468
Views
0
CrossRef citations to date
0
Altmetric
Review

Nutritional Properties of Fish Bones: Potential Applications in the Food Industry

, , , ORCID Icon, , , , , & show all

References

  • Institute of Medicine (US). Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington DC, 2011.
  • Storhaug, C. L.; Fosse, S. K.; Fadnes, L. T. Country, Regional, and Global Estimates for Lactose Malabsorption in Adults: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2017, 2(10), 738–746. DOI: 10.1016/S2468-1253(17)30154-1.
  • Wolf, C. A.; Malone, T.; McFadden, B. R. Beverage Milk Consumption Patterns in the United States: Who is Substituting from Dairy to Plant-Based Beverages? J. Dairy. Sci. 2020, 103(12), 11209–11217. DOI: 10.3168/jds.2020-18741.
  • Thorning, T. K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S. S.; Givens, I.; Astrup, A. Milk and Dairy Products: Good or Bad for Human Health? An Assessment of the Totality of Scientific Evidence. Food Nutr. Res. 2016, 60, 32527. DOI: 10.3402/fnr.v60.32527.
  • Gerosa, S.; Skoet, J. Milk Availability: Current Production and Demand and Medium-Term Outlook. In Milk and Dairy Products in Human Nutrition; Muehlhoff, E., Bennett, A. and McMahon, D., Eds.; Food and Agriculture Organization of the United Nations: Rome, 2013; pp 11–40.
  • Balk, E. M.; Adam, G. P.; Langberg, V. N.; Earley, A.; Clark, P.; Ebeling, P. R.; Mithal, A.; Rizzoli, R.; Zerbini, C. A. F.; Pierroz, D. D., et al. Global Dietary Calcium Intake Among Adults: A Systematic Review. Osteoporos. Int. 2017, 28(12), 3315–3324.
  • Palacios, C.; Cormick, G.; Hofmeyr, G. J.; Garcia-Casal, M. N.; Peña-Rosas, J. P.; Betrán, A. P. Calcium-Fortified Foods in Public Health Programs: Considerations for Implementation. Ann. N. Acad. Sci. 2021, 1485(1), 3–21. DOI: 10.1111/nyas.14495.
  • Creo, A. L.; Thacher, T. D.; Pettifor, J. M.; Strand, M. A.; Fischer, P. R. Nutritional Rickets Around the World: An Update. Paediatr. Int. Child. Health. 2017, 37(2), 84–98. DOI: 10.1080/20469047.2016.1248170.
  • Prentice, A. Nutritional Rickets Around the World. J. Steroid Biochem. Mol. Biol. 2013, 136, 201–206. DOI: 10.1016/j.jsbmb.2012.11.018.
  • International Osteoporosis Foundation. About Osteoporosis. https://www.osteoporosis.foundation/health-professionals/about-osteoporosis (accessed Dec 13, 2020).
  • World Health Organization. Nutritional Rickets: A Review of Disease Burden, Causes, Diagnosis, Prevention and Treatment; World Health Organization: Geneva, 2019.
  • International Osteoporosis Foundation. Epidemiology of Osteoporosis and Fragility Fractures. https://www.osteoporosis.foundation/facts-statistics/epidemiology-of-osteoporosis-and-fragility-fractures (accessed Dec 13, 2020).
  • Rashki Kemmak, A.; Rezapour, A.; Jahangiri, R.; Nikjoo, S.; Farabi, H.; Soleimanpour, S. Economic Burden of Osteoporosis in the World: A Systematic Review. Med. J. Islam. Repub. Iran. 2020, 34, 154. DOI: 10.47176/mjiri.34.154.
  • FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action. Rome, 2020. 10.4060/ca9229en.
  • Wu, R. S. S. The Environmental Impact of Marine Fish Culture: Towards a Sustainable Future. Mar. Pollut. Bull. 1995, 31(4), 159–166. DOI: 10.1016/0025-326X(95)00100-2.
  • Arvanitoyannis, I. S.; Kassaveti, A. Fish Industry Waste: Treatments, Environmental Impacts, Current and Potential Uses. Int. J. Food Sci. Technol. 2008, 43(4), 726–745. DOI: 10.1111/j.1365-2621.2006.01513.x.
  • Al Khawli, F.; Ferrer, E.; Berrada, H.; Barba, F. J.; Pateiro, M.; Dominguez, R.; Lorenzo, J. M.; Gullon, P.; Kousoulaki, K. Innovative Green Technologies of Intensification for Valorization of Seafood and Their By-Products. Mar. Drugs. 2019, 17, 12. DOI: 10.3390/md17120689.
  • Shavandi, A.; Hou, Y.; Carne, A.; McConnell, M.; Bekhit, A. E. A. Marine Waste Utilization as a Source of Functional and Health Compounds. Adv. Food Nutr. Res. 2019, 87, 187–254. DOI: 10.1016/bs.afnr.2018.08.001.
  • Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. DOI: 10.1016/j.resconrec.2017.09.005.
  • Nazzaro, F.; Fratianni, F.; Ombra, M. N.; D’Acierno, A.; Coppola, R. Recovery of Biomolecules of High Benefit from Food Waste. Curr. Opin. Food Sci. 2018, 22, 43–54. DOI: 10.1016/j.cofs.2018.01.012.
  • Stevens, J. R.; Newton, R. W.; Tlusty, M.; Little, D. C. The Rise of Aquaculture By-Products: Increasing Food Production, Value, and Sustainability Through Strategic Utilisation. Mar. Policy. 2018, 90, 115–124. DOI: 10.1016/j.marpol.2017.12.027.
  • Senevirathne, M.; Kim, S. -K. Chapter 15 - Development of Bioactive Peptides from Fish Proteins and Their Health Promoting Ability. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Academic Press, 2012; Vol. 65, pp. 235–248. DOI: 10.1016/B978-0-12-416003-3.00015-9.
  • Atef, M.; Mahdi Ojagh, S. Health Benefits and Food Applications of Bioactive Compounds from Fish Byproducts: A Review. J. Funct. Foods. 2017, 35, 673–681. DOI: 10.1016/j.jff.2017.06.034.
  • Senevirathne, M.; Kim, S. -K. Chapter 32 - Utilization of Seafood Processing By-Products: Medicinal Applications. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Academic Press, 2012; Vol. 65, pp. 495–512. DOI: 10.1016/B978-0-12-416003-3.00032-9.
  • Munekata, P. E. S.; Pateiro, M.; Domínguez, R.; Zhou, J.; Barba, F. J.; Lorenzo, J. M. Nutritional Characterization of Sea Bass Processing By-Products. Biomolecules. 2020, 10(2), 232. DOI: 10.3390/biom10020232.
  • Toppe, J.; Albrektsen, S.; Hope, B.; Aksnes, A. Chemical Composition, Mineral Content and Amino Acid and Lipid Profiles in Bones from Various Fish Species. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 146(3), 395–401. DOI: 10.1016/j.cbpb.2006.11.020.
  • Malde, M. K.; Graff, I. E.; Siljander-Rasi, H.; Venalainen, E.; Julshamn, K.; Pedersen, J. I.; Valaja, J. Fish Bones–A Highly Available Calcium Source for Growing Pigs. J. Anim. Physiol. Anim. Nutr. Berl. 2010, 94(5), e66–76. DOI: 10.1111/j.1439-0396.2009.00979.x.
  • Martı́nez-Valverde, I.; Periago, M. J.; Santaella, M.; Ros, G. The Content and Nutritional Significance of Minerals on Fish Flesh in the Presence and Absence of Bone. Food Chem. 2000, 71(4), 503–509. DOI: 10.1016/S0308-8146(00)00197-7.
  • Martínez-Valverde, I.; Santaella, M.; Ros, G.; Periago, M. J. Content and in vitro Availability of Fe, Zn, Mg, Ca and P in Homogenized Fish-Based Weaning Foods After Bone Addition. Food Chem. 1998, 63(3), 299–305. DOI: 10.1016/S0308-8146(98)00050-8.
  • Kim, S. K.; Jung, W. K. 15 - Fish and Bone as a Calcium Source. In Maximising the Value of Marine By-Products; Shahidi, F., Ed.; Woodhead Publishing, 2007; pp. 328–339. DOI: 10.1533/9781845692087.2.328.
  • Kim, S. K.; Mendis, E. Bioactive Compounds from Marine Processing Byproducts – a Review. Food. Res. Int. 2006, 39(4), 383–393. DOI: 10.1016/j.foodres.2005.10.010.
  • Li, J.; Yin, T.; Xiong, S.; Huang, Q.; You, J.; Hu, Y.; Liu, R.; Li, Y. Mechanism on Releasing and Solubilizing of Fish Bone Calcium During Nano-Milling. J. Food Process. Eng. 2020, 43(4), e13354. DOI: 10.1111/jfpe.13354.
  • Nemati, M.; Huda, N.; Ariffin, F. Development of Calcium Supplement from Fish Bones Wastes of Yellowfin Tuna (Thunnus Albacares) and Characterization of Nutritional Quality. Int. Food Res. J. 2017, 24(6), 2419–2426.
  • Bechtel, P. J.; Watson, M. A.; Lea, J. M.; Bett-Garber, K. L.; Bland, J. M. Properties of Bone from Catfish Heads and Frames. Food Sci. Nutr. 2019, 7(4), 1396–1405. DOI: 10.1002/fsn3.974.
  • Jafarpour, A.; Gomes, R. M.; Gregersen, S.; Sloth, J. J.; Jacobsen, C.; Moltke Sørensen, A. -D. Characterization of Cod (Gadus Morhua) Frame Composition and Its Valorization by Enzymatic Hydrolysis. J. Food Compos. Anal. 2020, 89, 103469. DOI: 10.1016/j.jfca.2020.103469.
  • Nemati, M.; Kamilah, H.; Huda, N.; Ariffin, F. In Vitro Calcium Availability in Bakery Products Fortified with Tuna Bone Powder as a Natural Calcium Source. Int. J. Food Sci. Nutr. 2015, 67(5), 535–540. DOI: 10.1080/09637486.2016.1179269.
  • Nawaz, A.; Xiong, Z.; Xiong, H.; Chen, L.; Wang, P.; Ahmad, I.; Hu, C.; Irshad, S.; Ali, S. W. The Effects of Fish Meat and Fish Bone Addition on Nutritional Value, Texture and Microstructure of Optimised Fried Snacks. Int. J. Food Sci. Technol. 2019, 54(4), 1045–1053. DOI: 10.1111/ijfs.13974.
  • Nawaz, A.; Li, E.; Irshad, S.; Hhm, H.; Liu, J.; Shahbaz, H. M.; Ahmed, W.; Regenstein, J. M. Improved Effect of Autoclave Processing on Size Reduction, Chemical Structure, Nutritional, Mechanical and in vitro Digestibility Properties of Fish Bone Powder. Adv. Powder Technol. 2020, 31(6), 2513–2520. DOI: 10.1016/j.apt.2020.04.015.
  • Busca, K.; Wu, S.; Miao, S.; Govindan, A.; Strain, C.; O’Donnell, S.; Whooley, J.; Gite, S.; Paul Ross, R.; Stanton, C. An in vitro Study to Assess Bioaccesibility and Bioavailability of Calcium from Blue Whiting (Micromesistius Poutassou) Fish Bone Powder. Ir. J. Agric. Food Res. 2021. DOI: 10.15212/ijafr-2020-0140.
  • Flammini, L.; Martuzzi, F.; Vivo, V.; Ghirri, A.; Salomi, E.; Bignetti, E.; Barocelli, E. Hake Fish Bone as a Calcium Source for Efficient Bone Mineralization. Int. J. Food Sci. Nutr. 2016, 67(3), 265–273. DOI: 10.3109/09637486.2016.1150434.
  • Joe, G. -H.; Ono, M.; Tsuji, K.; Takeda, T.; Saeki, H. Nutritional Value of Pacific Herring Bone Co-Ingested with Fish Meat as a Calcium Source in Retort Seafood. Fish. Sci. 2021, 87(5), 739–747. DOI: 10.1007/s12562-021-01534-5.
  • Suntornsaratoon, P.; Charoenphandhu, N.; Krishnamra, N. Fortified Tuna Bone Powder Supplementation Increases Bone Mineral Density of Lactating Rats and Their Offspring. J. Sci. Food Agric. 2018, 98(5), 2027–2034. DOI: 10.1002/jsfa.8688.
  • Larsen, T.; Thilsted, S. H.; Kongsbak, K.; Hansen, M. Whole Small Fish as a Rich Calcium Source. Br. J. Nutr. 2000, 83(2), 191–196. DOI: 10.1017/S0007114500000246.
  • Yoon, G. A.; Kim, Y. M.; Chi, G. Y.; Hwang, H. J. Effects of Tuna Bone and Herbal Extract on Bone Metabolism in Ovariectomized Rats. Nutr. Res. 2005, 25(11), 1013–1019. DOI: 10.1016/j.nutres.2005.08.005.
  • Maehira, F.; Miyagi, I.; Eguchi, Y. Effects of Calcium Sources and Soluble Silicate on Bone Metabolism and the Related Gene Expression in Mice. Nutrition. 2009, 25(5), 581–589. DOI: 10.1016/j.nut.2008.10.023.
  • Hansen, M.; Thilsted, S. H.; Sandstrom, B.; Kongsbak, K.; Larsen, T.; Jensen, M.; Sorensen, S. S. Calcium Absorption from Small Soft-Boned Fish. J. Trace Elem. Med. Biol. 1998, 12(3), 148–154. DOI: 10.1016/S0946-672X(98)80003-5.
  • Malde, M. K.; Bugel, S.; Kristensen, M.; Malde, K.; Graff, I. E.; Pedersen, J. I. Calcium from Salmon and Cod Bone is Well Absorbed in Young Healthy Men: A Double-Blinded Randomised Crossover Design. Nutr. Metab. Lond. 2010, 7, 61. DOI: 10.1186/1743-7075-7-61.
  • Thacher, T. D.; Fischer, P. R.; Isichei, C. O.; Zoakah, A. I.; Pettifor, J. M. Prevention of Nutritional Rickets in Nigerian Children with Dietary Calcium Supplementation. Bone. 2012, 50(5), 1074–1080. DOI: 10.1016/j.bone.2012.02.010.
  • Thacher, T. D.; Bommersbach, T. J.; Pettifor, J. M.; Isichei, C. O.; Fischer, P. R. Comparison of Limestone and Ground Fish for Treatment of Nutritional Rickets in Children in Nigeria. J. pediatr. 2015, 167(1), 148–54 e1. DOI: 10.1016/j.jpeds.2015.02.008.
  • Venugopal, V. Enzymes from Seafood Processing Waste and Their Applications in Seafood Processing. In Advances in Food and Nutrition Research; Elsevier, 2016, Vol. 78, pp. 47–69. DOI:10.1016/bs.afnr.2016.06.004.
  • Fawzya, Y. N.; Irianto, H. E. Fish Protein Hydrolysates in Indonesia: Their Nutritional Values, Health Benefits, and Potential Applications. In Marine Niche: Applications in Pharmaceutical Sciences: Translational Research; Nathani, N.M., Mootapally, C., Gadhvi, I.R., Maitreya, B. and Joshi, C.G., Eds.; Springer SingaporeSingapore, 2020. DOI: 10.1007/978-981-15-5017-1_16.
  • Aspevik, T.; Steinsholm, S.; Vang, B.; Carlehög, M.; Arnesen, J. A.; Kousoulaki, K. Nutritional and Sensory Properties of Protein Hydrolysates Based on Salmon (Salmo Salar), Mackerel (Scomber Scombrus), and Herring (Clupea Harengus) Heads and Backbones. Front. Nutr. 2021, 8, 695151. DOI: 10.3389/fnut.2021.695151.
  • Nirmal, N. P.; Santivarangkna, C.; Benjakul, S.; Maqsood, S. Fish Protein Hydrolysates as a Health-Promoting Ingredient—recent Update. Nutr. rev. 2022, 80(5), 1013–1026. DOI: 10.1093/nutrit/nuab065.
  • León-López, A.; Morales-Peñaloza, A.; Martínez-Juárez, V. M.; Vargas-Torres, A.; Zeugolis, D. I.; Aguirre-Álvarez, G. Hydrolyzed Collagen—sources and Applications. Molecules. 2019, 24(22), 4031. DOI: 10.3390/molecules24224031.
  • Jung, W. -K.; Kim, S. -K. Calcium-Binding Peptide Derived from Pepsinolytic Hydrolysates of Hoki (Johnius Belengerii) Frame. Eur. Food Res. Technol. 2007, 224(6), 763–767. DOI: 10.1007/s00217-006-0371-4.
  • Jung, W. -K.; Karawita, R.; Heo, S. -J.; Lee, B. -J.; Kim, S. -K.; Jeon, Y. -J. Recovery of a Novel Ca-Binding Peptide from Alaska Pollack (Theragra Chalcogramma) Backbone by Pepsinolytic Hydrolysis. Process. Biochem. 2006, 41(9), 2097–2100. DOI: 10.1016/j.procbio.2006.05.008.
  • Liao, W.; Chen, H.; Jin, W.; Yang, Z.; Cao, Y.; Miao, J. Three Newly Isolated Calcium-Chelating Peptides from Tilapia Bone Collagen Hydrolysate Enhance Calcium Absorption Activity in Intestinal Caco-2 Cells. J. Agric. Food. Chem. 2020, 68(7), 2091–2098. DOI: 10.1021/acs.jafc.9b07602.
  • Peng, Z.; Hou, H.; Zhang, K.; Li, B. Effect of Calcium-Binding Peptide from Pacific Cod (Gadus Macrocephalus) Bone on Calcium Bioavailability in Rats. Food Chem. 2017, 221, 373–378. DOI: 10.1016/j.foodchem.2016.10.078.
  • Zhang, K.; Li, J.; Hou, H.; Zhang, H.; Li, B. Purification and Characterization of a Novel Calcium-Biding Decapeptide from Pacific Cod (Gadus Macrocephalus) Bone: Molecular Properties and Calcium Chelating Modes. J. Funct. Foods. 2019, 52, 670–679. DOI: 10.1016/j.jff.2018.11.042.
  • Je, J. -Y.; Qian, Z. -J.; Byun, H. -G.; Kim, S. -K. Purification and Characterization of an Antioxidant Peptide Obtained from Tuna Backbone Protein by Enzymatic Hydrolysis. Process. Biochem. 2007, 42(5), 840–846. DOI: 10.1016/j.procbio.2007.02.006.
  • Kim, S. Y.; Je, J. Y.; Kim, S. K. Purification and Characterization of Antioxidant Peptide from Hoki (Johnius Belengerii) Frame Protein by Gastrointestinal Digestion. J. NUTR BIOCHEM. 2007, 18(1), 31–38. DOI: 10.1016/j.jnutbio.2006.02.006.
  • Lee, S. -H.; Qian, Z. -J.; Kim, S. -K. A Novel Angiotensin I Converting Enzyme Inhibitory Peptide from Tuna Frame Protein Hydrolysate and Its Antihypertensive Effect in Spontaneously Hypertensive Rats. Food Chem. 2010, 118(1), 96–102. DOI: 10.1016/j.foodchem.2009.04.086.
  • Kaewsahnguan, T.; Noitang, S.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Choowongkomon, K.; Karnchanatat, A. A Novel Angiotensin I-Converting Enzyme Inhibitory Peptide Derived from the Trypsin Hydrolysates of Salmon Bone Proteins. PLoS One. 2021, 16(9), e0256595. DOI: 10.1371/journal.pone.0256595.
  • Sun, N.; Wu, H.; Du, M.; Tang, Y.; Liu, H.; Fu, Y.; Zhu, B. Food Protein-Derived Calcium Chelating Peptides: A Review. Trends Food Sci. Technol. 2016, 58, 140–148. DOI: 10.1016/j.tifs.2016.10.004.
  • Wang, X.; Zhang, Z.; Xu, H.; Li, X.; Hao, X. Preparation of Sheep Bone Collagen Peptide–Calcium Chelate Using Enzymolysis-Fermentation Methodology and Its Structural Characterization and Stability Analysis. R.S.C. Adv. 2020, 10(20), 11624–11633. DOI: 10.1039/D0RA00425A.
  • Wu, W.; He, L.; Liang, Y.; Yue, L.; Peng, W.; Jin, G.; Ma, M. Preparation Process Optimization of Pig Bone Collagen Peptide-Calcium Chelate Using Response Surface Methodology and Its Structural Characterization and Stability Analysis. Food Chem. 2019, 284, 80–89. DOI: 10.1016/j.foodchem.2019.01.103.
  • Luo, J.; Zhou, Z.; Yao, X.; Fu, Y. Mineral-Chelating Peptides Derived from Fish Collagen: Preparation, Bioactivity and Bioavailability. LWT. 2020, 134, 110209. DOI: 10.1016/j.lwt.2020.110209.
  • Guo, L.; Harnedy, P. A.; Li, B.; Hou, H.; Zhang, Z.; Zhao, X.; FitzGerald, R. J. Food Protein-Derived Chelating Peptides: Biofunctional Ingredients for Dietary Mineral Bioavailability Enhancement. Trends Food Sci. Technol. 2014, 37(2), 92–105. DOI: 10.1016/j.tifs.2014.02.007.
  • Kim, S. K.; Jung, W. K. Chapter 19 - Beneficial Effect of Teleost Fish Bone Peptide as Calcium Supplements for Bone Mineralization. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Academic Press, 2012; Vol. 65, pp. 287–295. DOI: 10.1016/B978-0-12-416003-3.00019-6.
  • Jung, W. K.; Lee, B. J.; Kim, S. K. Fish-Bone Peptide Increases Calcium Solubility and Bioavailability in Ovariectomised Rats. Br. J. Nutr. 2006, 95(1), 124–128. DOI: 10.1079/bjn20051615.
  • Jung, W. K.; Park, P. J.; Byun, H. G.; Moon, S. H.; Kim, S. K. Preparation of Hoki (Johnius Belengerii) Bone Oligophosphopeptide with a High Affinity to Calcium by Carnivorous Intestine Crude Proteinase. Food Chem. 2005, 91(2), 333–340. DOI: 10.1016/j.foodchem.2004.06.016.
  • Zhang, K.; Li, B.; Chen, Q.; Zhang, Z.; Zhao, X.; Hou, H. Functional Calcium Binding Peptides from Pacific Cod (Gadus Macrocephalus) Bone: Calcium Bioavailability Enhancing Activity and Anti-Osteoporosis Effects in the Ovariectomy-Induced Osteoporosis Rat Model. Nutrients. 2018, 10(9), 1325. DOI: 10.3390/nu10091325.
  • Tang, S.; Dong, S.; Chen, M.; Gao, R.; Chen, S.; Zhao, Y.; Liu, Z.; Sun, B. Preparation of a Fermentation Solution of Grass Fish Bones and Its Calcium Bioavailability in Rats. Food Funct. 2018, 9(8), 4135–4142. DOI: 10.1039/C8FO00674A.
  • Sheriff, S. A.; Sundaram, B.; Ramamoorthy, B.; Ponnusamy, P. Synthesis and in vitro Antioxidant Functions of Protein Hydrolysate from Backbones of Rastrelliger Kanagurta by Proteolytic Enzymes. Saudi J. Biol. Sci. 2014, 21(1), 19–26. DOI: 10.1016/j.sjbs.2013.04.009.
  • Dong, Y.; Yan, W.; Zhang, X. -D.; Dai, Z. -Y.; Zhang, Y. -Q. Steam Explosion-Assisted Extraction of Protein from Fish Backbones and Effect of Enzymatic Hydrolysis on the Extracts. Foods. 2021, 10(8). DOI: 10.3390/foods10081942.
  • Zhang, Y.; Dong, Y.; Dai, Z. Antioxidant and Cryoprotective Effects of Bone Hydrolysates from Bighead Carp (Aristichthys Nobilis) in Freeze-Thawed Fish Fillets. Foods. 2021, 10(6), 1409. DOI: 10.3390/foods10061409.
  • Janpet, C.; Manakit, P.; Klinmalai, P.; Kaewprachu, P.; Jaisan, C.; Surayot, U.; Chakrabandhu, Y.; Wangtueai, S. Characteristics and Functional Properties of Gelatin and Gelatin Hydrolysate From bigeye Snapper (Priacanthus Tayenus) Bone. Food Res. 2022, 6(2), 403–412. DOI: 10.26656/fr.2017.6(2).344.
  • Breen, S. P.; Etter, N. M.; Ziegler, G. R.; Hayes, J. E. Oral Somatosensatory Acuity is Related to Particle Size Perception in Chocolate. Sci. Rep. 2019, 9(1), 7437. DOI: 10.1038/s41598-019-43944-7.
  • Engelen, L.; Van der Bilt, A.; Schipper, M.; Bosman, F. Oral Size Perception of Particles: Effect of Size, Type, Viscosity and Method. J. Texture Stud. 2005, 36(4), 373–386. DOI: 10.1111/j.1745-4603.2005.00022.x.
  • Imai, E.; Hatae, K.; Shimada, A. Oral Perception of Grittiness: Effect of Particle Size and Concentration of the Dispersed Particles and the Dispersion Medium. J. Texture Stud. 1995, 26(5), 561–576. DOI: 10.1111/j.1745-4603.1995.tb00804.x.
  • Yin, T.; Reed, Z. H.; Park, J. W. Gelling Properties of Surimi as Affected by the Particle Size of Fish Bone. LWT - Food Sci. Technol. 2014, 58(2), 412–416. DOI: 10.1016/j.lwt.2014.03.037.
  • Yin, T.; Du, H.; Zhang, J.; Xiong, S. Preparation and Characterization of Ultrafine Fish Bone Powder. J. Aquat. Food Prod. Technol. 2016, 25(7), 1045–1055. DOI: 10.1080/10498850.2015.1010128.
  • Benjakul, S.; Karnjanapratum, S. Characteristics and Nutritional Value of Whole Wheat Cracker Fortified with Tuna Bone Bio-Calcium Powder. Food Chem. 2018, 259, 181–187. DOI: 10.1016/j.foodchem.2018.03.124.
  • Idowu, A. T.; Benjakul, S.; Sinthusamran, S.; Pongsetkul, J.; Sae-Leaw, T.; Sookchoo, P. Whole Wheat Cracker Fortified with Biocalcium and Protein Hydrolysate Powders from Salmon Frame: Characteristics and Nutritional Value. Food Qual. Saf. 2019, 3(3), 191–199. DOI: 10.1093/fqsafe/fyz012.
  • Ananda, S.; Anggraeni, A. A. Substitution of Fishbone Powder in the Development of Choco Chips Cookies. IOP Conf. Ser. Earth Environ. Sci. 2021, 672, 1. DOI: 10.1088/1755-1315/672/1/012062.
  • Murillo, S.; Ardoin, R.; Watts, E.; Prinyawiwatkul, W. Effects of Catfish (Ictalurus Punctatus) Bone Powder on Consumers’ Liking, Emotions, and Purchase Intent of Fried Catfish Strips. Foods. 2022, 11(4), 540. DOI: 10.3390/foods11040540.
  • Abdel-Moemin, A. R. Healthy Cookies from Cooked Fish Bones. Food Biosci. 2015, 12, 114–121. DOI: 10.1016/j.fbio.2015.09.003.
  • Liaqat, S.; Ahmed, Z.; Ali, Q.; Akbar, A.; Khalid, N. D. Characterization, and Principal Component Analysis of Fish Bone‐based Fortified Refined Wheat Flour Tortilla and Its Organoleptic Attributes. J. Food Process Preserv. 2022, 46. DOI: 10.1111/jfpp.17051.
  • Hall, G. M. Surimi and Fish Mince Products. Fish Proc. 2010, 98–111. DOI: 10.1002/9781444328585.ch5.
  • Kim, J. S.; Park, J. W. 9 - Mince from Seafood Processing By-Product and Surimi as Food Ingredients. In Maximising the Value of Marine By-Products; Shahidi, F., Ed.; Woodhead Publishing, 2007; pp. 196–228. DOI: 10.1533/9781845692087.2.196.
  • Darmanto, Y. S.; Agustini, T. W.; Swastawati, F.; Al Bulushi, I. The Effect of Fish Bone Collagens in Improving Food Quality. Int. Food Res. J. 2014, 21(3), 891–896.
  • Yin, T.; Park, J. W. Textural and Rheological Properties of Pacific Whiting Surimi as Affected by Nano-Scaled Fish Bone and Heating Rates. Food Chem. 2015, 180, 42–47. DOI: 10.1016/j.foodchem.2015.02.021.
  • Wijayanti, I.; Singh, A.; Benjakul, S.; Sookchoo, P. T. Sensory, and Chemical Characteristic of Threadfin Bream (Nemipterus Sp.) Surimi Gel Fortified with Bio-Calcium from Bone of Asian Sea Bass (Lates Calcarifer). Foods. 2021, 10(5), 976. DOI: 10.3390/foods10050976.
  • Khoder, R. M.; Yin, T.; Liu, R.; Xiong, S.; You, J.; Hu, Y.; Huang, Q. Effects of Nano Fish Bone on Gelling Properties of Tofu Gel Coagulated by Citric Acid. Food Chem. 2020, 332, 127401. DOI: 10.1016/j.foodchem.2020.127401.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.