges. IEEE Commun. Surv. Tutorials. 2019, 21, 3467–3501. DOI: 10.1109/COMST.2019.2938259.
  • Rojko, A. Industry 4.0 Concept: Background and Overview. Int. J. Interact. Mob. Technol. 2017, 11, 77–90. DOI: 10.3991/ijim.v11i5.7072.
  • Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 Technologies Assessment: A Sustainability Perspective. Int. J. Prod. Econ. 2020, 229, 107776. DOI: 10.1016/J.IJPE.2020.107776.
  • Manavalan, E.; Jayakrishna, K. A Review of Internet of Things (IoT) Embedded Sustainable Supply Chain for Industry 4.0 Requirements. Comput. Ind. Eng. 2019, 127, 925–953. DOI: 10.1016/J.CIE.2018.11.030.
  • Müller-Maatsch, J.; Bertani, F. R.; Mencattini, A.; Gerardino, A.; Martinelli, E.; Weesepoel, Y.; van Ruth, S. The Spectral Treasure House of Miniaturized Instruments for Food Safety, Quality and Authenticity Applications: A Perspective. Trends Food Sci. Technol. 2021, 110, 841–848. DOI: 10.1016/j.tifs.2021.01.091.
  • Misra, N. N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M. S.; Upadhyay, R.; Martynenko, A. IoT, Big Data and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet Things J. 2022, 9. DOI: 10.1109/jiot.2020.2998584.
  • McVey, C.; Elliott, C. T.; Cannavan, A.; Kelly, S. D.; Petchkongkaew, A.; Haughey, S. A. Portable Spectroscopy for High Throughput Food Authenticity Screening: Advancements in Technology and Integration into Digital Traceability Systems. Trends Food Sci. Technol. 2021, 118, 777–790. DOI: 10.1016/J.TIFS.2021.11.003.
  • Kalinowska, K.; Wojnowski, W.; Tobiszewski, M. Smartphones as Tools for Equitable Food Quality Assessment. Trends Food Sci. Technol. 2021, 111, 271–279. DOI: 10.1016/J.TIFS.2021.02.068.
  • Bhat, Z. F.; Morton, J. D.; Kumar, S.; Bhat, H. F.; Aadil, R. M.; Bekhit, A.E. -D.A. 3D Printing: Development of Animal Products and Special Foods. Trends Food Sci. Technol. 2021, 118, 87–105. DOI: 10.1016/J.TIFS.2021.09.020.
  • Portanguen, S.; Tournayre, P.; Sicard, J.; Astruc, T.; Mirade, P. S. Toward the Design of Functional Foods and Biobased Products by 3D Printing: A Review. Trends Food Sci. Technol. 2019, 86, 188–198. DOI: 10.1016/j.tifs.2019.02.023.
  • Barbut, S. Meat Industry 4.0: A Distant Future? Anim. Front. 2020, 10, 38–47. DOI: 10.1093/af/vfaa038.
  • Misimi, E.; Øye, E. R.; Eilertsen, A.; Mathiassen, J. R.; Åsebø, O. B.; Gjerstad, T.; Buljo, J.; Skotheim, Ø. GRIBBOT - Robotic 3D Vision-Guided Harvesting of Chicken Fillets. Comput. Electron. Agric. 2016, 121, 84–100. DOI: 10.1016/j.compag.2015.11.021.
  • Mu, S.; Qin, H.; Wei, J.; Wen, Q.; Liu, S.; Wang, S.; Xu, S. Robotic 3D Vision-Guided System for Half-Sheep Cutting Robot. Math. Probl. Eng. 2020, 2020. DOI: 10.1155/2020/1520686.
  • Khan, Z. H.; Khalid, A.; Iqbal, J. Towards Realizing Robotic Potential in Future Intelligent Food Manufacturing Systems. Innov. Food Sci. Emerg. Technol. 2018, 48, 11–24. DOI: 10.1016/J.IFSET.2018.05.011.
  • de Medeiros Esper, I.; From, P. J.; Mason, A. Robotisation and Intelligent Systems in Abattoirs. Trends Food Sci. Technol. 2021, 108, 214–222. DOI: 10.1016/J.TIFS.2020.11.005.
  • Esmaeilian, B.; Sarkis, J.; Lewis, K.; Behdad, S. Blockchain for the Future of Sustainable Supply Chain Management in Industry 4.0. Resour. Conserv. Recycl. 2020, 163, 105064. DOI: 10.1016/J.RESCONREC.2020.105064.
  • Lennon Olsen, T.; Tomlin, B. Industry 4.0: Opportunities and Challenges for Operations Management. SSRN Electron. J. 2019, 1–20. DOI: 10.2139/ssrn.3365733.
  • Oliveira, J.; Lima, J. E.; da Silva, D.; Kuprych, V.; Faria, P. M.; Teixeira, C.; Ferreira Cruz, E.; Rosado da Cruz, A. M. Traceability System for Quality Monitoring in the Fishery and Aquaculture Value Chain. J. Agric. Food Res. 2021, 5, 100169. DOI: 10.1016/J.JAFR.2021.100169.
  • Lorenzo, J. M.; Munekata, P. E. S., and Barba, F. J., Eds. Sustainable Production Technology in Food; Amsterdam: Academic Press, 2021.
  • Jia, W.; Zhang, R.; Liu, L.; Zhu, Z.; Mo, H.; Xu, M.; Shi, L.; Zhang, H. Proteomics Analysis to Investigate the Impact of Diversified Thermal Processing on Meat Tenderness in Hengshan Goat Meat. Meat Sci. 2022, 183, 108655. DOI: 10.1016/J.MEATSCI.2021.108655.
  • Llave, Y.; Erdogdu, F. Radio Frequency Processing and Recent Advances on Thawing and Tempering of Frozen Food Products. Crit. Rev. Food Sci. Nutr. 2020, 62, 598–618. DOI: 10.1080/10408398.2020.1823815.
  • Hassoun, A.; Aït-Kaddour, A.; Sahar, A.; Cozzolino, D. Monitoring Thermal Treatments Applied to Meat Using Traditional Methods and Spectroscopic Techniques: A Review of Advances Over the Last Decade. Food Bioprocess Technol. 2021, 14, 195–208. DOI: 10.1007/s11947-020-02510-0.
  • Suleman, R.; Wang, Z.; Aadil, R. M.; Hui, T.; Hopkins, D. L.; Zhang, D. Effect of Cooking on the Nutritive Quality, Sensory Properties and Safety of Lamb Meat: Current Challenges and Future Prospects. Meat Sci. 2020, 167, 108172. DOI: 10.1016/j.meatsci.2020.108172.
  • Inmanee, P.; Kamonpatana, P.; Pirak, T. Ohmic Heating Effects on Listeria Monocytogenes Inactivation, and Chemical, Physical, and Sensory Characteristic Alterations for Vacuum Packaged Sausage During Post Pasteurization. LWT. 2019, 108, 183–189. DOI: 10.1016/J.LWT.2019.03.027.
  • Hradecky, J.; Kludska, E.; Belkova, B.; Wagner, M.; Hajslova, J. Ohmic Heating: A Promising Technology to Reduce Furan Formation in Sterilized Vegetable and Vegetable/Meat Baby Foods. Innov. Food Sci. Emerg. Technol. 2017, 43, 1–6. DOI: 10.1016/J.IFSET.2017.07.018.
  • Llave, Y.; Udo, T.; Fukuoka, M.; Sakai, N. Ohmic Heating of Beef at 20 kHz and Analysis of Electrical Conductivity at Low and High Frequencies. J. Food Eng. 2018, 228, 91–101. DOI: 10.1016/J.JFOODENG.2018.02.019.
  • Sengun, I. Y.; Icier, F.; Kor, G. Effects of Combined Ohmic–Infrared Cooking Treatment on Microbiological Inactivation of Meatballs. J. Food Process. Eng. 2017, 40, 1–11. DOI: 10.1111/jfpe.12309.
  • Külcü, D. B.; Gürbüz, Ü. Use of Ohmic Heating System in Meat Thawing and Its Effects on Microbiological Quality. MANAS J. Eng. 2018, 6, 129–142.
  • Dang, T. T.; Feyissa, A. H.; Gringer, N.; Jessen, F.; Olsen, K.; Bøknæs, N.; Orlien, V. Effects of High Pressure and Ohmic Heating on Shell Loosening, Thermal and Structural Properties of Shrimp (Pandalus Borealis). Innov. Food Sci. Emerg. Technol. 2020, 59, 102246. DOI: 10.1016/j.ifset.2019.102246.
  • Llave, Y.; Morinaga, K.; Fukuoka, M.; Sakai, N. Characterization of Ohmic Heating and Sous-Vide Treatment of Scallops: Analysis of Electrical Conductivity and the Effect of Thermal Protein Denaturation on Quality Attribute Changes. Innov. Food Sci. Emerg. Technol. 2018, 50, 112–123. DOI: 10.1016/J.IFSET.2018.09.007.
  • Muñoz, I.; Serra, X.; Guàrdia, M. D.; Fartdinov, D.; Arnau, J.; Picouet, P. A.; Gou, P. Radio Frequency Cooking of Pork Hams Followed with Conventional Steam Cooking. LWT. 2020, 123, 109104. DOI: 10.1016/j.lwt.2020.109104.
  • Bedane, T. F.; Altin, O.; Erol, B.; Marra, F.; Erdogdu, F. Thawing of Frozen Food Products in a Staggered Through-Field Electrode Radio Frequency System: A Case Study for Frozen Chicken Breast Meat with Effects on Drip Loss and Texture. Innov. Food Sci. Emerg. Technol. 2018, 50, 139–147. DOI: 10.1016/J.IFSET.2018.09.001.
  • Wang, X.; Wang, L.; Yang, K.; Wu, D.; Ma, J.; Wang, S.; Zhang, Y.; Sun, W. Radio Frequency Heating Improves Water Retention of Pork Myofibrillar Protein Gel: An Analysis from Water Distribution and Structure. Food Chem. 2021, 350, 129265. DOI: 10.1016/J.FOODCHEM.2021.129265.
  • Uemura, K.; Kanafusa, S.; Takahashi, C.; Kobayashi, I. Development of a Radio Frequency Heating System for Sterilization of Vacuum-Packed Fish in Water. Biosci. Biotechnol., Biochem. 2017, 81, 762–767. DOI: 10.1080/09168451.2017.1280660.
  • Bedane, T. F.; Chen, L.; Marra, F.; Wang, S. Experimental Study of Radio Frequency (RF) Thawing of Foods with Movement on Conveyor Belt. J. Food Eng. 2017, 201, 17–25. DOI: 10.1016/J.JFOODENG.2017.01.010.
  • Zhu, Y.; Li, F.; Tang, J.; Wang, T. T.; Jiao, Y. Effects of Radio Frequency, Air and Water Tempering, and Different End-Point Tempering Temperatures on Pork Quality. J. Food Process. Eng. 2019, 42, e13026. DOI: 10.1111/JFPE.13026.
  • Taşkıran, M.; Olum, E. Changes in Chicken Meat Proteins During Microwave and Electric Oven Cooking. J. Food Process Preserv. 2020, 44, e14324. DOI: 10.1111/jfpp.14324.
  • Wang, X.; Muhoza, B.; Wang, X.; Feng, T.; Xia, S.; Zhang, X. Comparison Between Microwave and Traditional Water Bath Cooking on Saltiness Perception, Water Distribution and Microstructure of Grass Crap Meat. Food. Res. Int. 2019, 125, 108521. DOI: 10.1016/j.foodres.2019.108521.
  • Wang, X.; Wang, X.; Muhoza, B.; Feng, T.; Xia, S.; Zhang, X. Microwave Combined with Conduction Heating Effects on the Tenderness, Water Distribution, and Microstructure of Pork Belly. Innov. Food Sci. Emerg. Technol. 2020, 62, 102344. DOI: 10.1016/J.IFSET.2020.102344.
  • Póltorak, A.; Wyrwisz, J.; Moczkowska, M.; Marcinkowska-Lesiak, M.; Stelmasiak, A.; Rafalska, U.; Wierzbicka, A.; Sun, D. W. Microwave Vs. Convection Heating of Bovine Gluteus Medius Muscle: Impact on Selected Physical Properties of Final Product and Cooking Yield. Int. J. Food Sci. Technol. 2015, 50, 958–965. DOI: 10.1111/ijfs.12729.
  • Li, S.; Tang, S.; Yan, L.; Li, R. Effects of Microwave Heating on Physicochemical Properties, Microstructure and Volatile Profiles of Yak Meat. J. Appl. Anim. Res. 2019, 47, 262–272. DOI: 10.1080/09712119.2019.1624553.
  • Lafarga, T.; Queralt, A. V.; Bobo, G.; Abadias, M.; Aguiló-Aguayo, I. Thermal Processing Technologies. In Food Formulation: Novel Ingredients and Processing Techniques; Pathania, S. and Tiwari, B.K., Eds.; Hoboken, New Jersey, U.S.: John Wiley & Sons, Ltd, 2021; pp. 165–181.
  • Tian, X.; Shao, L.; Yu, Q.; Li, W. S. X.; Dai, R. Comparative Analysis of Quality Uniformity of Ohmic and Water Bath Heating Treated Pork Batter with Different Fat Content. J. Food Process Preserv. 2020, 44, 1–11. DOI: 10.1111/jfpp.14377.
  • Rodrigues, R. M.; Avelar, Z.; Machado, L.; Pereira, R. N.; Vicente, A. A. Electric Field Effects on Proteins – Novel Perspectives on Food and Potential Health Implications. Food. Res. Int. 2020, 137, 109709. DOI: 10.1016/J.FOODRES.2020.109709.
  • Tian, X.; Liu, Y.; Yu, Q.; Shao, L.; Li, X.; Dai, R. Label Free-Based Proteomic Analysis of Escherichia Coli O157:H7 Subjected to Ohmic Heating. Food. Res. Int. 2020, 128, 108815. DOI: 10.1016/J.FOODRES.2019.108815.
  • Ferreira-Santos, P.; Miranda, S. M.; Belo, I.; Spigno, G.; Teixeira, J. A.; Rocha, C. M. R. Sequential Multi-Stage Extraction of Biocompounds from Spirulina Platensis: Combined Effect of Ohmic Heating and Enzymatic Treatment. Innov. Food Sci. Emerg. Technol. 2021, 71, 102707. DOI: 10.1016/J.IFSET.2021.102707.
  • Backi, C. J. Methods for (Industrial) Thawing of Fish Blocks: A Review. J. Food Process. Eng. 2018, 41, e12598. DOI: 10.1111/jfpe.12598.
  • Cevik, M.; Icier, F. Comparison of Quality Attributes of Minced Beef Samples Thawed by Ohmic and Conventional Methods. J. Food Process Preserv. 2021, 45, e15122. DOI: 10.1111/JFPP.15122.
  • Rajasekaran, B.; Subbiah, B.; Stephen, N. M.; Nagarajan, M.; Muniasamy, S. Design, Fabrication, and Validation of Ohmic Heater to Process Green Mussel Meat. J. Food Process Preserv. 2021, 45, e15511. DOI: 10.1111/JFPP.15511.
  • Cai, L.; Cao, M.; Regenstein, J.; Cao, A. Recent Advances in Food Thawing Technologies. Compr. Rev. Food Sci. Food Saf. 2019, 18, 953–970. DOI: 10.1111/1541-4337.12458.
  • Wu, X. F.; Zhang, M.; Adhikari, B.; Sun, J. Recent Developments in Novel Freezing and Thawing Technologies Applied to Foods. Crit. Rev. Food Sci. Nutr. 2017, 57, 3620–3631. DOI: 10.1080/10408398.2015.1132670.
  • Jiao, Y.; Tang, J.; Wang, Y.; Koral, T. L. Radio-Frequency Applications for Food Processing and Safety. Annu. Rev. Food Sci. Technol. 2018, 9, 105–127. DOI: 10.1146/annurev-food-041715-033038.
  • Zhou, X.; Wang, S. Recent Developments in Radio Frequency Drying of Food and Agricultural Products: A Review. Dry. Technol. 2019, 37, 271–286. DOI: 10.1080/07373937.2018.1452255.
  • Meijer, G. W.; Lähteenmäki, L.; Stadler, R. H.; Weiss, J. Issues Surrounding Consumer Trust and Acceptance of Existing and Emerging Food Processing Technologies. Crit. Rev. Food Sci. Nutr. 2021, 61, 97–115. DOI: 10.1080/10408398.2020.1718597.
  • Dong, X.; Wang, J.; Raghavan, V. Impact of Microwave Processing on the Secondary Structure, in-Vitro Protein Digestibility and Allergenicity of Shrimp (Litopenaeus Vannamei) Proteins. Food Chem. 2021, 337, 127811. DOI: 10.1016/j.foodchem.2020.127811.
  • Tang, J. Unlocking Potentials of Microwaves for Food Safety and Quality. J. Food Sci. 2015, 80, E1776–1793. DOI: 10.1111/1750-3841.12959.
  • Zia, S.; Khan, M. R.; Shabbir, M. A.; Aslam Maan, A.; Khan, M. K. I.; Nadeem, M.; Khalil, A. A.; Din, A.; Aadil, R. M. An Inclusive Overview of Advanced Thermal and Nonthermal Extraction Techniques for Bioactive Compounds in Food and Food-Related Matrices. Food Rev. Int. 2020, 38, 1166–1196. DOI: 10.1080/87559129.2020.1772283.
  • Chizoba Ekezie, F. -G.; Sun, D. -W.; Han, Z.; Cheng, J. -H. Microwave-Assisted Food Processing Technologies for Enhancing Product Quality and Process Efficiency: A Review of Recent Developments. Trends Food Sci. Technol. 2017, 67, 58–69. DOI: 10.1016/J.TIFS.2017.05.014.
  • Atuonwu, J. C.; Tassou, S. A. Quality Assurance in Microwave Food Processing and the Enabling Potentials of Solid-State Power Generators: A Review. J. Food Eng. 2018, 234, 1–15. DOI: 10.1016/J.JFOODENG.2018.04.009.
  • Arshad, R. N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M. H.; Jusoh, Y. M. M.; Bekhit, A. E. D.; Roobab, U.; Manzoor, M. F.; Aadil, R. M. Electrical Systems for Pulsed Electric Field Applications in the Food Industry: An Engineering Perspective. Trends Food Sci. Technol. 2020, 104, 1–13. DOI: 10.1016/j.tifs.2020.07.008.
  • Bekhit, A.E. -D.A.; Carne, A.; van de Ven, R.; Hopkins, D. L. Effect of Repeated Pulsed Electric Field Treatment on the Quality of Hot-Boned Beef Loins and Topsides. Meat Sci. 2016, 111, 139–146. DOI: 10.1016/j.meatsci.2015.09.001.
  • Alahakoon, A. U.; Oey, I.; Bremer, P.; Silcock, P. Optimisation of Sous Vide Processing Parameters for Pulsed Electric Fields Treated Beef Briskets. Food Bioprocess Technol. 2018, 11, 2055–2066. DOI: 10.1007/s11947-018-2155-9.
  • Faridnia, F.; Ma, Q. L.; Bremer, P. J.; Burritt, D. J.; Hamid, N.; Oey, I. Effect of Freezing as Pre-Treatment Prior to Pulsed Electric Field Processing on Quality Traits of Beef Muscles. Innov. Food Sci. Emerg. Technol. 2015, 29, 31–40. DOI: 10.1016/j.ifset.2014.09.007.
  • Ma, Q.; Hamid, N.; Oey, I.; Kantono, K.; Faridnia, F.; Yoo, M.; Farouk, M. Effect of Chilled and Freezing Pre-Treatments Prior to Pulsed Electric Field Processing on Volatile Profile and Sensory Attributes of Cooked Lamb Meats. Innov. Food Sci. Emerg. Technol. 2016, 37, 359–374. DOI: 10.1016/J.IFSET.2016.04.009.
  • Khan, A. A.; Randhawa, M. A.; Carne, A.; Ahmed, I. A. M.; Barr, D.; Reid, M.; Bekhit, A.E. -D.A. Effect of Low and High Pulsed Electric Field on the Quality and Nutritional Minerals in Cold Boned Beef M. Longissimus Et Lumborum. Innov. Food Sci. Emerg. Technol. 2017, 41, 135–143. DOI: 10.1016/j.ifset.2017.03.002.
  • Baldi, G.; D’Elia, F.; Soglia, F.; Tappi, S.; Petracci, M.; Rocculi, P. Exploring the Effect of Pulsed Electric Fields on the Technological Properties of Chicken Meat. Foods. 2021, 10, 241. DOI: 10.3390/foods10020241.
  • Mok, J. H.; Her, J. -Y.; Kang, T.; Hoptowit, R.; Jun, S. Effects of Pulsed Electric Field (PEF) and Oscillating Magnetic Field (OMF) Combination Technology on the Extension of Supercooling for Chicken Breasts. J. Food Eng. 2017, 196, 27–35. DOI: 10.1016/j.jfoodeng.2016.10.002.
  • Warner, R. D.; McDonnell, C. K.; Bekhit, A. E. D.; Claus, J.; Vaskoska, R.; Sikes, A.; Dunshea, F. R.; Ha, M. Systematic Review of Emerging and Innovative Technologies for Meat Tenderisation. Meat Sci. 2017, 132, 72–89. DOI: 10.1016/j.meatsci.2017.04.241.
  • Arshad, R. N.; Abdul-Malek, Z.; Roobab, U.; Qureshi, M. I.; Khan, N.; Ahmad, M. H.; Liu, Z. W.; Aadil, R. M. Effective Valorization of Food Wastes and By-Products Through Pulsed Electric Field: A Systematic Review. J. Food Process. Eng. 2021, 44, 1–14. DOI: 10.1111/jfpe.13629.
  • Ghosh, S.; Gillis, A.; Sheviryov, J.; Levkov, K.; Golberg, A. Towards Waste Meat Biorefinery: Extraction of Proteins from Waste Chicken Meat with Non-Thermal Pulsed Electric Fields and Mechanical Pressing. J. Clean. Prod. 2019, 208, 220–231. DOI: 10.1016/j.jclepro.2018.10.037.
  • Zhou, Y.; He, Q.; Zhou, D. Optimization Extraction of Protein from Mussel by High-Intensity Pulsed Electric Fields. J. Food Process Preserv. 2017, 41, e12962. DOI: 10.1111/jfpp.12962.
  • Gómez, B.; Munekata, P. E. S.; Gavahian, M.; Barba, F. J.; Martí-Quijal, F. J.; Bolumar, T.; Campagnol, P. C. B.; Tomasevic, I.; Lorenzo, J. M. Application of Pulsed Electric Fields in Meat and Fish Processing Industries: An Overview. Food. Res. Int. 2019, 123, 95–105. DOI: 10.1016/j.foodres.2019.04.047.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A.E. -D.A. Pulsed Electric Field Operates Enzymatically by Causing Early Activation of Calpains in Beef During Ageing. Meat Sci. 2019, 153, 144–151. DOI: 10.1016/j.meatsci.2019.03.018.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A.E. -D.A. Pulsed Electric Field Improved Protein Digestion of Beef During in-Vitro Gastrointestinal Simulation. LWT. 2019, 102, 45–51. DOI: 10.1016/j.lwt.2018.12.013.
  • Khan, A. A.; Randhawa, M. A.; Carne, A.; Ahmed, I. A. M.; Al-Juhaimi, F. Y.; Barr, D.; Reid, M.; Bekhit, A.E. -D.A. Effect of Low and High Pulsed Electric Field Processing on Macro and Micro Minerals in Beef and Chicken. Innov. Food Sci. Emerg. Technol. 2018, 45, 273–279. DOI: 10.1016/j.ifset.2017.11.012.
  • Kantono, K.; Hamid, N.; Ma, Q.; Oey, I.; Farouk, M. Changes in the Physicochemical Properties of Chilled and Frozen-Thawed Lamb Cuts Subjected to Pulsed Electric Field Processing. Food. Res. Int. 2021, 141, 110092. DOI: 10.1016/j.foodres.2020.110092.
  • Wang, J.; Zhuang, H.; Hinton, A., Jr; Zhang, J. Influence of In-Package Cold Plasma Treatment on Microbiological Shelf Life and Appearance of Fresh Chicken Breast Fillets. Food Microbiol. 2016, 60, 142–146. DOI: 10.1016/j.fm.2016.07.007.
  • Moutiq, R.; Misra, N. N.; Mendonca, A.; Keener, K. In-Package Decontamination of Chicken Breast Using Cold Plasma Technology: Microbial, Quality and Storage Studies. Meat Sci. 2020, 159, 107942. DOI: 10.1016/j.meatsci.2019.107942.
  • Zhuang, H.; Rothrock, M. J., Jr; Hiett, K. L.; Lawrence, K. C.; Gamble, G. R.; Bowker, B. C.; Keener, K. M. In-Package Air Cold Plasma Treatment of Chicken Breast Meat: Treatment Time Effect. J. Food Qual. 2019, 2019, 1–7. DOI: 10.1155/2019/1837351.
  • Roh, S. H.; Lee, S. Y.; Park, H. H.; Lee, E. S.; Min, S. C. Effects of the Treatment Parameters on the Efficacy of the Inactivation of Salmonella Contaminating Boiled Chicken Breast by In-Package Atmospheric Cold Plasma Treatment. Int. J. Food Microbiol. 2019, 293, 24–33. DOI: 10.1016/j.ijfoodmicro.2018.12.016.
  • Gök, V.; Aktop, S.; Özkan, M.; Tomar, O. The Effects of Atmospheric Cold Plasma on Inactivation of Listeria Monocytogenes and Staphylococcus Aureus and Some Quality Characteristics of Pastırma—a Dry-Cured Beef Product. Innov. Food Sci. Emerg. Technol. 2019, 56, 102188. DOI: 10.1016/j.ifset.2019.102188.
  • Wang, X.; Wang, Z.; Zhuang, H.; Nasiru, M. M.; Yuan, Y.; Zhang, J.; Yan, W. Changes in Color, Myoglobin, and Lipid Oxidation in Beef Patties Treated by Dielectric Barrier Discharge Cold Plasma During Storage. Meat Sci. 2021, 176, 108456. DOI: 10.1016/j.meatsci.2021.108456.
  • Huang, M.; Wang, J.; Zhuang, H.; Yan, W.; Zhao, J.; Zhang, J. Effect of In-Package High Voltage Dielectric Barrier Discharge on Microbiological, Color and Oxidation Properties of Pork in Modified Atmosphere Packaging During Storage. Meat Sci. 2019, 149, 107–113. DOI: 10.1016/j.meatsci.2018.11.016.
  • Yadav, B.; Spinelli, A. C.; Govindan, B. N.; Tsui, Y. Y.; McMullen, L. M.; Roopesh, M. S. Cold Plasma Treatment of Ready-To-Eat Ham: Influence of Process Conditions and Storage on Inactivation of Listeria Innocua. Food. Res. Int. 2019, 123, 276–285. DOI: 10.1016/j.foodres.2019.04.065.
  • Luo, J.; Nasiru, M. M.; Yan, W.; Zhuang, H.; Zhou, G.; Zhang, J. Effects of Dielectric Barrier Discharge Cold Plasma Treatment on the Structure and Binding Capacity of Aroma Compounds of Myofibrillar Proteins from Dry-Cured Bacon. LWT. 2020, 117, 108606. DOI: 10.1016/j.lwt.2019.108606.
  • Han, L.; Ziuzina, D.; Heslin, C.; Boehm, D.; Patange, A.; Sango, D. M.; Valdramidis, V. P.; Cullen, P. J.; Bourke, P. Controlling Microbial Safety Challenges of Meat Using High Voltage Atmospheric Cold Plasma. Front. Microbiol. 2016, 7, 977. DOI: 10.3389/fmicb.2016.00977.
  • Wang, J. M.; Zhuang, H.; Lawrence, K.; Zhang, J. H. Disinfection of Chicken Fillets in Packages with Atmospheric Cold Plasma: Effects of Treatment Voltage and Time. J. Appl. Microbiol. 2018, 124, 1212–1219. DOI: 10.1111/jam.13637.
  • Pérez-Andrés, J. M.; Álvarez, C.; Cullen, P. J.; Tiwari, B. K. Effect of Cold Plasma on the Techno-Functional Properties of Animal Protein Food Ingredients. Innov. Food Sci. Emerg. Technol. 2019, 58, 102205. DOI: 10.1016/j.ifset.2019.102205.
  • Truong, B. Q.; Buckow, R.; Stathopoulos, C. E.; Nguyen, M. H. Advances in High-Pressure Processing of Fish Muscles. Food Eng. Rev. 2015, 7, 109–129. DOI: 10.1007/s12393-014-9084-9.
  • Maldonado, J. A.; Schaffner, D. W.; Cuitinõ, A. M.; Karwe, M. V. In situ Studies of Microbial Inactivation During High Pressure Processing. High Press. Res. 2016, 36, 79–89. DOI: 10.1080/08957959.2015.1111887.
  • Kang, D.; Jiang, Y.; Xing, L.; Zhou, G.; Zhang, W. Inactivation of Escherichia Coli O157:H7 and Bacillus Cereus by Power Ultrasound During the Curing Processing in Brining Liquid and Beef. Food. Res. Int. 2017, 102, 717–727. DOI: 10.1016/J.FOODRES.2017.09.062.
  • Ojha, K. S.; Harrison, S. M.; Brunton, N. P.; Kerry, J. P.; Tiwari, B. K. Statistical Approaches to Access the Effect of Lactobacillus Sakei Culture and Ultrasound Frequency on Fatty Acid Profile of Beef Jerky. J. Food Compos. Anal. 2017, 57, 1–7. DOI: 10.1016/J.JFCA.2016.12.007.
  • Mikš-Krajnik, M.; James Feng, L. X.; Bang, W. S.; Yuk, H. G. Inactivation of Listeria Monocytogenes and Natural Microbiota on Raw Salmon Fillets Using Acidic Electrolyzed Water, Ultraviolet Light Or/And Ultrasounds. Food Control. 2017, 74, 54–60. DOI: 10.1016/J.FOODCONT.2016.11.033.
  • Condón-Abanto, S.; Arroyo, C.; Álvarez, I.; Brunton, N.; Whyte, P.; Lyng, J. G. An Assessment of the Application of Ultrasound in the Processing of Ready-To-Eat Whole Brown Crab (Cancer Pagurus). Ultrason. Sonochem. 2018, 40, 497–504. DOI: 10.1016/J.ULTSONCH.2017.07.044.
  • Piñon, M. I.; Alarcon-Rojo, A. D.; Renteria, A. L.; Mendez, G.; Janacua-Vidales, H. Reduction of Microorganisms in Marinated Poultry Breast Using Oregano Essential Oil and Power Ultrasound. Acta Aliment. 2015, 44, 527–533. DOI: 10.1556/066.2015.44.0024.
  • Caraveo, O.; Alarcon-Rojo, A. D.; Renteria, A.; Santellano, E.; Paniwnyk, L. Physicochemical and Microbiological Characteristics of Beef Treated with High-Intensity Ultrasound and Stored at 4 °C. J. Sci. Food Agric. 2015, 95, 2487–2493. DOI: 10.1002/JSFA.6979.
  • Silva, F. V. M. Use of Power Ultrasound to Enhance the Thermal Inactivation of Clostridium Perfringens Spores in Beef Slurry. Int. J. Food Microbiol. 2015, 206, 17–23. DOI: 10.1016/J.IJFOODMICRO.2015.04.013.
  • Pedrós-Garrido, S.; Condón-Abanto, S.; Beltrán, J. A.; Lyng, J. G.; Brunton, N. P.; Bolton, D.; Whyte, P. Assessment of High Intensity Ultrasound for Surface Decontamination of Salmon (S. Salar), Mackerel (S. Scombrus), Cod (G. Morhua) and Hake (M. Merluccius) Fillets, and Its Impact on Fish Quality. Innov. Food Sci. Emerg. Technol. 2017, 41, 64–70. DOI: 10.1016/j.ifset.2017.02.006.
  • Chuang, S.; Sheen, S.; Sommers, C. H.; Sheen, L. Y. Modeling the Reduction of Salmonella and Listeria Monocytogenes in Ground Chicken Meat by High Pressure Processing and Trans-Cinnamaldehyde. LWT. 2021, 139, 110601. DOI: 10.1016/J.LWT.2020.110601.
  • Cava, R.; García-Parra, J.; Ladero, L. Effect of High Hydrostatic Pressure Processing and Storage Temperature on Food Safety, Microbial Counts, Colour and Oxidative Changes of a Traditional Dry-Cured Sausage. LWT. 2020, 128, 109462. DOI: 10.1016/J.LWT.2020.109462.
  • Jia, G.; Orlien, V.; Liu, H.; Sun, A. Effect of High Pressure Processing of Pork (Longissimus Dorsi) on Changes of Protein Structure and Water Loss During Frozen Storage. LWT. 2021, 135, 110084. DOI: 10.1016/J.LWT.2020.110084.
  • Katsaros, G.; Taoukis, P. Microbial Control by High Pressure Processing for Shelf-Life Extension of Packed Meat Products in the Cold Chain: Modeling and Case Studies. Appl. Sci. 2021, 11, 1317. DOI: 10.3390/APP11031317.
  • Cava, R.; Higuero, N.; Ladero, L. High-Pressure Processing and Storage Temperature on Listeria Monocytogenes, Microbial Counts and Oxidative Changes of Two Traditional Dry-Cured Meat Products. Meat Sci. 2021, 171, 108273. DOI: 10.1016/J.MEATSCI.2020.108273.
  • Martillanes, S.; Rocha-Pimienta, J.; Llera-Oyola, J.; Gil, M. V.; Ayuso-Yuste, M. C.; García-Parra, J.; Delgado-Adámez, J. Control of Listeria Monocytogenes in Sliced Dry-Cured Iberian Ham by High Pressure Processing in Combination with an Eco-Friendly Packaging Based on Chitosan, Nisin and Phytochemicals from Rice Bran. Food Control. 2021, 124, 107933. DOI: 10.1016/J.FOODCONT.2021.107933.
  • Luo, H.; Sheng, Z.; Guo, C.; Jia, R.; Yang, W. Quality Attributes Enhancement of Ready-To-Eat Hairtail Fish Balls by High-Pressure Processing. LWT. 2021, 147, 111658. DOI: 10.1016/J.LWT.2021.111658.
  • Jalarama Reddy, K.; Jayathilakan, K.; Chauhan, O. P.; Pandey, M. C.; Radhakrishna, K. Effect of High-Pressure Processing on Physico-Chemical and Microbial Quality Characteristics of Chevon (Capra Aegagrus Hircus). Food Bioprocess Technol. 2015, 8, 2347–2358. DOI: 10.1007/S11947-015-1617-6.
  • Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K. H.; Guyon, C.; Stübler, A. S.; de Lamballerie, M.; Hertel, C.; Brüggemann, D. A. High-Pressure Processing of Meat: Molecular Impacts and Industrial Applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. DOI: 10.1111/1541-4337.12670.
  • Agregán, R.; Munekata, P. E. S.; Zhang, W.; Zhang, J.; Pérez-Santaescolástica, C.; Lorenzo, J. M. High-Pressure Processing in Inactivation of Salmonella Spp. in Food Products. Trends Food Sci. Technol. 2021, 107, 31–37. DOI: 10.1016/J.TIFS.2020.11.025.
  • Bhargava, N.; Mor, R. S.; Kumar, K.; Sharanagat, V. S. Advances in Application of Ultrasound in Food Processing: A Review. Ultrason. Sonochem. 2021, 70, 105293. DOI: 10.1016/J.ULTSONCH.2020.105293.
  • Condón-Abanto, S.; Arroyo, C.; Álvarez, I.; Condón, S.; Lyng, J. G. Application of Ultrasound in Combination with Heat and Pressure for the Inactivation of Spore Forming Bacteria Isolated from Edible Crab (Cancer Pagurus). Int. J. Food Microbiol. 2016, 223, 9–16. DOI: 10.1016/J.IJFOODMICRO.2016.02.001.
  • Singla, M.; Sit, N. Application of Ultrasound in Combination with Other Technologies in Food Processing: A Review. Ultrason. Sonochem. 2021, 73, 105506. DOI: 10.1016/J.ULTSONCH.2021.105506.
  • Zhou, C.; Okonkwo, C. E.; Inyinbor, A. A.; Yagoub, A. E. G. A.; Olaniran, A. F. Ultrasound, Infrared and Its Assisted Technology, a Promising Tool in Physical Food Processing: A Review of Recent Developments. Crit. Rev. Food Sci. Nutr. 2021, 1–25. DOI: 10.1080/10408398.2021.1966379.
  • Strieder, M. M.; Silva, E. K.; Meireles, M. A. A. Advances and Innovations Associated with the Use of Acoustic Energy in Food Processing: An Updated Review. Innov. Food Sci. Emerg. Technol. 2021, 74, 102863. DOI: 10.1016/J.IFSET.2021.102863.
  • Alarcon-Rojo, A. D.; Carrillo-Lopez, L. M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I. A. Ultrasound and Meat Quality: A Review. Ultrason. Sonochem. 2019, 55, 369–382. DOI: 10.1016/J.ULTSONCH.2018.09.016.
  • Bhat, Z. F.; Morton, J. D.; Bekhit, A. E. D. A.; Kumar, S.; Bhat, H. F. Non-Thermal Processing Has an Impact on the Digestibility of the Muscle Proteins. Crit. Rev. Food Sci. Nutr. 2021, 62, 7773–7800. DOI: 10.1080/10408398.2021.1918629.
  • Bhat, Z. F.; Morton, J. D.; Bekhit, A.E. -D.A.; Kumar, S.; Bhat, H. F. Emerging Processing Technologies for Improved Digestibility of Muscle Proteins. Trends Food Sci. Technol. 2021, 110, 226–239. DOI: 10.1016/j.tifs.2021.02.010.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. D. A. The Application of Pulsed Electric Field as a Sodium Reducing Strategy for Meat Products. Food Chem. 2020, 306, 125622. DOI: 10.1016/J.FOODCHEM.2019.125622.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. D. A. Does Pulsed Electric Field Have a Potential to Improve the Quality of Beef from Older Animals and How? Innov. Food Sci. Emerg. Technol. 2019, 56, 102194. DOI: 10.1016/J.IFSET.2019.102194.
  • Bhat, Z. F.; Morton, J. D.; Zhang, X.; Mason, S. L.; Bekhit, A. E. D. A. Sous-Vide Cooking Improves the Quality and in-Vitro Digestibility of Semitendinosus from Culled Dairy Cows. Food. Res. Int. 2020, 127, 108708. DOI: 10.1016/J.FOODRES.2019.108708.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. D. A. Pulsed Electric Field: Role in Protein Digestion of Beef Biceps Femoris. Innov. Food Sci. Emerg. Technol. 2018, 50, 132–138. DOI: 10.1016/J.IFSET.2018.09.006.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. D. A.; Mungure, T. E. Pulsed Electric Field: Effect on in-Vitro Simulated Gastrointestinal Protein Digestion of Deer Longissimus Dorsi. Food. Res. Int. 2019, 120, 793–799. DOI: 10.1016/J.FOODRES.2018.11.040.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Jayawardena, S. R.; Bekhit, A. E. D. A. Pulsed Electric Field: A New Way to Improve Digestibility of Cooked Beef. Meat Sci. 2019, 155, 79–84. DOI: 10.1016/J.MEATSCI.2019.05.005.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Jayawardena, S. R.; Mungure, T.; Bekhit, A. E. D. A. Cooking Does Not Impair the Impact of Pulsed Electric Field on the Protein Digestion of Venison (Cervus Elaphus) During in vitro Gastrointestinal Digestion. Int. J. Food Sci. Technol. 2020, 56, 3026–3033. DOI: 10.1111/IJFS.14946.
  • Alahakoon, A. U.; Oey, I.; Bremer, P.; Silcock, P. Process Optimisation of Pulsed Electric Fields Pre-Treatment to Reduce the Sous Vide Processing Time of Beef Briskets. Int. J. Food Sci. Technol. 2019, 54, 823–834. DOI: 10.1111/ijfs.14002.
  • Chian, F. M.; Kaur, L.; Oey, I.; Astruc, T.; Hodgkinson, S.; Boland, M. Effect of Pulsed Electric Fields (PEF) on the Ultrastructure and in vitro Protein Digestibility of Bovine Longissimus Thoracis. LWT. 2019, 103, 253–259. DOI: 10.1016/J.LWT.2019.01.005.
  • Kaur, L.; Astruc, T.; Vénien, A.; Loison, O.; Cui, J.; Irastorza, M.; Boland, M. High Pressure Processing of Meat: Effects on Ultrastructure and Protein Digestibility. Food Funct. 2016, 7, 2389–2397. DOI: 10.1039/C5FO01496D.
  • Xue, S.; Wang, C.; Kim, Y. H. B.; Bian, G.; Han, M.; Xu, X.; Zhou, G. Application of High-Pressure Treatment Improves the in vitro Protein Digestibility of Gel-Based Meat Product. Food Chem. 2020, 306, 125602. DOI: 10.1016/J.FOODCHEM.2019.125602.
  • Cepero-Betancourt, Y.; Opazo-Navarrete, M.; Janssen, A. E. M.; Tabilo-Munizaga, G.; Pérez-Won, M. Effects of High Hydrostatic Pressure (HHP) on Protein Structure and Digestibility of Red Abalone (Haliotis Rufescens) Muscle. Innov. Food Sci. Emerg. Technol. 2020, 60, 102282. DOI: 10.1016/J.IFSET.2019.102282.
  • Rakotondramavo, A.; Rabesona, H.; Brou, C.; de Lamballerie, M.; Pottier, L. Ham Processing: Effects of Tumbling, Cooking and High Pressure on Proteins. Eur. Food Res. Technol. 2019, 245, 273–284. DOI: 10.1007/s00217-018-3159-4.
  • Dong, X.; Wang, J.; Raghavan, V. Effects of High-Intensity Ultrasound Processing on the Physiochemical and Allergenic Properties of Shrimp. Innov. Food Sci. Emerg. Technol. 2020, 65, 102441. DOI: 10.1016/j.ifset.2020.102441.
  • Bagarinao, N. C.; Kaur, L.; Boland, M. Effects of Ultrasound Treatments on Tenderness and in vitro Protein Digestibility of New Zealand Abalone, Haliotis Iris. Foods. 2020, 9, 1122. DOI: 10.3390/FOODS9081122.
  • Chian, F. M.; Kaur, L.; Astruc, T.; Vénien, A.; Loison, O.; Stübler, A. -S.; Aganovic, K.; Hodgkinson, S.; Boland, M.; Shockwave Processing and Sous Vide Cooking Improve Sensorial and Nutritional Qualities of Beef. In Proceedings of the Food Structure Digestion and Health congress; Rotorua, New Zealand, 2019.
  • Chian, F. M.; Kaur, L.; Astruc, T.; Venien, A.; Loison, O.; Stubler, A. -S.; Aganovic, K.; Hodgkinson, S.; Boland, M. The Effect of Shockwave Processing on Muscle Protein Structure and Digestibility in vitro. In Proceedings of the 64th International Congress of Meat Science and Technology; Melbourne, Australia, 2018.
  • Wang, L. The Storage and Preservation of Seafood. Encycl. Food Secur. Sustain. 2018, 1, 619–624.
  • Duangkhamchan, W.; Phomphai, A.; Wanna, R.; Wiset, L.; Laohavanich, J.; Ronsse, F.; Pieters, J. G. Infrared Heating as a Disinfestation Method Against Sitophilus Oryzae and Its Effect on Textural and Cooking Properties of Milled Rice. Food Bioprocess Technol. 2017, 10, 284–295. DOI: 10.1007/s11947-016-1813-z.
  • Cheng, L.; Sun, D. W.; Zhu, Z.; Zhang, Z. Effects of High Pressure Freezing (HPF) on Denaturation of Natural Actomyosin Extracted from Prawn (Metapenaeus Ensis). Food Chem. 2017, 229, 252–259. DOI: 10.1016/j.foodchem.2017.02.048.
  • Cheng, L.; Sun, D. W.; Zhu, Z.; Zhang, Z. Emerging Techniques for Assisting and Accelerating Food Freezing Processes: A Review of Recent Research Progresses. Crit. Rev. Food Sci. Nutr. 2017, 57, 769–781. DOI: 10.1080/10408398.2015.1004569.
  • Cartagena, L.; Puértolas, E.; Martínez de Marañón, I. Impact of Different Air Blast Freezing Conditions on the Physicochemical Quality of Albacore (Thunnus Alalunga) Pretreated by High Pressure Processing. LWT. 2021, 145. DOI: 10.1016/j.lwt.2021.111538.
  • Truong, B. Q.; Buckow, R.; Nguyen, M. H.; Stathopoulos, C. E. High Pressure Processing of Barramundi (Lates Calcarifer) Muscle Before Freezing: The Effects on Selected Physicochemical Properties During Frozen Storage. J. Food Eng. 2016, 169, 72–78. DOI: 10.1016/j.jfoodeng.2015.08.020.
  • Ekonomou, S. I.; Bulut, S.; Karatzas, K. A. G.; Boziaris, I. S. Inactivation of Listeria Monocytogenes in Raw and Hot Smoked Trout Fillets by High Hydrostatic Pressure Processing Combined with Liquid Smoke and Freezing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102427. DOI: 10.1016/j.ifset.2020.102427.
  • Năstase, G.; Lyu, C.; Ukpai, G.; Şerban, A.; Rubinsky, B. Isochoric and Isobaric Freezing of Fish Muscle. Biochem. Biophys. Res. Commun. 2017, 485, 279–283. DOI: 10.1016/j.bbrc.2017.02.091.
  • Tironi, V.; De Lamballerie, M.; Le-Bail, A. Quality Changes During the Frozen Storage of Sea Bass (Dicentrarchus Labrax) Muscle After Pressure Shift Freezing and Pressure Assisted Thawing. Innov. Food Sci. Emerg. Technol. 2010, 11, 565–573. DOI: 10.1016/j.ifset.2010.05.001.
  • Boziaris, I. S.; Parlapani, F. F.; Mireles DeWitt, C. A. High Pressure Processing at Ultra-Low Temperatures: Inactivation of Foodborne Bacterial Pathogens and Quality Changes in Frozen Fish Fillets. Innov. Food Sci. Emerg. Technol. 2021, 74, 102811. DOI: 10.1016/j.ifset.2021.102811.
  • Abie, S. M.; Münch, D.; Egelandsdal, B.; Bjerke, F.; Wergeland, I.; Martinsen, Ø. G. Combined 0.2 T Static Magnetic Field and 20 kHz, 2 V/Cm Square Wave Electric Field Do Not Affect Supercooling and Freezing Time of Saline Solution and Meat Samples. J. Food Eng. 2021, 311, 110710. DOI: 10.1016/j.jfoodeng.2021.110710.
  • Tang, J.; Shao, S.; Tian, C. Effects of the Magnetic Field on the Freezing Parameters of the Pork. Int. J. Refrig. 2019, 107, 31–38. DOI: 10.1016/j.ijrefrig.2019.07.019.
  • Otero, L.; Pérez-Mateos, M.; Rodríguez, A. C.; Sanz, P. D. Electromagnetic Freezing: Effects of Weak Oscillating Magnetic Fields on Crab Sticks. J. Food Eng. 2017, 200, 87–94. DOI: 10.1016/j.jfoodeng.2016.12.018.
  • Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A. Effect of Freezing Under Electrostatic Field on the Quality of Lamb Meat. Innov. Food Sci. Emerg. Technol. 2016, 37, 68–73. DOI: 10.1016/j.ifset.2016.07.028.
  • Ma, X.; Mei, J.; Xie, J. Effects of Multi-Frequency Ultrasound on the Freezing Rates, Quality Properties and Structural Characteristics of Cultured Large Yellow Croaker (Larimichthys Crocea). Ultrason. Sonochem. 2021, 76, 105657. DOI: 10.1016/j.ultsonch.2021.105657.
  • Zhang, C.; Sun, Q.; Chen, Q.; Kong, B.; Diao, X. Effects of Ultrasound-Assisted Immersion Freezing on the Muscle Quality and Physicochemical Properties of Chicken Breast. Int. J. Refrig. 2020, 117, 247–255. DOI: 10.1016/j.ijrefrig.2020.05.006.
  • Zhang, C.; Li, X. A.; Wang, H.; Xia, X.; Kong, B. Ultrasound-Assisted Immersion Freezing Reduces the Structure and Gel Property Deterioration of Myofibrillar Protein from Chicken Breast. Ultrason. Sonochem. 2020, 67, 105137. DOI: 10.1016/j.ultsonch.2020.105137.
  • Chen, X.; Liu, H.; Li, X.; Wei, Y.; Li, J. Effect of Ultrasonic-Assisted Immersion Freezing and Quick-Freezing on Quality of Sea Bass During Frozen Storage. LWT. 2022, 154, 112737. DOI: 10.1016/j.lwt.2021.112737.
  • Sun, Q.; Sun, F.; Xia, X.; Xu, H.; Kong, B. The Comparison of Ultrasound-Assisted Immersion Freezing, Air Freezing and Immersion Freezing on the Muscle Quality and Physicochemical Properties of Common Carp (Cyprinus Carpio) During Freezing Storage. Ultrason. Sonochem. 2019, 51, 281–291. DOI: 10.1016/j.ultsonch.2018.10.006.
  • Sun, Q.; Chen, Q.; Xia, X.; Kong, B.; Diao, X. Effects of Ultrasound-Assisted Freezing at Different Power Levels on the Structure and Thermal Stability of Common Carp (Cyprinus Carpio) Proteins. Ultrason. Sonochem. 2019, 54, 311–320. DOI: 10.1016/j.ultsonch.2019.01.026.
  • Zhang, M.; Haili, N.; Chen, Q.; Xia, X.; Kong, B. Influence of Ultrasound-Assisted Immersion Freezing on the Freezing Rate and Quality of Porcine Longissimus Muscles. Meat Sci. 2018, 136, 1–8. DOI: 10.1016/j.meatsci.2017.10.005.
  • Hong, G. P.; Choi, M. J. Comparison of the Quality Characteristics of Abalone Processed by High-Pressure Sub-Zero Temperature and Pressure-Shift Freezing. Innov. Food Sci. Emerg. Technol. 2016, 33, 19–25. DOI: 10.1016/j.ifset.2015.12.024.
  • Cheng, L.; Zhu, Z.; Sun, D. W. Impacts of High Pressure Assisted Freezing on the Denaturation of Polyphenol Oxidase. Food Chem. 2021, 335, 127485. DOI: 10.1016/j.foodchem.2020.127485.
  • Zhu, Z.; Li, T.; Sun, D. W. Pressure-Related Cooling and Freezing Techniques for the Food Industry: Fundamentals and Applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 2793–2808. DOI: 10.1080/10408398.2020.1841729.
  • Otero, L.; Rodríguez, A. C.; Pérez-Mateos, M.; Sanz, P. D. Effects of Magnetic Fields on Freezing: Application to Biological Products. Compr. Rev. Food Sci. Food Saf. 2016, 15, 646–667. DOI: 10.1111/1541-4337.12202.
  • Mok, J. H.; Choi, W.; Park, S. H.; Lee, S. H.; Jun, S. Emerging Pulsed Electric Field (PEF) and Static Magnetic Field (SMF) Combination Technology for Food Freezing. Int. J. Refrig. 2015, 50, 137–145. DOI: 10.1016/j.ijrefrig.2014.10.025.
  • Ma, L.; Huang, L.; Liu, Q.; Xu, S.; Wen, Z.; Qin, S.; Li, T.; Feng, Y. Positive Effects of Applying Endophytic Bacteria in Eggplant-Sedum Intercropping System on Cd Phytoremediation and Vegetable Production in Cadmium Polluted Greenhouse. J. Environ. Sci. (China). 2022, 115, 383–391. DOI: 10.1016/j.jes.2021.08.005.
  • Qiu, L.; Zhang, M.; Chitrakar, B.; Bhandari, B. Application of Power Ultrasound in Freezing and Thawing Processes: Effect on Process Efficiency and Product Quality. Ultrason. Sonochem. 2020, 68, 105230. DOI: 10.1016/j.ultsonch.2020.105230.
  • Sun, Q.; Zhao, X.; Zhang, C.; Xia, X.; Sun, F.; Kong, B. Ultrasound-Assisted Immersion Freezing Accelerates the Freezing Process and Improves the Quality of Common Carp (Cyprinus Carpio) at Different Power Levels. LWT. 2019, 108, 106–112. DOI: 10.1016/j.lwt.2019.03.042.
  • Astráin-Redín, L.; Abad, J.; Rieder, A.; Kirkhus, B.; Raso, J.; Cebrián, G.; Álvarez, I. Direct Contact Ultrasound Assisted Freezing of Chicken Breast Samples. Ultrason. Sonochem. 2021, 70, 105319. DOI: 10.1016/j.ultsonch.2020.105319.
  • Kumar, P.; Chevallier, S.; Xanthakis, E.; Jury, V. Effect of Innovative Microwave Assisted Freezing (MAF) on the Quality Attributes of Apples and Potatoes. Food Chem. 2020, 309, 125594. DOI: 10.1016/j.foodchem.2019.125594.
  • Hafezparast-Moadab, N.; Hamdami, N.; Dalvi-Isfahan, M.; Farahnaky, A. Effects of Radiofrequency-Assisted Freezing on Microstructure and Quality of Rainbow Trout (Oncorhynchus Mykiss) Fillet. Innov. Food Sci. Emerg. Technol. 2018, 47, 81–87. DOI: 10.1016/j.ifset.2017.12.012.
  • Xanthakis, E.; Le-Bail, A.; Ramaswamy, H. Development of an Innovative Microwave Assisted Food Freezing Process. Innov. Food Sci. Emerg. Technol. 2014, 26, 176–181. DOI: 10.1016/j.ifset.2014.04.003.
  • Goula, A. M.; Lazarides, H. N. Modeling of Mass and Heat Transfer During Combined Processes of Osmotic Dehydration and Freezing (Osmo-Dehydro-Freezing). Chem. Eng. Sci. 2012, 82, 52–61. DOI: 10.1016/j.ces.2012.07.023.
  • Hassoun, A.; Carpena, M.; Prieto, M. A.; Simal-Gandara, J.; Özogul, F.; Özogul, Y.; Çoban, Ö. E.; Guðjónsdóttir, M.; Barba, F. J.; Marti-Quijal, F. J., et al. Use of Spectroscopic Techniques to Monitor Changes in Food Quality During Application of Natural Preservatives: A Review. Antioxidants. 2020, 9, 882. DOI: 10.3390/ANTIOX9090882.
  • Baptista, R. C.; Horita, C. N.; Sant’Ana, A. S. Natural Products with Preservative Properties for Enhancing the Microbiological Safety and Extending the Shelf-Life of Seafood: A Review. Food. Res. Int. 2020, 127, 108762. DOI: 10.1016/j.foodres.2019.108762.
  • Mei, J.; Ma, X.; Xie, J. Review on Natural Preservatives for Extending Fish Shelf Life. Foods. 2019, 8, 490. DOI: 10.3390/foods8100490.
  • Gokoglu, N. Novel Natural Food Preservatives and Applications in Seafood Preservation: A Review. J. Sci. Food Agric. 2019, 99, 2068–2077. DOI: 10.1002/jsfa.9416.
  • Inanli, A. G.; Tümerkan, E. T. A.; Abed, N. E.; Regenstein, J. M.; Özogul, F. The Impact of Chitosan on Seafood Quality and Human Health: A Review. Trends Food Sci. Technol. 2020, 97, 404–416. DOI: 10.1016/j.tifs.2020.01.029.
  • Karoui, R.; Hassoun, A. Efficiency of Rosemary and Basil Essential Oils on the Shelf-Life Extension of Atlantic Mackerel (Scomber Scombrus) Fillets Stored at 2°C. J. AOAC Int. 2017, 100, 335–344. DOI: 10.5740/jaoacint.16-0410.
  • Ozogul, Y.; Yuvka, İ.; Ucar, Y.; Durmus, M.; Kösker, A. R.; Öz, M.; Ozogul, F. Evaluation of Effects of Nanoemulsion Based on Herb Essential Oils (Rosemary, Laurel, Thyme and Sage) on Sensory, Chemical and Microbiological Quality of Rainbow Trout (Oncorhynchus Mykiss) Fillets During Ice Storage. LWT - Food Sci. Technol. 2017, 75, 677–684. DOI: 10.1016/j.lwt.2016.10.009.
  • Alparslan, Y.; Yapici, H. H.; Metin, C.; Baygar, T.; Günlü, A.; Baygar, T. Quality Assessment of Shrimps Preserved with Orange Leaf Essential Oil Incorporated Gelatin. LWT - Food Sci. Technol. 2016, 72, 457–466. DOI: 10.1016/j.lwt.2016.04.066.
  • de Carvalho, F. A. L.; Lorenzo, J. M.; Pateiro, M.; Bermúdez, R.; Purriños, L.; Trindade, M. A. Effect of Guarana (Paullinia Cupana) Seed and Pitanga (Eugenia Uniflora L.) Leaf Extracts on Lamb Burgers with Fat Replacement by Chia Oil Emulsion During Shelf Life Storage at 2 °C. Food. Res. Int. 2019, 125, 108554. DOI: 10.1016/j.foodres.2019.108554.
  • Jayawardana, B. C.; Warnasooriya, V. B.; Thotawattage, G. H.; Dharmasena, V. A. K. I.; Liyanage, R. Black and Green Tea (Camellia Sinensis L.) Extracts as Natural Antioxidants in Uncured Pork Sausages. J. Food Process Preserv. 2019, 43, 1–8. DOI: 10.1111/jfpp.13870.
  • Koné, A. P.; Desjardins, Y.; Gosselin, A.; Cinq-Mars, D.; Guay, F.; Saucier, L. Plant Extracts and Essential Oil Product as Feed Additives to Control Rabbit Meat Microbial Quality. Meat Sci. 2019, 150, 111–121. DOI: 10.1016/j.meatsci.2018.12.013.
  • Gómez-Estaca, J.; López-Caballero, M. E.; Martínez-Bartolomé, M. Á.; de Lacey, A. M. L.; Gómez-Guillen, M. C.; Montero, M. P. The Effect of the Combined Use of High Pressure Treatment and Antimicrobial Edible Film on the Quality of Salmon Carpaccio. Int. J. Food Microbiol. 2018, 283, 28–36. DOI: 10.1016/j.ijfoodmicro.2018.06.015.
  • Balti, R.; Ben Mansour, M.; Zayoud, N.; Le Balc’h, R.; Brodu, N.; Arhaliass, A.; Massé, A. Active Exopolysaccharides Based Edible Coatings Enriched with Red Seaweed (Gracilaria Gracilis) Extract to Improve Shrimp Preservation During Refrigerated Storage. Food Biosci. 2020, 34, 100522. DOI: 10.1016/j.fbio.2019.100522.
  • Abdel-Naeem, H. H. S.; Sallam, K. I.; Malak, N. M. L. Improvement of the Microbial Quality, Antioxidant Activity, Phenolic and Flavonoid Contents, and Shelf Life of Smoked Herring (Clupea Harengus) During Frozen Storage by Using Chitosan Edible Coating. Food Control. 2021, 130, 108317. DOI: 10.1016/j.foodcont.2021.108317.
  • Qian, Y. F.; Cheng, Y.; Ye, J. X.; Zhao, Y.; Xie, J.; Yang, S. P. Targeting Shrimp Spoiler Shewanella Putrefaciens: Application of ε-Polylysine and Oregano Essential Oil in Pacific White Shrimp Preservation. Food Control. 2021, 123, 107702. DOI: 10.1016/j.foodcont.2020.107702.
  • Wu, T.; Ge, Y.; Li, Y.; Xiang, Y.; Jiang, Y.; Hu, Y. Quality Enhancement of Large Yellow Croaker Treated with Edible Coatings Based on Chitosan and Lysozyme. Int. J. Biol. Macromol. 2018, 120, 1072–1079. DOI: 10.1016/j.ijbiomac.2018.08.188.
  • Farsanipour, A.; Khodanazary, A.; Hosseini, S. M. Effect of Chitosan-Whey Protein Isolated Coatings Incorporated with Tarragon Artemisia Dracunculus Essential Oil on the Quality of Scomberoides Commersonnianus Fillets at Refrigerated Condition. Int. J. Biol. Macromol. 2020, 155, 766–771. DOI: 10.1016/j.ijbiomac.2020.03.228.
  • Cardoso, G. P.; Dutra, M. P.; Fontes, P. R.; Ramos, A. D. L. S.; Gomide, L. A. D. M.; Ramos, E. M. Selection of a Chitosan Gelatin-Based Edible Coating for Color Preservation of Beef in Retail Display. Meat Sci. 2016, 114, 85–94. DOI: 10.1016/j.meatsci.2015.12.012.
  • Farajzadeh, F.; Motamedzadegan, A.; Shahidi, S. A.; Hamzeh, S. The Effect of Chitosan-Gelatin Coating on the Quality of Shrimp (Litopenaeus Vannamei) Under Refrigerated Condition. Food Control. 2016, 67, 163–170. DOI: 10.1016/j.foodcont.2016.02.040.
  • Lekjing, S. A Chitosan-Based Coating with or Without Clove Oil Extends the Shelf Life of Cooked Pork Sausages in Refrigerated Storage. Meat Sci. 2016, 111, 192–197. DOI: 10.1016/j.meatsci.2015.10.003.
  • Wu, C.; Li, Y.; Wang, L.; Hu, Y.; Chen, J.; Liu, D.; Ye, X. Efficacy of Chitosan-Gallic Acid Coating on Shelf Life Extension of Refrigerated Pacific Mackerel Fillets. Food Bioprocess Technol. 2016, 9, 675–685. DOI: 10.1007/s11947-015-1659-9.
  • Kang, H. J.; Jo, C.; Kwon, J. H.; Kim, J. H.; Chung, H. J.; Byun, M. W. Effect of a Pectin-Based Edible Coating Containing Green Tea Powder on the Quality of Irradiated Pork Patty. Food Control. 2007, 18, 430–435. DOI: 10.1016/j.foodcont.2005.11.010.
  • Feng, X.; Ng, V. K.; Mikš-Krajnik, M.; Yang, H. Effects of Fish Gelatin and Tea Polyphenol Coating on the Spoilage and Degradation of Myofibril in Fish Fillet During Cold Storage. Food Bioprocess Technol. 2017, 10, 89–102. DOI: 10.1007/s11947-016-1798-7.
  • Feng, X.; Bansal, N.; Yang, H. Fish Gelatin Combined with Chitosan Coating Inhibits Myofibril Degradation of Golden Pomfret (Trachinotus Blochii) Fillet During Cold Storage. Food Chem. 2016, 200, 283–292. DOI: 10.1016/j.foodchem.2016.01.030.
  • Hosseini, S. F.; Rezaei, M.; Zandi, M.; Ghavi, F. F. Effect of Fish Gelatin Coating Enriched with Oregano Essential Oil on the Quality of Refrigerated Rainbow Trout Fillet. J. Aquat. Food Prod. Technol. 2016, 25, 835–842. DOI: 10.1080/10498850.2014.943917.
  • Rodriguez-Turienzo, L.; Cobos, A.; Diaz, O. Effects of Edible Coatings Based on Ultrasound-Treated Whey Proteins in Quality Attributes of Frozen Atlantic Salmon (Salmo Salar). Innov. Food Sci. Emerg. Technol. 2012, 14, 92–98. DOI: 10.1016/j.ifset.2011.12.003.
  • Shokri, S.; Ehsani, A. Efficacy of Whey Protein Coating Incorporated with Lactoperoxidase and α-Tocopherol in Shelf Life Extension of Pike-Perch Fillets During Refrigeration. LWT - Food Sci. Technol. 2017, 85, 225–231. DOI: 10.1016/j.lwt.2017.07.026.
  • Hassoun, A.; Emir Çoban, Ö. Essential Oils for Antimicrobial and Antioxidant Applications in Fish and Other Seafood Products. Trends Food Sci. Technol. 2017, 68, 26–36. DOI: 10.1016/j.tifs.2017.07.016.
  • El-Saber Batiha, G.; Hussein, D. E.; Algammal, A. M.; George, T. T.; Jeandet, P.; Al-Snafi, A. E.; Tiwari, A.; Pagnossa, J. P.; Lima, C. M.; Thorat, N. D., et al. Application of Natural Antimicrobials in Food Preservation: Recent Views. Food Control. 2021, 126, 108066. DOI: 10.1016/j.foodcont.2021.108066.
  • Mohamed, S. A. A.; El-Sakhawy, M.; El-Sakhawy, M. A. M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. DOI: 10.1016/j.carbpol.2020.116178.
  • Maciel, V. B. V.; Contini, L. R. F.; Yoshida, C. M. P.; Venturini, A. C. Application of Edible Biopolymer Coatings on Meats, Poultry, and Seafood. In Biopolymer Membranes and Films, De Moraes, M., Da Silva, C. and Vieira, R.; Eds.; Amsterdam: Elsevier. 2020; Vol. 18. pp. 515–533.
  • Dehghani, S.; Hosseini, S. V.; Regenstein, J. M. Edible Films and Coatings in Seafood Preservation: A Review. Food Chem. 2018, 240, 505–513. DOI: 10.1016/J.FOODCHEM.2017.07.034.
  • Loudiyi, M.; Temiz, H. T.; Sahar, A.; Haseeb Ahmad, M.; Boukria, O.; Hassoun, A.; Aït-Kaddour, A. Spectroscopic Techniques for Monitoring Changes in the Quality of Milk and Other Dairy Products During Processing and Storage. Crit. Rev. Food Sci. Nutr. 2022, 62, 3063–3087. DOI: 10.1080/10408398.2020.1862754.
  • Yang, Z. -J.; Zhao, Q.; He, J. Boosting Magnetic Field Enhancement with Radiative Couplings of Magnetic Modes in Dielectric Nanostructures. Opt. Express. 2017, 25, 15927. DOI: 10.1364/OE.25.015927.
  • Goetz, A. F. H.; Vane, G.; Solomon, J. E.; Rock, B. N. Imaging Spectrometry for Earth Remote Sensing. Science. 1985, 228, 1147–1153. DOI: 10.1126/science.228.4704.1147.
  • Kamruzzaman, M.; Makino, Y.; Oshita, S.; Liu, S. Assessment of Visible Near-Infrared Hyperspectral Imaging as a Tool for Detection of Horsemeat Adulteration in Minced Beef. Food Bioprocess Technol. 2015, 8, 1054–1062. DOI: 10.1007/s11947-015-1470-7.
  • Wu, D.; Sun, D. -W. Potential of Time Series-Hyperspectral Imaging (TS-HSI) for Non-Invasive Determination of Microbial Spoilage of Salmon Flesh. Talanta. 2013, 111, 39–46. DOI: 10.1016/J.TALANTA.2013.03.041.
  • Xiong, Z.; Sun, D. -W.; Pu, H.; Xie, A.; Han, Z.; Luo, M. Non-Destructive Prediction of Thiobarbituric acid Reactive Substances (TBARS) Value for Freshness Evaluation of Chicken Meat Using Hyperspectral Imaging. Food Chem. 2015, 179, 175–181. DOI: 10.1016/j.foodchem.2015.01.116.
  • Wang, B.; Sun, J.; Xia, L.; Liu, J.; Wang, Z.; Li, P.; Guo, Y.; Sun, X. The Applications of Hyperspectral Imaging Technology for Agricultural Products Quality Analysis: A Review. Food Rev. Int. 2021, 1–20. DOI: 10.1080/87559129.2021.1929297.
  • Amigo, J. M.; Grassi, S. Chapter 1.2 - Configuration of Hyperspectral and Multispectral Imaging Systems. In Hyperspectral Imaging; Amigo, J.M., Ed.; Data Handling in Science and Technology; Amsterdam: Elsevier, 2020; Vol. 32, pp. 17–34.
  • Zhuang, Q.; Peng, Y.; Yang, D.; Wang, Y.; Zhao, R.; Chao, K.; Guo, Q. Detection of Frozen Pork Freshness by Fluorescence Hyperspectral Image. J. Food Eng. 2022, 316, 110840. DOI: 10.1016/J.JFOODENG.2021.110840.
  • Elmasry, G.; Kamruzzaman, M.; Sun, D. -W.; Allen, P. Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. DOI: 10.1080/10408398.2010.543495.
  • Yang, Q. Broadband High-Spectral-Resolution Ultraviolet-Visible Coherent-Dispersion Imaging Spectrometer. Opt. Express. 2018, 26, 20777–20791. DOI: 10.1364/OE.26.020777.
  • ElMasry, G.; Sun, D. -W. CHAPTER 1 - Principles of Hyperspectral Imaging Technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Sun, D.-W., Ed.; Amsteradm: Academic Press, 2010; pp. 3–43.
  • Aït-Kaddour, A.; Jacquot, S.; Micol, D.; Listrat, A. Discrimination of Beef Muscle Based on Visible-Near Infrared Multi-Spectral Features: Textural and Spectral Analysis. Int. J. Food. Prop. 2017, 20, 1391–1403. DOI: 10.1080/10942912.2016.1210163.
  • Aït-Kaddour, A.; Andueza, D.; Dubost, A.; Roger, J. -M.; Hocquette, J. -F.; Listrat, A. Visible and Near-Infrared Multispectral Features in Conjunction with Artificial Neural Network and Partial Least Squares for Predicting Biochemical and Micro-Structural Features of Beef Muscles. Foods. 2020, 9, 1254. DOI: 10.3390/foods9091254.
  • Alshejari, A.; Kodogiannis, V. S. An Intelligent Decision Support System for the Detection of Meat Spoilage Using Multispectral Images. Neural Comput. Appl. 2017, 28, 3903–3920. DOI: 10.1007/s00521-016-2296-6.
  • Ma, F.; Qin, H.; Shi, K.; Zhou, C.; Chen, C.; Hu, X.; Zheng, L. Feasibility of Combining Spectra with Texture Data of Multispectral Imaging to Predict Heme and Non-Heme Iron Contents in Pork Sausages. Food Chem. 2016, 190, 142–149. DOI: 10.1016/j.foodchem.2015.05.084.
  • Spyrelli, E. D.; Ozcan, O.; Mohareb, F.; Panagou, E. Z.; Nychas, G. -J.E. Spoilage Assessment of Chicken Breast Fillets by Means of Fourier Transform Infrared Spectroscopy and Multispectral Image Analysis. Curr. Res. Food Sci. 2021, 4, 121–131. DOI: 10.1016/j.crfs.2021.02.007.
  • Alonso, R.; Picon, A.; Rodríguez, B.; Gaya, P.; Fernández-García, E.; Nuñez, M. Microbiological, Chemical, and Sensory Characteristics of Hispánico Cheese Manufactured Using Frozen High Pressure Treated Curds Made from Raw Ovine Milk. Int. Dairy. J. 2011, 21, 484–492. DOI: 10.1016/j.idairyj.2011.02.008.
  • Tsakanikas, P.; Karnavas, A.; Panagou, E. Z.; Nychas, G. J. A Machine Learning Workflow for Raw Food Spectroscopic Classification in a Future Industry. Sci. Rep. 2020, 10, 1–11. DOI: 10.1038/s41598-020-68156-2.
  • Ropodi, A. I.; Panagou, E. Z.; Nychas, G. -J.E. Rapid Detection of Frozen-Then-Thawed Minced Beef Using Multispectral Imaging and Fourier Transform Infrared Spectroscopy. Meat Sci. 2018, 135, 142–147. DOI: 10.1016/J.MEATSCI.2017.09.016.
  • Vaskoska, R.; Vénien, A.; Ha, M.; White, J. D.; Unnithan, R. R.; Astruc, T.; Warner, R. D. Thermal Denaturation of Proteins in the Muscle Fibre and Connective Tissue from Bovine Muscles Composed of Type I (Masseter) or Type II (Cutaneous Trunci) Fibres: DSC and FTIR Microspectroscopy Study. Food Chem. 2021, 343, 128544. DOI: 10.1016/j.foodchem.2020.128544.
  • Antequera, T.; Caballero, D.; Grassi, S.; Uttaro, B.; Perez-Palacios, T. Evaluation of Fresh Meat Quality by Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI): A Review. Meat Sci. 2021, 172, 108340. DOI: 10.1016/j.meatsci.2020.108340.
  • Fan, N.; Liu, G.; Wan, G.; Ban, J.; Yuan, R.; Sun, Y.; Li, Y. A Combination of Near-Infrared Hyperspectral Imaging with Two-Dimensional Correlation Analysis for Monitoring the Content of Biogenic Amines in Mutton. Int. J. Food Sci. Technol. 2021, 56, 3066–3075. DOI: 10.1111/ijfs.14950.
  • Özdoğan, G.; Lin, X.; Sun, D. W. Rapid and Noninvasive Sensory Analyses of Food Products by Hyperspectral Imaging: Recent Application Developments. Trends Food Sci. Technol. 2021, 111, 151–165. DOI: 10.1016/j.tifs.2021.02.044.
  • Norsk Elektro Optikk AS HySpex. https://www.hyspex.com/hyspex-custom-solutions/fish-quality-analyzer/ (accessed Dec 8, 2021).
  • Geelen, B.; Blanch, C.; Gonzalez, P.; Tack, N.; Lambrechts, A. A Tiny VIS-NIR Snapshot Multispectral Camera. Proceedings Volume 9374, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VIII; 937414, 2015. DOI: 10.1117/12.2077583.
  • Ma, J.; Sun, D. -W.; Pu, H.; Wei, Q.; Wang, X. Protein Content Evaluation of Processed Pork Meats Based on a Novel Single Shot (Snapshot) Hyperspectral Imaging Sensor. J. Food Eng. 2019, 240, 207–213. DOI: 10.1016/J.JFOODENG.2018.07.032.
  • Al-Sarayreh, M.; Reis, M. M.; Yan, W. Q.; Klette, R. Potential of Deep Learning and Snapshot Hyperspectral Imaging for Classification of Species in Meat. Food Control. 2020, 117, 107332. DOI: 10.1016/J.FOODCONT.2020.107332.
  • Hassoun, A.; Abdullah, N. A.; Aït-Kaddour, A.; Beşir, A.; Zannou, O.; Önal, B.; Aadil, R. M.; Lorenzo, J. M.; Khaneghah, A. M.; Regenstein, J. M., et al. Food Traceability 4.0 as Part of the Fourth Industrial Revolution: Key Enabling Technologies. Crit. Rev. Food Sci. Nutr. 2022, 1–17. DOI:10.1080/10408398.2022.2110033.
  • Fuentes, S.; Viejo, C. G.; Tongson, E.; Dunshea, F. R. The Livestock Farming Digital Transformation: Implementation of New and Emerging Technologies Using Artificial Intelligence. Anim. Heal. Res. Rev. 2022, 23, 59–71. DOI: 10.1017/S1466252321000177.
  • Feider, C. L.; Krieger, A.; DeHoog, R. J.; Eberlin, L. S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91, 4266–4290. DOI: 10.1021/acs.analchem.9b00807.
  • Committee on the Environment Public Health and Food Safety. On the food crisis, fraud in the food chain and the control thereof; 2013, https://www.europarl.europa.eu/doceo/document/A-7-2013-0434_EN.html
  • Moore, J.; United States Pharmacopeia appendix XVIII: Guidance on Developing and Validating Non-Targeted Methods for Adulteration Detection; USP: Rockville, MA, USA, 2017; pp. 2053–2066.
  • Takáts, Z.; Wiseman, J. M.; Gologan, B.; Cooks, R. G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science. 2004, 306, 471–473. DOI: 10.1126/science.1104404.
  • Garrett, R.; Schwab, N. V.; Cabral, E. C.; Henrique, B. V. M.; Ifa, D. R.; Eberlin, M. N.; Rezende, C. M. Ambient Mass Spectrometry Employed for Direct Analysis of Intact Arabica Coffee Beans. J. Braz. Chem. Soc. 2014, 25, 1172–1177. DOI: 10.5935/0103-5053.20140094.
  • Correa, D. N.; Santos, J. M.; Eberlin, L. S.; Eberlin, M. N.; Teunissen, S. F. Forensic Chemistry and Ambient Mass Spectrometry: A Perfect Couple Destined for a Happy Marriage? Anal. Chem. 2016, 88, 2515–2526. DOI: 10.1021/acs.analchem.5b02397.
  • Swiner, D. J.; Jackson, S.; Burris, B. J.; Badu-Tawiah, A. K. Applications of Mass Spectrometry for Clinical Diagnostics: The Influence of Turnaround Time. Anal. Chem. 2020, 92, 183–202. DOI: 10.1021/acs.analchem.9b04901.
  • Walworth, M. J.; Elnaggar, M. S.; Stankovich, J. J.; Witkowski, C.; Norris, J. L.; Van Berkel, G. J. Direct Sampling and Analysis from Solid-Phase Extraction Cards Using an Automated Liquid Extraction Surface Analysis Nanoelectrospray Mass Spectrometry System. Rapid Commun. Mass Spectrom. 2011, 25, 2389–2396. DOI: 10.1002/rcm.5132.
  • Rankin-Turner, S.; Ninomiya, S.; Reynolds, J. C.; Hiraoka, K. Sheath-flow probe electrospray ionization (sfPESI) mass spectrometry for the rapid forensic analysis of human body fluids. Anal. Methods. 2019, 11, 3633–3640. DOI: 10.1039/C9AY00698B.
  • Mattarozzi, M.; Bianchi, F.; Milioli, M.; Cavazza, A.; Careri, M. An Innovative Method Based on Quick, Easy, Cheap, Effective, Rugged, and Safe Extraction Coupled to Desorption Electrospray Ionization-High Resolution Mass Spectrometry for Screening the Presence of Paralytic Shellfish Toxins in Clams. Talanta. 2016, 147, 416–421. DOI: 10.1016/j.talanta.2015.10.016.
  • Haddad, R.; Sparrapan, R.; Eberlin, M. N. Desorption Sonic Spray Ionization for (High) Voltage-Free Ambient Mass Spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 2901–2905. DOI: 10.1002/rcm.2680.
  • Porcari, A. M.; Fernandes, G. D.; Barrera-Arellano, D.; Eberlin, M. N.; Alberici, R. M. Food Quality and Authenticity Screening via Easy Ambient Sonic-Spray Ionization Mass Spectrometry. Analyst. 2016, 141, 1172–1184. DOI: 10.1039/C5AN01415H.
  • Maluly, H. D. B.; de Melo Porcari, A.; da Silva Cunha, I. B.; Pacheco, M. T. B.; Eberlin, M. N.; Alberici, R. M. The Impacts of the Raising Regime of Salmon Species on Their Triacylglycerol Composition Revealed by Easy Ambient Sonic-Spray Ionization Mass Spectrometry. Food. Res. Int. 2019, 120, 19–25. DOI: 10.1016/j.foodres.2019.01.066.
  • Massaro, A.; Stella, R.; Negro, A.; Bragolusi, M.; Miano, B.; Arcangeli, G.; Biancotto, G.; Piro, R.; Tata, A. New Strategies for the Differentiation of Fresh and Frozen/Thawed Fish: A Rapid and Accurate Non-Targeted Method by Ambient Mass Spectrometry and Data Fusion (Part A). Food Control. 2021, 130, 108364. DOI: 10.1016/j.foodcont.2021.108364.
  • Fiorino, G. M.; Losito, I.; De Angelis, E.; Logrieco, A. F.; Monaci, L. Direct Analysis in Real Time Coupled to High Resolution Mass Spectrometry as a Rapid Tool to Assess Salmon (Salmo Salar) Freshness. J. Mass Spectrom. 2018, 53, 781–791. DOI: 10.1002/jms.4260.
  • Balog, J.; Perenyi, D.; Guallar-Hoyas, C.; Egri, A.; Pringle, S. D.; Stead, S.; Chevallier, O. P.; Elliott, C. T.; Takats, Z. Identification of the Species of Origin for Meat Products by Rapid Evaporative Ionization Mass Spectrometry. J. Agric. Food. Chem. 2016, 64, 4793–4800. DOI: 10.1021/acs.jafc.6b01041.
  • Rigano, F.; Mangraviti, D.; Stead, S.; Martin, N.; Petit, D.; Dugo, P.; Mondello, L. Rapid Evaporative Ionization Mass Spectrometry Coupled with an Electrosurgical Knife for the Rapid Identification of Mediterranean Sea Species. Anal. Bioanal. Chem. 2019, 411, 6603–6614. DOI: 10.1007/s00216-019-02000-z.
  • Song, G.; Zhang, M.; Zhang, Y.; Wang, H.; Li, S.; Dai, Z.; Shen, Q. In Situ Method for Real-Time Discriminating Salmon and Rainbow Trout Without Sample Preparation Using iKnife and Rapid Evaporative Ionization Mass Spectrometry-Based Lipidomics. J. Agric. Food. Chem. 2019, 67, 4679–4688. DOI: 10.1021/acs.jafc.9b00751.
  • Black, C.; Chevallier, O. P.; Haughey, S. A.; Balog, J.; Stead, S.; Pringle, S. D.; Riina, M. V.; Martucci, F.; Acutis, P. L.; Morris, M., et al. A Real Time Metabolomic Profiling Approach to Detecting Fish Fraud Using Rapid Evaporative Ionisation Mass Spectrometry. Metabolomics. 2017, 13, 153. DOI: 10.1007/s11306-017-1291-y.
  • Kosek, V.; Uttl, L.; Jírů, M.; Black, C.; Chevallier, O.; Tomaniová, M.; Elliott, C. T.; Hajšlová, J. Ambient Mass Spectrometry Based on REIMS for the Rapid Detection of Adulteration of Minced Meats by the Use of a Range of Additives. Food Control. 2019, 104, 50–56. DOI: 10.1016/j.foodcont.2018.10.029.
  • Black, C.; Chevallier, O. P.; Cooper, K. M.; Haughey, S. A.; Balog, J.; Takats, Z.; Elliott, C. T.; Cavin, C. Rapid Detection and Specific Identification of Offals Within Minced Beef Samples Utilising Ambient Mass Spectrometry. Sci. Rep. 2019, 9, 6295. DOI: 10.1038/s41598-019-42796-5.
  • Gredell, D. A.; Schroeder, A. R.; Belk, K. E.; Broeckling, C. D.; Heuberger, A. L.; Kim, S. -Y.; King, D. A.; Shackelford, S. D.; Sharp, J. L.; Wheeler, T. L., et al. Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data. Sci. Rep. 2019, 9, 5721. DOI: 10.1038/s41598-019-40927-6.
  • Ross, A.; Brunius, C.; Chevallier, O.; Dervilly, G.; Elliott, C.; Guitton, Y.; Prenni, J. E.; Savolainen, O.; Hemeryck, L.; Vidkjær, N. H., et al. Making Complex Measurements of Meat Composition Fast: Application of Rapid Evaporative Ionisation Mass Spectrometry to Measuring Meat Quality and Fraud. Meat Sci. 2021, 181, 108333. DOI: 10.1016/j.meatsci.2020.108333.
  • Birse, N.; Chevallier, O.; Hrbek, V.; Kosek, V.; Hajŝlová, J.; Elliott, C. Ambient Mass Spectrometry as a Tool to Determine Poultry Production System History: A Comparison of Rapid Evaporative Ionisation Mass Spectrometry (REIMS) and Direct Analysis in Real Time (DART) Ambient Mass Spectrometry Platforms. Food Control. 2021, 123, 107740. DOI: 10.1016/j.foodcont.2020.107740.
  • Gatmaitan, A. N.; Lin, J. Q.; Zhang, J.; Eberlin, L. S. Rapid Analysis and Authentication of Meat Using the MasSpec Pen Technology. J. Agric. Food. Chem. 2021, 69(11), 3527–3536. DOI: 10.1021/acs.jafc.0c07830.
  • Kertesz, V.; Van Berkel, G. J. Fully Automated Liquid Extraction-Based Surface Sampling and Ionization Using a Chip-Based Robotic Nanoelectrospray Platform. J. Mass Spectrom. 2010, 45, 252–260. DOI: 10.1002/jms.1709.
  • Montowska, M.; Alexander, M. R.; Tucker, G. A.; Barrett, D. A. Authentication of Processed Meat Products by Peptidomic Analysis Using Rapid Ambient Mass Spectrometry. Food Chem. 2015, 187, 297–304. DOI: 10.1016/j.foodchem.2015.04.078.
  • Hiraoka, K.; Rankin-Turner, S.; Ninomiya, S.; Sekine, R.; Wada, H.; Matsumura, M.; Sanada-Morimura, S.; Tanaka, F.; Nonami, H.; Ariyada, O. Point Analysis of Foods by Sheath-Flow Probe Electrospray Ionization/Mass Spectrometry (sfPESI/MS) Coupled with a Touch Sensor. J. Agric. Food. Chem. 2020, 68, 418–425. DOI: 10.1021/acs.jafc.9b06489.
  • Law, J. W. F.; Mutalib, N. S. A.; Chan, K. G.; Lee, L. H. Rapid Metho Ds for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations. Front. Microbiol. 2014, 5, 770. DOI: 10.3389/fmicb.2014.00770.
  • Qiao, L.; Tang, X.; Dong, J. A Feasibility Quantification Study of Total Volatile Basic Nitrogen (TVB-N) Content in Duck Meat for Freshness Evaluation. Food Chem. 2017, 237, 1179–1185. DOI: 10.1016/J.FOODCHEM.2017.06.031.
  • Kuswandi, B.; Nurfawaidi, A. On-Package Dual Sensors Label Based on pH Indicators for Real-Time Monitoring of Beef Freshness. Food Control. 2017, 82, 91–100. DOI: 10.1016/J.FOODCONT.2017.06.028.
  • Bi, J.; Tian, C.; Zhang, G. L.; Hao, H.; Hou, H. M. Detection of Histamine Based on Gold Nanoparticles with Dual Sensor System of Colorimetric and Fluorescence. Foods. 2020, 9, 316. DOI: 10.3390/FOODS9030316.
  • Pereira, J. A. M.; Porto-Figueira, P.; Andrade, B.; Gonçalves, P.; Pataca, J.; Câmara, J. S. Biogenic Amines in Food: Occurrence and Analytical Challenges for Their Analysis. In Biogenic Amines (BA): Origins, Biological Importance and Human Health Implications; Stadnik, J., Ed.; Hauppauge, NY, USA: Nova Science Publishers, Inc, 2017; pp. 1–23.
  • Bülbül, G.; Hayat, A.; Andreescu, S. Portable Nanoparticle-Based Sensors for Food Safety Assessment. Sensors. 2015, 15, 30736–30758. DOI: 10.3390/S151229826.
  • Chen, Q.; Hui, Z.; Zhao, J.; Ouyang, Q. Evaluation of Chicken Freshness Using a Low-Cost Colorimetric Sensor Array with AdaBoost–OLDA Classification Algorithm. LWT - Food Sci. Technol. 2014, 57, 502–507. DOI: 10.1016/J.LWT.2014.02.031.
  • Sionek, B.; Przybylski, W.; Bańska, A.; Florowski, T. Applications of Biosensors for Meat Quality Evaluations. Sensors. 2021, 21, 7430. DOI: 10.3390/S21227430.
  • Choi, J. R.; Yong, K. W.; Tang, R.; Gong, Y.; Wen, T.; Li, F.; Pingguan-Murphy, B.; Bai, D.; Xu, F. Advances and Challenges of Fully Integrated Paper-Based Point-Of-Care Nucleic Acid Testing. TrAc Trends Anal. Chem. 2017, 93, 37–50. DOI: 10.1016/J.TRAC.2017.05.007.
  • Apetrei, I. M.; Apetrei, C. Application of Voltammetric E-Tongue for the Detection of Ammonia and Putrescine in Beef Products. Sens. Actuators B Chem. 2016, 234, 371–379. DOI: 10.1016/J.SNB.2016.05.005.
  • Mohareb, F.; Papadopoulou, O.; Panagou, E.; Nychas, G. J.; Bessant, C. Ensemble-Based Support Vector Machine Classifiers as an Efficient Tool for Quality Assessment of Beef Fillets from Electronic Nose Data. Anal. Methods. 2016, 8, 3711–3721. DOI: 10.1039/C6AY00147E.
  • Dowlati, M.; de la Guardia, M.; Dowlati, M.; Mohtasebi, S. S. Application of Machine-Vision Techniques to Fish-Quality Assessment. TrAc Trends Anal. Chem. 2012, 40, 168–179. DOI: 10.1016/J.TRAC.2012.07.011.
  • Grau, R.; Sánchez, A. J.; Girón, J.; Iborra, E.; Fuentes, A.; Barat, J. M. Nondestructive Assessment of Freshness in Packaged Sliced Chicken Breasts Using SW-NIR Spectroscopy. Food. Res. Int. 2011, 44, 331–337. DOI: 10.1016/J.FOODRES.2010.10.011.
  • Weng, X.; Luan, X.; Kong, C.; Chang, Z.; Li, Y.; Zhang, S.; Al-Majeed, S.; Xiao, Y. A Comprehensive Method for Assessing Meat Freshness Using Fusing Electronic Nose, Computer Vision, and Artificial Tactile Technologies. J. Sens. 2020, 2020, 1–14. DOI: 10.1155/2020/8838535.
  • Hameed, S.; Xie, L.; Ying, Y. Conventional and Emerging Detection Techniques for Pathogenic Bacteria in Food Science: A Review. Trends Food Sci. Technol. 2018, 81, 61–73. DOI: 10.1016/J.TIFS.2018.05.020.
  • Pang, B.; Fu, K.; Liu, Y.; Ding, X.; Hu, J.; Wu, W.; Xu, K.; Song, X.; Wang, J.; Mu, Y., et al. Development of a Self-Priming PDMS/Paper Hybrid Microfluidic Chip Using Mixed-Dye-Loaded Loop-Mediated Isothermal Amplification Assay for Multiplex Foodborne Pathogens Detection. Anal. Chim. Acta. 2018, 1040, 81–89. DOI: 10.1016/J.ACA.2018.07.024.
  • Shih, C. M.; Chang, C. L.; Hsu, M. Y.; Lin, J. Y.; Kuan, C. M.; Wang, H. K.; Huang, C. T.; Chung, M. C.; Huang, K. C.; Hsu, C. E., et al. Paper-Based ELISA to Rapidly Detect Escherichia Coli. Talanta. 2015, 145, 2–5. DOI: 10.1016/J.TALANTA.2015.07.051.
  • Li, X.; Yang, F.; Wong, J. X. H.; Yu, H. Z. Integrated Smartphone-App-Chip System for On-Site Parts-Per-Billion-Level Colorimetric Quantitation of Aflatoxins. Anal. Chem. 2017, 89, 8908–8916. DOI: 10.1021/acs.analchem.7b01379.
  • Coskun, A. F.; Wong, J.; Khodadadi, D.; Nagi, R.; Tey, A.; Ozcan, A. A Personalized Food Allergen Testing Platform on a Cellphone. Lab. Chip. 2013, 13, 636. DOI: 10.1039/C2LC41152K.
  • Liu, Z.; Zhang, Y.; Xu, S.; Zhang, H.; Tan, Y.; Ma, C.; Song, R.; Jiang, L.; Yi, C. A 3D Printed Smartphone Optosensing Platform for Point-Of-Need Food Safety Inspection. Anal. Chim. Acta. 2017, 966, 81–89. DOI: 10.1016/J.ACA.2017.02.022.
  • Valderrama, W. B.; Dudley, E. G.; Doores, S.; Cutter, C. N. Commercially Available Rapid Methods for Detection of Selected Food-Borne Pathogens. Crit. Rev. Food Sci. Nutr. 2016, 56, 1519–1531. DOI: 10.1080/10408398.2013.775567.
  • Nabi, B. G.; Mukhtar, K.; Arshad, R. N.; Radicetti, E.; Tedeschi, P.; Shahbaz, M. U.; Walayat, N.; Nawaz, A.; Inam-Ur-Raheem, M.; Aadil, R. M. High-Pressure Processing for Sustainable Food Supply. Sustainability. 2021, 13, 13908. DOI: 10.3390/SU132413908.
  • Power, A.; Cozzolino, D. How Fishy is Your Fish? Authentication, Provenance and Traceability in Fish and Seafood by Means of Vibrational Spectroscopy. Appl. Sci. 2020, 10, 4150. DOI: 10.3390/app10124150.
  • Hassoun, A.; Gudjónsdóttir, M.; Prieto, M. A.; Garcia-Oliveira, P.; Simal-Gandara, J.; Marini, F.; Di Donato, F.; D’Archivio, A. A.; Biancolillo, A. Application of Novel Techniques for Monitoring Quality Changes in Meat and Fish Products During Traditional Processing Processes: Reconciling Novelty and Tradition. Processes. 2020, 8, 988. DOI: 10.3390/PR8080988.