357
Views
3
CrossRef citations to date
0
Altmetric
Review

Advances in Peeling Techniques for Tomato:A Comprehensive Review

, , ORCID Icon, &

References

  • Caseiro, M.; Ascenso, A.; Costa, A.; Creagh-Flynn, J.; Simes, S.; Simões, S. Lycopene in Human Health. LWT- Food Sci. Technol. 2020, 127, 109323. DOI: 10.1016/j.lwt.2020.109323.
  • Poojary, M.; Passamonti, P. Extraction of Lycopene from Tomato Processing Waste: Kinetics and Modelling. Food Chem. 2015, 173, 943–950. DOI: 10.1016/j.foodchem.2014.10.127.
  • Mustapha, A.; Zhou, C.; Wahia, H.; Sarpong, F.; Nasiru, M.; Adegbemiga, Y.; Ma, H. Combination of Thermal and Dual‐frequency Sonication Processes for Optimum Microbiological and Antioxidant Properties in Cherry Tomato. J. Food Process. Preserv. 2019, 44(2), e14325. DOI: 10.1111/jfpp.14325.
  • Flores, P.; Sánchez, E.; Fenoll, J.; Hellín, P. Genotypic Variability of Carotenoids in Traditional Tomato Cultivars. Food Res. Int. 2017, 100, 510–516. DOI: 10.1016/j.foodres.2016.07.014.
  • Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Sustainable Valorisation of Tomato Pomace: A Comprehensive Review. Trends Food Sci. Technol. 2019, 86, 172–187. DOI: 10.1016/j.tifs.2019.02.020.
  • Kate, A. E.; Sutar, P. P. Development and Optimization of Novel Infrared Dry Peeling Method for Ginger (Zingiber Officinale Roscoe) Rhizome. Innov. Food Sci. Emerg. Technol. 2018, 48, 111–121. DOI: 10.1016/j.ifset.2018.05.021.
  • Wang, L.; Song, S.; Peng, J.; Liu, D. Effect of Different Peeling Methods on the Peeling Efficiency and Quality of Tomatoes. Food Sci. 2017, 38, 26–31. DOI: 10.1007/s12393-011-9047-3.
  • Zhou, Y. H.; Sutar, P. P.; Vidyarthi, S. K.; Zhang, W. P.; Yu, X. L.; Li, X. Y.; Xiao, H. W. High-Humidity Hot Air Impingement Blanching (HHAIB): An Emerging Technology for Tomato Peeling. Innov. Food Sci. Emerg. Technol. 2022, 77, 102987. DOI: 10.1016/j.ifset.2022.102987.
  • Pan, Z.; Li, X.; Khir, R.; El-Mashad, H.; Atungulu, G.; McHugh, T.; Delwiche, M. A Pilot Scale Electrical Infrared Dry-Peeling System for Tomatoes: Design and Performance Evaluation. Biosyst. Eng. 2015, 137, 1–8. DOI: 10.1016/j.biosystemseng.2015.06.003.
  • Rock, C.; Yang, W.; Goodrich-Schneider, R.; Feng, H. Conventional and Alternative Methods for Tomato Peeling. Food Eng. Rev. 2012, 4(1), 1–15. DOI: 10.1007/s12393-011-9047-3.
  • Vidyarthi, S. K. Study and modeling of infrared heating for tomato dry-peeling [ Ph.D. Dissertation]. Department of Biological and Agricultural Engineering, University of California at Davis. 2017. 10.13140/RG.2.2.19118.77129
  • Vidyarthi, S. K.; El Mashad, H. M.; Khir, R.; Zhang, R.; Pan, Z. Quasi-Static Mechanical Properties of Tomato Peels Produced from Catalytic Infrared and Lye Peeling Methods. J. Food Eng. 2019, 254, 10–16. DOI: 10.1016/j.jfoodeng.2019.03.001.
  • Vidyarthi, S. K.; El Mashad, H. M.; Singh, S. K.; Upadhyaya, S. K.; Tiwari, R.; Zhang, R.; Tiwari, R.; Pan, Z. A Mathematical Model of Heat Transfer During Tomato Peeling Using Selected Electric Infrared Emitters. Biosyst. Eng. 2019, 186, 106–117. DOI: 10.1016/j.biosystemseng.2019.07.001.
  • Vidyarthi, S. K.; El-Mashad, H. M.; Khir, R.; Zhang, R.; McHugh, T. H.; Pan, Z. Tomato Peeling Performance Under Pilot Scale Catalytic Infrared Heating. J. Food Eng. 2019, 246, 224–231. DOI: 10.1016/j.jfoodeng.2018.11.002.
  • Vidyarthi, S. K.; Mashad, H.; Khir, R.; Zhang, R.; Pan, Z. Evaluation of Selected Electric Infrared Emitters for Tomato Peeling Sciencedirect. Biosyst. Eng. 2019, 184, 90–100. DOI: 10.1016/j.biosystemseng.2019.06.006.
  • Shen, Y.; Khir, R.; Wood, D.; Mchugh, T. H.; Pan, Z. Pear Peeling Using Infrared Radiation Heating Technology. Innov. Food Sci. Emerg. Technol. 2020, 65, 102474. DOI: 10.1016/j.ifset.2020.102474.
  • Pagliarini, E.; Monteleone, E.; Ratti, S. Sensory Profile of Eight Tomato Cultivars (Lycopersicon Esculentum) and Its Relationship to Consumer Preference. Ital. J. Food Sci. 2001, 13, 285–296.
  • Bishai, M.; Singh, A.; Adak, S.; Prakash, J.; Roy, L.; Banerjee, R. Enzymatic Peeling of Potato: A Novel Processing Technology. Potato Res. 2015, 58(4), 301–311. DOI: 10.1007/s11540-015-9301-9.
  • Noguchi, M.; Ozaki, Y.; Azuma, J. Recent Progress in Technologies for Enzymatic Peeling of Fruit. Jpn. Agric. Res. Q. 2015, 49(4), 313–318. DOI: 10.6090/jarq.49.313.
  • Toker, I.; Bayιndιrli, A. Enzymatic Peeling of Apricots, Nectarines and Peaches. LWT Food Sci. Technol. 2003, 36(2), 215–221. DOI: 10.1016/S0023-6438(02)00203-7.
  • Ibarz, A.; Pagán, J.; Garvín, A.; Ibarz, R.; Gatius, F.; Falguera, V. Enzymatic Peeling and Discoloration of Red Bartlett Pears. Int. J. Food Sci. 2013, 48(3), 636–641. DOI: 10.1111/ijfs.12009.
  • Pretel, M. T.; Amoros, A.; Botella, M. A.; Serrano, M.; Romojaro, F. Study of Albedo and Carpelar Membrane Degradation for Further Application in Enzymatic Peeling of Citrus Fruits. J. Sci. Food Agric. 2005, 85(1), 86–90. DOI: 10.1002/jsfa.1930.
  • Andreou, V.; Dimopoulos, G.; Dermesonlouoglou, E.; Taoukis, P. Application of Pulsed Electric Fields to Improve Product Yield and Waste Valorization in Industrial Tomato Processing. J. Food Eng. 2020, 270, 109778. DOI: 10.1016/j.jfoodeng.2019.109778.
  • Koch, Y.; Witt, J.; Lammerskitten, A.; Siemer, C.; Toepfl, S. The Influence of Pulsed Electric Fields (PEF) on the Peeling Ability of Different Fruits and Vegetables. J. Food Eng. 2022, 322, 110938. DOI: 10.1016/j.jfoodeng.2021.110938.
  • Pataro, G.; Carullo, D.; Bakar Siddique, M. A.; Falcone, M.; Donsì, F.; Ferrari, G. Improved Extractability of Carotenoids from Tomato Peels as Side Benefits of PEF Treatment of Tomato Fruit for More Energy-Efficient Steam-Assisted Peeling. J. Food Eng. 2018, 233, 65–73. DOI: 10.1016/j.jfoodeng.2018.03.029.
  • Boateng, I. D. Recent Processing of Fruits and Vegetables Using Emerging Thermal and Non-Thermal Technologies. A Critical Review of Their Potentialities and Limitations on Bioactives, Structure, and Drying Performance. Crit. Rev. Food Sci. Nutr. 2022, 1–35. DOI: 10.1080/10408398.2022.2140121.
  • Kohli, D.; Shahi, N. C. Food Processing by Pulse Electric Field: A Review. Adv. Res. 2017, 9(2), 1–6. DOI: 10.9734/AIR/2017/32343.
  • Eskandari, J.; Kermani, A. M.; Kouravand, S.; Zarafshan, P. Design, Fabrication, and Evaluation a Laboratory Dry-Peeling System for Hazelnut Using Infrared Radiation. LWT - Food Sci. Technol. 2018, 90, 570–576. DOI: 10.1016/j.lwt.2018.01.004.
  • Li, X.; Pan, Z.; Atungulu, G. G.; Wood, D.; McHugh, T. Peeling Mechanism of Tomato Under Infrared Heating: Peel Loosening and Cracking. J. Food Eng. 2014, 128, 79–87. DOI: 10.1016/j.jfoodeng.2013.12.020.
  • Vidyarthi, S. K.; Mashad, H.; Khir, R.; Zhang, R.; Pan, Z. Viscoelastic Properties of Tomato Peels Produced from Catalytic Infrared and Lye Peeling Methods. Food Bioprod. Process. 2019, 119, 337–344. DOI: 10.1016/j.fbp.2019.11.019.
  • Kate, A. E.; Sutar, P. P. Effluent Free Infrared Radiation Assisted Dry-Peeling of Ginger Rhizome: A Feasibility and Quality Attributes. J. Food Sci. 2020, 85(2), 432–441. DOI: 10.1111/1750-3841.15009.
  • Li, X.; Pan, Z.; Atungulu, G. G.; Zheng, X.; Wood, D.; Delwiche, M.; McHugh, T. H. Peeling of Tomatoes Using Novel Infrared Radiation Heating Technology. Innov. Food Sci. Emerg. Technol. 2014, 21, 123–130. DOI: 10.1016/j.ifset.2013.10.011.
  • Gupta, S.; Sastry, S. K. Ohmic Heating Assisted Lye Peeling of Pears. J. Food Sci. 2018, 83(5), 1292–1298. DOI: 10.1111/1750-3841.14116.
  • Wongsa-Ngasri, P.; Sastry, S. K. Effect of Ohmic Heating on Tomato Peeling. LWT - Food Sci. Technol. 2015, 61(2), 269–274. DOI: 10.1016/j.lwt.2014.12.053.
  • Wongsa-Ngasri, P.; Sastry, S. K. Tomato Peeling by Ohmic Heating: Effects of Lye-Salt Combinations and Post-Treatments on Weight Loss, Peeling Quality and Firmness. Innov. Food Sci. Emerg. Technol. 2016, 34, 148–153. DOI: 10.1016/j.ifset.2016.01.013.
  • Gavahian, M.; Sastry, S. K. Ohmic-Assisted Peeling of Fruits: Understanding the Mechanisms Involved, Effective Parameters, and Prospective Applications in the Food Industry. Trends Food Sci. Technol. 2020, 106, 345–354. DOI: 10.1016/j.tifs.2020.10.027.
  • Qu, W.; Liu, Y.; Feng, Y.; Ma, H. Research on Tomato Peeling Using Flame-Catalytic Infrared Radiation. LWT. 2022, 163, 113542. DOI: 10.1016/j.lwt.2022.113542.
  • Gao, R.; Ye, F.; Lu, Z.; Wang, J.; Li Shen, X.; Zhao, G. A Novel Two-Step Ultrasound Post-Assisted Lye Peeling Regime for Tomatoes: Reducing Pollution While Improving Product Yield and Quality. Ultrason. Sonochem. 2018, 45, 267–278. DOI: 10.1016/j.ultsonch.2018.03.021.
  • Wang, W.; Wang, L.; Feng, Y.; Pu, Y.; Ding, T.; Ye, X.; Liu, D. Ultrasound-Assisted Lye Peeling of Peach and Comparison with Conventional Methods. Innov. Food Sci. Emerg. Technol. 2018, 47, 204–213. DOI: 10.1016/j.ifset.2018.02.016.
  • Silva-Vera, W.; Avendano-Munoz, N.; Nunez, H.; Ramírez, C.; Almonacid, S.; Simpson, R. CO2 Laser Drilling Coupled with Moderate Electric Fields for Enhancement of the Mass Transfer Phenomenon in a Tomato (Lycopersicon Esculentum) Peeling Process. J. Food Eng. 2020, 276, 109870. DOI: 10.1016/j.jfoodeng.2019.109870.
  • Garcia, E.; Barrett, D. M. Peelability and Yield of Processing Tomatoes by Steam or Lye. J. Food Process. Preserv. 2006, 30(1), 3–14. DOI: 10.1111/j.1745-4549.2005.00042.x.
  • Li, X.; Pan, Z. Dry-Peeling of Tomato by Infrared Radiative Heating: Part I. Model Development. Food Bioprocess Technol. 2014, 7(7), 1996–2004. DOI: 10.1007/s11947-013-1203-8.
  • Li, X.; Pan, Z. Dry Peeling of Tomato by Infrared Radiative Heating: Part Ii. Model Validation and Sensitivity Analysis. Food Bioprocess Technol. 2014, 7(7), 2005–2013. DOI: 10.1007/s11947-013-1188-3.
  • Garrote, R.; Silva, E.; Bertone, R. Effect of Thermal Treatment on Steam Peeled Potatoes. J. Food Eng. 2000, 45(2), 67–76. DOI: 10.1016/S0260-8774(00)00032-7.
  • Kohli, D.; Champawat, P. S.; Mudgal, V. D.; Jain, S. K.; Tiwari, B. K. Advances in Peeling Techniques for Fresh Produce. J. Food Process Eng. 2021, 44(10), Article e13826. DOI: 10.1111/jfpe.13826.
  • Ayvaz, H.; Santos, A. M.; Rodriguez-Saona, L. E. Understanding Tomato Peelability. Compr. Rev. Food Sci. Food Saf. 2016, 15(3), 619–632. DOI: 10.1111/1541-4337.12195.
  • Zhou, C.; Okonkwo, C. E.; Inyinbor, A. A.; Yagoub, E. G. A.; Olaniran, A. F. Ultrasound, Infrared and Its Assisted Technology, a Promising Tool in Physical Food Processing: A Review of Recent Developments. Crit. Rev. Food Sci. Nutr. 2021, 1–25. DOI: https://doi.org/10.1080/10408398.2021.1966379.
  • Pan, Z.; Li, X.; Bingol, G.; McHugh, H.; Atungulu, G. Development of Infrared Radiation Heating Method for Sustainable Tomato Peeling. Appl. Eng. Agric. 2009, 25(6), 935–941. DOI: 10.13031/2013.29227.
  • Ojolo, S. J.; Orisaleye, J. I.; Badiru, N. Design and Fabrication of a Yam Peeling Machine. J. Eng. Res. 2016, 21(1), 123–132.
  • Boateng, I. D.; Soetanto, D. A.; Yang, X.; Zhou, C.; Saalia, F. K.; Li, F. Effect of Pulsed‐vacuum, Hot‐air, Infrared, and Freeze‐drying on Drying Kinetics, Energy Efficiency, and Physicochemical Properties of Ginkgo Biloba L. Seed. J. Food Process Eng. 2021, 44(4). DOI: 10.1111/jfpe.13655.
  • Lavelli, V.; Pompei, C.; Casadei, M. A. Quality of Nectarine and Peach Nectars as Affected by Lye-Peeling and Storage. Food Chem. 2009, 115(4), 1291–1298. DOI: 10.1016/j.foodchem.2009.01.047.
  • Mohamad, N. S.; Sulaiman, R.; Lai, O. M.; Hussain, N. Comparison Between Conventional and Alternative Peeling Methods on Peeling Efficiencies of Malaysian ‘Chok Anan’ Mango (Mangifera Indica L.) Fruit. Int. Food Res. J. 2017, 24(5), 1934–1940.
  • Li, X.; Zhang, A.; Atungulu, G. G.; Delwiche, M.; Milczarek, R.; Wood, D.; Pan, Z. Effects of Infrared Radiation Heating on Peeling Performance and Quality Attributes of Clingstone Peaches. LWT Food Sci. Technol. 2014, 55(1), 34–42. DOI: 10.1016/j.lwt.2013.08.020.
  • Wang, B.; Venkitasamy, C.; Zhang, F.; Zhao, L.; Khir, R.; Pan, Z. Feasibility of Jujube Peeling Using Novel Infrared Radiation Heating Technology. LWT - Food Sci. Technol. 2016, 69, 458–467. DOI: 10.1016/j.lwt.2016.01.077.
  • Mohammadi, Z.; Kashaninejad, M.; Ziaiifar, A. M.; Ghorbani, M. Peeling of Kiwifruit Using Infrared Heating Technology: A Feasibility and Optimization Study. LWT- Food Sci. Technol. 2018, 99, 128–137. DOI: 10.1016/j.lwt.2018.09.037.
  • Shi, J.; Maguer, M. L. Lycopene in Tomatoes: Chemical and Physical Properties Affected by Food Processing. Crit. Rev. Food Sci. Nutr. 2000, 40(1), 1–42. DOI: 10.1080/10408690091189275.
  • Barreiro, J. A.; Sandoval, A. J.; Rivas, D.; Rinaldi, R. Application of a Mathematical Model for Chemical Peeling of Peaches (Prunus Persica L.) Variety Amarillo Jarillo. LWT Food Sci. Technol. 2007, 40(4), 574–578. DOI: 10.1016/j.lwt.2006.03.016.
  • Pan, Z.; Li, X.; Venkitasamy, C. Food Peeling: Conventional and New Approaches. 2016. doi:10.1016/B978-0-08-100596-5.03091-2.
  • Wang, Y.; Li, X.; Sun, G.; Li, D.; Pan, Z. A Comparison of Dynamic Mechanical Properties of Processing-Tomato Peel as Affected by Hot Lye and Infrared Radiation Heating for Peeling. J. Food Eng. 2014, 126, 27–34. DOI: 10.1016/j.jfoodeng.2013.10.032.
  • Das, D. J.; Barringer, S. A. Potassium Hydroxide Replacement for Lye (Sodium Hydroxide) in Tomato Peeling. J. Food Process. Preserv. 2006, 30(1), 15–19. DOI: http://dx.doi.org/10.1111/j.1745-4549.2005.00043.x.
  • Guldas, M.; Bayindirli, L. Mathematical Analysis of Caustic Peeling of Kiwifruits. Biotechnol. Biotechnol. Equip. 2014, 18(2), 112–117. DOI: 10.1080/13102818.2004.10817096.
  • Floros, J.; Chinnan, M. Seven Factor Response Surface Optimization of a Double‐stage Lye (NaOh) Peeling Process for Pimiento Peppers. J. Food Sci. 1988, 53(2), 631–638. DOI: 10.1111/j.1365-2621.1988.tb07771.x.
  • Kaleoglu, M.; Bayindirli, L.; Bayindirli, A. Lye Peeling of ‘Tombul’ Hazelnuts and Effect of Peeling on Quality. Food Bioprod. Process. 2004, 82(3), 201–206. DOI:10.1205/fbio.82.3.201.44184. 44184.
  • Tapia, M. R.; Gutierrez-Pacheco, M. M.; Vazquez-Armenta, F. J.; Aguilar, G. A. G.; Zavala, J. F. A.; Rahman, M. S. Washing, Peeling and Cutting of Fresh-Cut Fruits and Vegetables. Springer International Publishing. 2015. DOI: 10.1007/978-3-319-10677-9_4.
  • Oladejo, A. O.; Sobukola, O. P.; Awonorin, S. O.; Adejuyigbe, S. B. Evaluation and Optimization of Steam and Lye Peeling Processes of Sweet Potato (Ipomea Batatas) Using Response Surface Methodology (Rsm). Int. J. Food Eng. 2014, 10(2), 329–338. DOI: 10.1515/ijfe-2013-0051.
  • Deng, L. Z.; Mujumdar, A. S.; Zhang, Q.; Yang, X. H.; Wang, J.; Zheng, Z. A.; Gao, Z. -J.; Xiao, H. -W. Chemical and Physical Pretreatments of Fruits and Vegetables: Effects on Drying Characteristics and Quality Attributes – a Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2019, 59(9), 1408–1432. DOI: 10.1080/10408398.2017.1409192.
  • Pag´an, A.; Conde, J.; Ibarz, A.; Pag´an, J. Effluent Content from Albedo Degradation and Kinetics at Different Temperatures in the Enzymatic Peeling of Grapefruits. Food Bioprod. Process. 2010, 88(2–3), 77–82. DOI: https://doi.org/10.1016/j.fbp.2010.01.011.
  • Pag´an, A.; Conde, J.; Pag´an, J.; Ibarz, A. Lemon Peel Degradation Modeling in the Enzymatic Peeling Process. J. Food Process Eng. 2011, 34(2), 383–397. DOI: 10.1111/j.1745-4530.2009.00363.x.
  • Prakash, S.; Singhal, R. S.; Kulkarni, P. R. Enzymic Peeling of Indian Grapefruit (Citrus Paradisi). J. Sci. Food Agric. 2001, 81(15), 1440–1442. DOI: 10.1002/jsfa.969.
  • Izumi, H.; Nakata, Y.; Inoue, A.; Ozaki, Y. Quality and Shelf-Life of Enzymatically Peeled and Segmented Citrus Fruits in Japan. Acta Hortic. 2016, 1141(1141), 245–250. DOI: https://doi.org/10.17660/ActaHortic.2016.1141.29.
  • Sanchez-Bel, P.; Egea, I.; Serrano, M.; Romojaro, A.; Pretel, M. T. Obtaining and Storage of Ready-To-Use Segments from Traditional Orange Obtained by Enzymatic Peeling. Food Sci. Technol. Int. 2012, 18(1), 63–72. DOI: 10.1177/1082013211414208.
  • Hashimoto, N.; Murakami, S.; Yamaguchi, K.; Sato, K.; Araki, Y. Examination of Enzymatic Peeling in Melting Type of White Flesh Peaches. Journal of the Japanese Society for Food Science and Technology- Nippon Shokuhin Kagaku Kogaku Kaishi. 2020, 67(11), 451–457.
  • Dang, T. T.; Gringer, N.; Jessen, F.; Olsen, K.; Bøknæs, N.; Nielsen, P. L.; Orlien, V. Emerging and Potential Technologies for Facilitating Shrimp Peeling: A Review. Innov. Food Sci. Emerg. Technol. 2018, 45, 228–240. DOI: 10.1016/j.ifset.2017.10.017.
  • Toepfl, S.; Siemer, C.; Heinz, V. Effect of High-Intensity Electric Field Pulses on Solid Foods. Emerging Technol.Food Process. 2014, 147–154. DOI: 10.1016/B978-0-12-411479-1.00008-5.
  • Toepfl, S.; Siemer, C.; Salda˜na-Navarro, G.; Heinz, V. Overview of Pulsed Electric Fields Processing for Food. Emerging Technol.Food Process. 2014, 93–114. DOI: 10.1016/B978-0-12-411479-1.00006-1.
  • Pu´ertolas, E.; Salda˜na, G.; Raso, J. Pulsed Electric Field Treatment for Fruit and Vegetable Processing. In Handbook of Electroporation; Miklavˇciˇc, D., Ed.; Springer International Publishing: Cham, 2017; pp. 2495–2515.
  • Huang, D.; Yang, P.; Tang, X.; Luo, L.; Sunden, B. Application of Infrared Radiation in the Drying of Food Products. Trends Food Sci. Technol. 2021, 110, 765–777. DOI: 10.1016/j.tifs.2021.02.039.
  • Wu, B.; Pan, Z.; Qu, W.; Wang, B.; Wang, J.; Ma, H. Effect of Simultaneous Infrared Dry-Blanching and Dehydration on Quality Characteristics of Carrot Slices. LWT - Food Sci. Technol. 2014, 57(1), 90–98. DOI: 10.1016/j.lwt.2013.11.035.
  • Xu, X.; Zhang, L.; Yagoub, A. A.; Yu, X. J.; Ma, H. L.; Zhou, C. S. Effects of Ultrasound, Freeze-Thaw Pretreatments and Drying Methods on Structure and Functional Properties of Pectin During the Processing of Okra. Food Hydrocoll. 2021, 120, 106965. DOI: 10.1016/j.foodhyd.2021.106965.
  • Ding, T.; Song, W.; Wang, J.; Wu, J.; Wang, M.; Zhou, D. Infrared Radiation Peeling Experiment of Yellow Peach and Optimization of Technological Parameters. Food Sci. Technol. 2021, 42. DOI: 10.1590/fst.68321.
  • Li, X.; Pan, Z.; Upadhyaya, S. K.; Atungulu, G. G.; Delwiche, M. Three-Dimensional Geometric Modeling of Processing Tomatoes. Trans. ASABE. 2011, 54(6), 2287–2296. DOI: 10.13031/2013.40642.
  • Kohli, D.; Mishra, R.; Kumar, S.; Bhatiya, S. Ohmic Heating of Foods: A Emerging Technology. Int. J. Agric. Sci. 2016, 8(43), 1877–1880.
  • Gavahian, M.; Tiwari, B. K.; Chu, Y. H.; Ting, Y. W.; Farahnaky, A. Food Texture as Affected by Ohmic Heating: Mechanisms Involved, Recent Findings, Benefits, and Limitations. Trends Food Sci. Technol. 2019, 86, 328–339. DOI: 10.1016/j.tifs.2019.02.022.
  • Kulshrestha, S. A.; Sastry, S. K. Low-Frequency Dielectric Changes in Cellular Food Material from Ohmic Heating: Effect of End Point Temperature. Innov. Food Sci. Emerg. Technol. 2006, 7(4), 257–262. DOI: 10.1016/j.ifset.2006.03.004.
  • Wongsa-Ngasri, P.; Sastry, S. K. Tomato Peeling by Ohmic Heating with Lye-Salt Combinations: Effects of Operational Parameters on Peeling Time and Skin Diffusivity. J. Food Eng. 2016, 186, 10–16. DOI: 10.1016/j.jfoodeng.2016.04.005.
  • Fu, X.; Belwal, T.; Cravotto, G.; Luo, Z. Sono-Physical and Sono-Chemical Effects of Ultrasound: Primary Applications in Extraction and Freezing Operations and Influence on Food Components. Ultrason. Sonochem. 2020, 60, 104726. Article 104726 DOI: https://doi.org/10.1016/j.ultsonch.2019.104726.
  • Raj, G.; Dash, K. K. Ultrasound-Assisted Extraction of Phytocompounds from Dragon Fruit Peel: Optimization, Kinetics and Thermodynamic Studies. Ultrason. Sonochem. 2020, 68, 105180. Article 105180 DOI: https://doi.org/10.1016/j.ultsonch.2020.105180.
  • Chemat, F.; Rombaut, N.; Sicaire, A. G.; Meullemiestre, A.; Fabiano-Tixier, A.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications a Review. Ultrason. Sonochem. 2017, 34, 540–560. DOI: 10.1016/j.ultsonch.2016.06.035.
  • Vidyarthi, S.; El Mashad, H.; Khir, R.; Zhang, R.; Sun, G.; Tiwari, R.; Pan, Z. Viscoelastic Properties of Tomato Peels Produced from Catalytic Infrared and Lye Peeling Methods. Food Bioprod. Process. 2020, 119, 337–344. DOI: 10.1016/j.fbp.2019.11.019.
  • Chen, M. F.; Hsiao, W. T.; Huang, W. L.; Hu, C. W.; Chen, Y. P. Laser Coding on the Eggshell Using Pulsed-Laser Marking System. Journal of Materials Processing Technology. 2009, 209, 737–744. DOI: 10.1016/j.jmatprotec.2008.02.075.
  • Fujumaru, T.; Ling, Q.; Morrissey, M. T. Effects of Carbon Dooxide (CO2) Laser Perforation as Skin Pretreatment to Improve Sugar Infusion Process of Frozen Blueberries. J. Food Sci. 2012, 77(2), E45–51. DOI: 10.1111/j.1750-3841.2011.02525.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.