2,828
Views
0
CrossRef citations to date
0
Altmetric
Review

Phytochemistry, Bioaccessibility, and Bioactivities of Sesame Seeds: An Overview

, , ORCID Icon, ORCID Icon, , , & ORCID Icon show all

References

  • Otles, S.; Bakirci, G. T. Phytochemicals and Health: An Update. InPhytopharmaceuticals: Potential Therapeutic Applications, Chauhan, D. N., Shah, K., Eds.,; Beverly: Scrivener Publishing, 2021; pp 437. doi:10.1002/9781119682059.ch22.
  • Chen, Y.; Lin, H.; Lin, M.; Zheng, Y.; Chen, J. J. F.; Toxicology, C. Effect of Roasting and in vitro Digestion on Phenolic Profiles and Antioxidant Activity of Water-Soluble Extracts from Sesame. Food Chem. Toxicol. 2020, 139, 111239. DOI: 10.1016/j.fct.2020.111239.
  • Zálešák, F.; Bon, D. J. D.; Pospíšil, J. Lignans and Neolignans: Plant Secondary Metabolites as a Reservoir of Biologically Active Substances. Pharmacol. Res. 2019, 146, 104284. DOI: 10.1016/j.phrs.2019.104284.
  • Miraj, S.; Kiani, S. Bioactivity of Sesamum Indicum- a Review Study. Der Pharmacia Lettre. 2016, 8(6), 328.
  • Elleuch, M.; Bedigian, D.; Besbes, S.; Blecker, C.; Attia, H. Dietary Fibre Characteristics and Antioxidant Activity of Sesame Seed Coats (Testae). Int. J. Food Prop. 2012, 15(1), 25. DOI: 10.1080/10942911003687231.
  • Dillard, C. J.; German, J. B. Phytochemicals: Nutraceuticals and Human Health. J. Sci. Food Agric. 2000, 80(12), 1744. DOI: 10.1002/1097-0010(20000915)80:12<1744:AID-JSFA725>3.0.CO;2-W.
  • Borges, A.; Abreu, A. C.; Dias, C.; Saavedra, M. J.; Borges, F.; Simões, M. New Perspectives on the Use of Phytochemicals as an Emergent Strategy to Control Bacterial Infections Including Biofilms. Molecules. 2016, 21(7), 877. DOI: 10.3390/molecules21070877.
  • Mikropoulou, E. V.; Petrakis, E. A.; Argyropoulou, A.; Mitakou, S.; Halabalaki, M.; Skaltsounis, L. A. Quantification of Bioactive Lignans in Sesame Seeds Using HPTLC Densitometry: Comparative Evaluation by HPLC-PDA. Food Chem. 2019, 288, 1. DOI: 10.1016/j.foodchem.2019.02.109.
  • Wang, D.; Zhang, L.; Huang, X.; Wang, X.; Yang, R.; Mao, J.; Wang, X.; Wang, X.; Zhang, Q.; Li, P. Identification of Nutritional Components in Black Sesame Determined by Widely Targeted Metabolomics and Traditional Chinese Medicines. Molecules. 2018, 23(5), 5. DOI: 10.3390/molecules23051180.
  • Enemor, V. H. A.; Opara, P. O.; Martins, C. E.; Okafor, C. S.; Mbaka, O. P.; Obayuwana, E. A. Nutritional Composition and in-Vitro Free Radical Scavenging Potentials of Sesamum Indicum Seeds. IOSR J. Biotechnol. Biochem. 2020, 6(3), 52.
  • Sun, Y.; Gao, L.; Hou, W.; Wu, J. β-Sitosterol Alleviates Inflammatory Response via Inhibiting the Activation of ERK/P38 and NF-κ b Pathways in LPS-Exposed BV2 Cells. Biomed Res. Int. 2020, 2020, 7532306. DOI: 10.1155/2020/7532306.
  • Benito, P.; Miller, D. Iron Absorption and Bioavailability: An Updated Review. Nutr. Res. 1998, 18(3), 581. DOI: 10.1016/S0271-5317(98)00044-X.
  • Fernández-García, E.; Carvajal-Lérida, I.; Pérez-Gálvez, A. In vitro Bioaccessibility Assessment as a Prediction Tool of Nutritional Efficiency. Nutr. Res. 2009, 29(11), 751. DOI: 10.1016/j.nutres.2009.09.016.
  • Pavez-Guajardo, C.; Ferreira, S. R.; Mazzutti, S.; Guerra-Valle, M. E.; Sáez-Trautmann, G.; Moreno, J. Influence of in vitro Digestion on Antioxidant Activity of Enriched Apple Snacks with Grape Juice. Foods. 2020, 9(11), 1681. DOI: 10.3390/foods9111681.
  • Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79(5), 727. DOI: 10.1093/ajcn/79.5.727.
  • Mili, A.; Das, S.; Nandakumar, K.; Lobo, R. A Comprehensive Review on Sesamum Indicum L.: Botanical, Ethnopharmacological, Phytochemical, and Pharmacological Aspects. J. Ethnopharmacol. 2021, 281, 114503. DOI: 10.1016/j.jep.2021.114503.
  • Wei, P.; Zhao, F.; Wang, Z.; Wang, Q.; Chai, X.; Hou, G.; Meng, Q. Sesame (Sesamum Indicum L.): A Comprehensive Review of Nutritional Value, Phytochemical Composition, Health Benefits, Development of Food, and Industrial Applications. Nutrients. 2022, 14(19), 4079. DOI: 10.3390/nu14194079.
  • Andargie, M.; Vinas, M.; Rathgeb, A.; Möller, E.; Karlovsky, P. Lignans of Sesame (Sesamum Indicum L.): A Comprehensive Review. Molecules. 2021, 26(4), 4. DOI: 10.3390/molecules26040883.
  • Myint, D.; Gilani, S. A.; Kawase, M.; Watanabe, K. N. Sustainable Sesame (Sesamum Indicum L.) Production Through Improved Technology: An Overview of Production, Challenges, and Opportunities in Myanmar. Sustainability. 2020, 12(9), 3515. DOI: 10.3390/su12093515.
  • Mannan, H.; Oveisi, M. R.; Naficeh, S.; Jannat, B.; Bahaeddin, Z.; Mansouri, S. Gamma Tocopherol Content of Iranian Sesame Seeds. Iran. J. Pharm. Res. World. 2008, 7(2), 135. doi:10.22037/ijpr.2010.756.
  • Pathak, N.; Rai, A. K.; Kumari, R.; Bhat, K. V. Value Addition in Sesame: A Perspective on Bioactive Components for Enhancing Utility and Profitability. Pharmacogn. Rev. 2014, 8(16), 147. DOI: 10.4103/0973-7847.134249.
  • Asghar, A.; Majeed, M. N.; Akhtar, M. N. A Review on the Utilization of Sesame as Functional Food. Am. J. Food Nutr. 2014, 4(1), 21.
  • Chen, Y.; Lin, H.; Lin, M.; Lin, P.; Chen, J. Effects of Thermal Preparation and in vitro Digestion on Lignan Profiles and Antioxidant Activity in Defatted-Sesame Meal. Food Chem. Toxicol. 2019, 128, 89. DOI: 10.1016/j.fct.2019.03.054.
  • Hassan, M. A. M. Studies on Egyptian Sesame Seeds (Sesamum Indicum L.) and Its Products 1-Physicochemical Analysis and Phenolic Acids of Roasted Egyptian Sesame Seeds (Sesamum Indicum L.). World J. Dairy Food Sci. 2012, 7, 195.
  • Hemalatha, S. Lignans and Tocopherols in Indian Sesame Cultivars. J. Am. Oil Chem. Soc. 2004, 81(5), 467. DOI: 10.1007/s11746-004-0924-5.
  • Samuel, N.; Genevieve, A. Proximate Analysis and Phytochemical Properties of Sesame (Sesamum Indicum L.) Seeds Grown and Consumed in Abakaliki, Ebonyi State, Nigeria. Int. J. Health Med. 2017, 2(4), 1. DOI: 10.24178/ijhm.2017.2.4.01.
  • Vijayalakshmi, B.; Rao, S. V. Fatty Acid Composition of Phospholipids in Seed Oils Containing Unusual Acids. Chem. Phys. Lipids. 1972, 9(1), 82. DOI: 10.1016/0009-3084(72)90035-7.
  • Yoshida, H.; Abe, S.; Hirakawa, Y.; Takagi, S. Roasting Effects on Fatty Acid Distributions of Triacylglycerols and Phospholipids in Sesame (Sesamum Indicum) Seeds. J. Sci. Food Agric. 2001, 81(7), 620. DOI: 10.1002/jsfa.857.
  • Ghafoorunissa, S. H.; Rao, M. V. Sesame Lignans Enhance Antioxidant Activity of Vitamin E in Lipid Peroxidation Systems. Mol. Cell. Biochem. 2004, 262(1–2), 195. DOI: 10.1023/B:MCBI.0000038235.01389.a9.
  • Moazzami, A. A.; Andersson, R. E.; Kamal-Eldin, A. HPLC Analysis of Sesaminol Glucosides in Sesame Seeds. J. Agric. Food Chem. 2006, 54(3), 633. DOI: 10.1021/jf051541g.
  • Melo, D.; Álvarez-Ortí, M.; Nunes, M. A.; Costa, A. S. G.; Machado, S.; Alves, R. C.; Pardo, J. E.; Oliveira, M. B. P. P. Whole or Defatted Sesame Seeds (Sesamum Indicum L.)? The Effect of Cold Pressing on Oil and Cake Quality. Foods. 2021, 10(9), 2108. DOI: 10.3390/foods10092108.
  • Normén, L.; Ellegård, L.; Brants, H.; Dutta, P.; Andersson, H. A Phytosterol Database: Fatty Foods Consumed in Sweden and the Netherlands. J. Food Compost. Anal. 2007, 20(3), 193. DOI: 10.1016/j.jfca.2006.06.002.
  • Mekky, R. H.; Abdel-Sattar, E.; Segura-Carretero, A.; Contreras, M. D. M. Metabolic Profiling of the Oil of Sesame of the Egyptian Cultivar ‘Giza 32’ Employing LC-MS and Tandem MS-Based Untargeted Method. Foods. 2021, 10(2), 2. DOI: 10.3390/foods10020298.
  • Kamal-Eldin, A.; Appelqvist, L. A. Variation in Fatty Acid Composition of the Different Acyl Lipids in Seed Oils from Four Sesamum Species. J. Am. Oil Chem. Soc. 1994, 71(2), 135. DOI: 10.1007/BF02541547.
  • Brar, G. S.; Ahuja, K. L. Sesame: Its Culture, Genetics, Breeding and Biochemistry. Annual Reviews of Plant Sciences. 1980, 1, 245.
  • Yamashita, K.; Iizuka, Y.; Imai, T.; Namiki, M. Sesame Seed and Its Lignans Produce Marked Enhancement of Vitamin E Activity in Rats Fed a Low α-tocopherol Diet. Lipids. 1995, 30(11), 1019. DOI: 10.1007/BF02536287.
  • Namiki, M. The Chemistry and Physiological Functions of Sesame. Food Rev. Int. 1995, 11(2), 281. DOI: 10.1080/87559129509541043.
  • Dalibalta, S.; Majdalawieh, A. F.; Manjikian, H. Health Benefits of Sesamin on Cardiovascular Disease and Its Associated Risk Factors. Saudi Pharm. J. 2020, 28(10), 1276. DOI: 10.1016/j.jsps.2020.08.018.
  • Yoshida, Y.; Niki, E.; Noguchi, N. Comparative Study on the Action of Tocopherols and Tocotrienols as Antioxidant: Chemical and Physical Effects. Chem. Phys. Lipids. 2003, 123(1), 63. DOI: 10.1016/S0009-3084(02)00164-0.
  • Hofius, D.; Sonnewald, U. Vitamin E Biosynthesis: Biochemistry Meets Cell Biology. Trends Plant Sci. 2003, 8(1), 6. DOI: 10.1016/S1360-1385(02)00002-X.
  • Colombo, M. L. An Update on Vitamin E, Tocopherol and Tocotrienol—perspectives. Molecules. 2010, 15(4), 2103. DOI: 10.3390/molecules15042103.
  • Herbers, K. Vitamin Production in Transgenic Plants. J. Plant Physiol. 2003, 160(7), 821. DOI: 10.1078/0176-1617-01024.
  • Fritsche, S.; Wang, X.; Jung, C. Recent Advances in Our Understanding of Tocopherol Biosynthesis in Plants: An Overview of Key Genes, Functions, and Breeding of Vitamin E Improved Crops. Antioxidants (Basel, Switzerland). 2017, 6(4), 99. DOI: 10.3390/antiox6040099.
  • Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. DOI: 10.1017/jns.2016.41.
  • DellaPenna, D. Progress in the Dissection and Manipulation of Vitamin E Synthesis. Trends Plant Sci. 2005, 10(12), 574. DOI: 10.1016/j.tplants.2005.10.007.
  • Van Rensburg, S.; Daniels, W.; Van Zyl, J.; Taljaard, J. J. M. B. D. A Comparative Study of the Effects of Cholesterol, Beta-Sitosterol, Beta-Sitosterol Glucoside, Dehydro-Epiandrosterone Sulphate and Melatonin on in vitro Lipid Peroxidation. Metabolic Brain Disease. 2000, 15(4), 257. DOI: 10.1023/A:1011167023695.
  • Zhao, W.; Miao, X.; Jia, S.; Pan, Y.; Huang, Y. J. P. S. Isolation and Characterization of Microsatellite Loci from the Mulberry, Morus L. J Plant Science. 2005, 168(2), 519. DOI: 10.1016/j.plantsci.2004.09.020.
  • Moreau, R. A.; Whitaker, B. D.; Hicks, K. B. Phytosterols, Phytostanols, and Their Conjugates in Foods: Structural Diversity, Quantitative Analysis, and Health-Promoting Uses. Prog. lipid res. 2002, 41(6), 457. DOI: 10.1016/S0163-7827(02)00006-1.
  • Gharby, S.; Harhar, H.; Bouzoubaa, Z.; Asdadi, A.; El Yadini, A.; Charrouf, Z. Chemical Characterization and Oxidative Stability of Seeds and Oil of Sesame Grown in Morocco. J. Saudi Soc. Agric. Sci. 2017, 16(2), 105. DOI: 10.1016/j.jssas.2015.03.004.
  • Mares, L. F. D. M.; Passos, M. C.; Menezes, C. C. Interference of Germination Time on Chemical Composition and Antioxidant Capacity of White Sesame (Sesamum Indicum). Food Science and Technology/Ciencia e Tecnologia de Alimentos. 2018, 38(Suppl. 1), 248. DOI: 10.1590/1678-457x.20217.
  • Abou-Gharbia, H. A.; Shehata, A. A. Y.; Shahidi, F. Effect of Processing on Oxidative Stability and Lipid Classes of Sesame Oil. Food Res. Int. 2000, 33(5), 331. DOI: 10.1016/S0963-9969(00)00052-1.
  • Hudson, B. J. F.; Ghavami, M. Phospholipids as Antioxidant Synergists for Tocopherols in the Autoxidation of Edible Oils. Food Sci. Technol. Int. 2013, 17(4), 191.
  • Cai, Z.; Li, K.; Lee, W. J.; Reaney, M. T. J.; Zhang, N.; Wang, Y. Recent Progress in the Thermal Treatment of Oilseeds and Oil Oxidative Stability: A Review. Fundam. Res. 2021, 1(6), 767. DOI: 10.1016/j.fmre.2021.06.022.
  • Rue, E. A.; Rush, M. D.; van Breemen, R. B. Procyanidins: A Comprehensive Review Encompassing Structure Elucidation via Mass Spectrometry. Phytochem. Rev. 2018, 17(1), 1. DOI: 10.1007/s11101-017-9507-3.
  • Vuolo, M. M.; Lima, V. S.; Junior, M. R. M. Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds, Campos, M. R. S., Ed.; Cambridge: Woodhead Publishing, 2019; pp 33.
  • Luna-Guevara, M. L.; Luna-Guevara, J. J.; Hernández-Carranza, P.; Ruíz-Espinosa, H.; Ochoa-Velasco, C. E. Phenolic Compounds: A Good Choice Against Chronic Degenerative Diseases. Stud. Nat. Prod., Elsevier. 2018, 59, 79.
  • Laura, A.; Moreno-Escamilla, J. O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables, Yahia, E. M., Ed.; Cambridge: Woodhead Publishing, 2019; pp 253.
  • Ferreira, I. C.; Martins, N.; Barros, L. Phenolic Compounds and Its Bioavailability: In vitro Bioactive Compounds or Health Promoters? Adv. Food Nutr. Res., Elsevier. 2017, 82, 1.
  • Budowski, P.; Markley, K. The Chemical and Physiological Properties of Sesame Oil. Chem. Rev. 1951, 48(1), 125. DOI: 10.1021/cr60149a005.
  • Osawa, T.; Nagata, M.; Namiki, M.; Fukuda, Y. Sesamolinol, a Novel Antioxidant Isolated from Sesame Seeds. Agric Biol Chem. 1985, 49(11), 3351. DOI: 10.1080/00021369.1985.10867272.
  • Shimizu, S.; Akimoto, K.; Shinmen, Y.; Kawashima, H.; Sugano, M.; Yamada, H. Sesamin is a Potent and Specific Inhibitor of Δ5 Desaturase in Polyunsaturated Fatty Acid Biosynthesis. Lipids. 1991, 26(7), 512. DOI: 10.1007/BF02536595.
  • Hsu, D. -Z.; Su, S. -B.; Chien, S. -P.; Chiang, P. -J.; Li, Y. -H.; Lo, Y. -J.; Liu, M. -Y. Effect of Sesame Oil on Oxidative-Stress-Associated Renal Injury in Endotoxemic Rats: Involvement of Nitric Oxide and Proinflammatory Cytokines. Shock. 2005, 24(3), 276. DOI: 10.1097/01.shk.0000172366.73881.c7.
  • Yokota, T.; Matsuzaki, Y.; Koyama, M.; Hitomi, T.; Kawanaka, M.; Enoki-konishi, M.; Okuyama, Y.; Takayasu, J.; Nishino, H.; Nishikawa, A. Sesamin, a Lignan of Sesame, Down-regulates Cyclin D1 Protein Expression in Human Tumor Cells. Cancer Sci. 2007, 98(9), 1447. DOI: 10.1111/j.1349-7006.2007.00560.x.
  • Lee, C. -C.; Chen, P. -R.; Lin, S.; Tsai, S. -C.; Wang, B. -W.; Chen, W. -W.; Tsai, C. E.; Shyu, K. -G. Sesamin Induces Nitric Oxide and Decreases Endothelin-1 Production in HUVECs: Possible Implications for Its Antihypertensive Effect. J. Hypertens. 2004, 22(12), 2329. DOI: 10.1097/00004872-200412000-00015.
  • Nakano, D.; Kurumazuka, D.; Nagai, Y.; Nishiyama, A.; Kiso, Y.; Matsumura, Y. Dietary Sesamin Suppresses Aortic NADPH Oxidase in DOCA Salt Hypertensive Rats. Clin. Exp. Pharmacol. Physiol. 2007, 35(3), 324. DOI: 10.1111/j.1440-1681.2007.04817.x.
  • Wu, W. -H.; Kang, Y. -P.; Wang, N. -H.; Jou, H. -J.; Wang, T. -A. Sesame Ingestion Affects Sex Hormones, Antioxidant Status, and Blood Lipids in Postmenopausal Women. J. Nutr. 2006, 136(5), 1270. DOI: 10.1093/jn/136.5.1270.
  • Mak, D.; Chiu, P. Y.; Ko, K. M. Antioxidant and anticarcinogenic potential of sesame lignans. In Sesame: the genus Sesamum. Medicinal and Aromatic Plants – Industrial Profiles, Bedigian, D., Ed.; Boca Raton: CRC Press, 2010; pp 111.
  • Lim, J. S.; Adachi, Y.; Takahashi, Y.; Ide, T. Comparative Analysis of Sesame Lignans (Sesamin and Sesamolin) in Affecting Hepatic Fatty Acid Metabolism in Rats. Br. J. Nutr. 2007, 97(1), 85. DOI: 10.1017/S0007114507252699.
  • Monteiro, E. M. H.; Chibli, L. A.; Yamamoto, C. H.; Pereira, M. C. S.; Vilela, F. M. P.; Rodarte, M. P.; Pinto, M. A. D. O.; Do Amaral, M. D. P. H.; Silvério, M. S.; Araújo, A. L. S. D. M., et al. Antinociceptive and Anti-Inflammatory Activities of the Sesame Oil and Sesamin. Nutrients. 2014, 6(5), 1931. DOI: 10.3390/nu6051931.
  • Coulman, K. D.; Liu, Z.; Hum, W. Q.; Michaelides, J.; Thompson, L. U. Whole Sesame Seed is as Rich a Source of Mammalian Lignan Precursors as Whole Flaxseed. Nutr. Cancer. 2005, 52(2), 156. DOI: 10.1207/s15327914nc5202_6.
  • Liu, Z.; Saarinen, N. M.; Thompson, L. U. Sesamin is One of the Major Precursors of Mammalian Lignans in Sesame Seed (Sesamum Indicum) as Observed in vitro and in Rats. J. Nutr. 2006, 136(4), 906. DOI: 10.1093/jn/136.4.906.
  • Kamal-eldin, A. The Chemistry and Antioxidant Properties of Tocopherols and Tocotrienols. Lipids. 1996, 31(7), 671. DOI: 10.1007/BF02522884.
  • Li, D.; Saldeen, T.; Romeo, F.; Mehta, J. L. Relative Effects of α-And γ-Tocopherol on Low-Density Lipoprotein Oxidation and Superoxide Dismutase and Nitric Oxide Synthase Activity and Protein Expression in Rats. J. Cardiovasc. Pharmacol. Ther. 1999, 4(4), 219. DOI: 10.1177/107424849900400403.
  • Qureshi, A.; Bradlow, B.; Brace, L.; Manganello, J.; Peterson, D.; Pearce, B.; Wright, J.; Gapor, A.; Elson, C. Response of Hypercholesterolemic Subjects to Administration of Tocotrienols. Lipids. 1995, 30(12), 1171. DOI: 10.1007/BF02536620.
  • Schwenke, D. C. Does Lack of Tocopherols and Tocotrienols Put Women at Increased Risk of Breast Cancer? J. Nutr. Biochem. 2002, 13(1), 2. DOI: 10.1016/S0955-2863(01)00207-8.
  • Rizvi, S.; Raza, S. T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ. Med. J. 2014, 14(2), e157.
  • Traber, M. G.; Stevens, J. F. Vitamins C and E: Beneficial Effects from a Mechanistic Perspective. Free Radic. Biol. Med. 2011, 51(5), 1000. DOI: 10.1016/j.freeradbiomed.2011.05.017.
  • Ang, E.; Lee, S.; Gan, C.; See, P.; Chan, Y.; Ng, L.; Machin, D. Evaluating the Role of Alternative Therapy in Burn Wound Management: Randomized Trial Comparing Moist Exposed Burn Ointment with Conventional Methods in the Management of Patients with Second-Degree Burns. Medgenmed: Medscape General Medicine. 2001, 3(2), 3.
  • Liu, Z.; Liu, X.; Luo, S.; Chu, C.; Wu, D.; Liu, R.; Wang, L.; Wang, J.; Liu, X. Extract of Sesame Cake and Sesamol Alleviate Chronic Unpredictable Mild Stress-Induced Depressive-Like Behaviors and Memory Deficits. J. Funct. Foods. 2018, 42, 237. DOI: 10.1016/j.jff.2018.01.005.
  • Joshi, R.; Kumar, M. S.; Satyamoorthy, K.; Unnikrisnan, M. K.; Mukherjee, T. Free Radical Reactions and Antioxidant Activities of Sesamol: Pulse Radiolytic and Biochemical Studies. J. Agric. Food Chem. 2005, 53(7), 2696. DOI: 10.1021/jf0489769.
  • Kaur, I. P.; Saini, A. Sesamol Exhibits Antimutagenic Activity Against Oxygen Species Mediated Mutagenicity. Mutat. Res/Genet. Toxicol. Environ. Mutagen. 2000, 470(1), 71. DOI: 10.1016/S1383-5718(00)00096-6.
  • Liu, F.; Li, X.; Wang, L.; Yan, X.; Ma, D.; Liu, Z.; Liu, X. Sesamol Incorporated Cellulose Acetate-Zein Composite Nanofiber Membrane: An Efficient Strategy to Accelerate Diabetic Wound Healing. Int. J. Biol. Macromol. 2020, 149, 627. DOI: 10.1016/j.ijbiomac.2020.01.277.
  • Hanzawa, F.; Nomura, S.; Sakuma, E.; Uchida, T.; Ikeda, S. Dietary Sesame Seed and Its Lignan, Sesamin, Increase Tocopherol and Phylloquinone Concentrations in Male Rats. Nutrients. 2013, 143(7), 1067. DOI: 10.3945/jn.113.176636.
  • Thuy, T. D.; Phan, N. N.; Wang, C. -Y.; Yu, H. -G.; Wang, S. -Y.; Huang, P. -L.; Do, Y. -Y.; Lin, Y. -C. Novel Therapeutic Effects of Sesamin on Diabetes-Induced Cardiac Dysfunction. Mol. Med. Rep. 2017, 15(5), 2949. DOI: 10.3892/mmr.2017.6420.
  • Zhang, W.; Wang, Y.; Geng, Z.; Guo, S.; Cao, J.; Zhang, Z.; Pang, X.; Chen, Z.; Du, S.; Deng, Z. Antifeedant Activities of Lignans from Stem Bark of Zanthoxylum Armatum DC. Against Tribolium Castaneum. Molecues. 2018, 23(3), 617. DOI: 10.3390/molecules23030617.
  • Nantarat, N.; Mueller, M.; Lin, W. -C.; Lue, S. -C.; Viernstein, H.; Chansakaow, S.; Sirithunyalug, J.; Leelapornpisid, P. Sesaminol Diglucoside Isolated from Black Sesame Seed Cake and Its Antioxidant, Anti-Collagenase and Anti-Hyaluronidase Activities. Food Biosci. 2020, 36, 100628. DOI: 10.1016/j.fbio.2020.100628.
  • Jan, K. -C.; Ku, K. -L.; Chu, Y. -H.; Hwang, L. S.; Ho, C. -T. Tissue Distribution and Elimination of Estrogenic and Anti-Inflammatory Catechol Metabolites from Sesaminol Triglucoside in Rats. J. Agric. Food Chem. 2010, 58(13), 7693. DOI: 10.1021/jf1009632.
  • Wikul, A.; Damsud, T.; Kataoka, K.; Phuwapraisirisan, P. (+)-Pinoresinol is a Putative Hypoglycemic Agent in Defatted Sesame (Sesamum Indicum) Seeds Though Inhibiting α-Glucosidase. Bioorg. Med. Chem. Lett. 2012, 22(16), 5215. DOI: 10.1016/j.bmcl.2012.06.068.
  • Takeuchi, H.; Mooi, L. Y.; Inagaki, Y.; He, P. Hypoglycemic Effect of a Hot-Water Extract from Defatted Sesame (Sesamum Indicum L.) Seed on the Blood Glucose Level in Genetically Diabetic KK-Ay Mice. Biosci. Biotechnol., Biochem. 2001, 65(10), 2318. DOI: 10.1271/bbb.65.2318.
  • Das, R.; Dutta, A.; Bhattacharjee, C. Preparation of Sesame Peptide and Evaluation of Antibacterial Activity on Typical Pathogens. Food Chem. 2012, 131(4), 1504. DOI: 10.1016/j.foodchem.2011.09.136.
  • NAKANO, D.; OGURA, K.; MIYAKOSHI, M.; ISHII, F.; KAWANISHI, H.; KURUMAZUKA, D.; KWAK, C. -J.; IKEMURA, K.; TAKAOKA, M.; MORIGUCHI, S., et al. Antihypertensive Effect of Angiotensin I-Converting Enzyme Inhibitory Peptides from a Sesame Protein Hydrolysate in Spontaneously Hypertensive Rats. Biosci. Biotechnol. Biochem. 2006, 70(5), 1118. DOI: 10.1271/bbb.70.1118.
  • Aondona, M. M.; Ikya, J. K.; Ukeyima, M. T.; Gborigo, T. J. A.; Aluko, R. E.; Girgih, A. T. In vitro Antioxidant and Antihypertensive Properties of Sesame Seed Enzymatic Protein Hydrolysate and Ultrafiltration Peptide Fractions. Food Biochem. 2021, 45(1), e13587. DOI: 10.1111/jfbc.13587.
  • Ma, X.; Cui, X.; Li, J.; Li, C.; Wang, Z. Peptides from Sesame Cake Reduce Oxidative Stress and Amyloid-β-Induced Toxicity by Upregulation of SKN-1 in a Transgenic Caenorhabditis Elegans Model of Alzheimer’s Disease. J. Funct. Foods. 2017, 39, 287. DOI: 10.1016/j.jff.2017.10.032.
  • Ma, X.; Li, J.; Cui, X.; Li, C.; Wang, Z. Dietary Supplementation with Peptides from Sesame Cake Alleviates Parkinson’s Associated Pathologies in Caenorhabditis Elegans. J. Funct. Foods. 2020, 65, 103737. DOI: 10.1016/j.jff.2019.103737.
  • Ma, X.; Li, J.; Cui, X.; Li, F.; Wang, Z. Dietary Supplementation with Peptides from Sesame Cake Protect Caenorhabditis Elegans from Polyglutamine-Induced Toxicity. J. Funct. Foods. 2019, 54, 199. DOI: 10.1016/j.jff.2019.01.002.
  • Visavadiya, N. P.; Narasimhacharya, A. V. Sesame as a Hypocholesteraemic and Antioxidant Dietary Component. Food. Chem. Toxicol. 2008, 46(6), 1889. DOI: 10.1016/j.fct.2008.01.012.
  • Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J. P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly) Phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2013, 18(14), 1818. DOI: 10.1089/ars.2012.4581.
  • Chen, M.; Meng, H.; Zhao, Y.; Chen, F.; Yu, S. Antioxidant and in vitro Anticancer Activities of Phenolics Isolated from Sugar Beet Molasses. BMC Complementary Altern. Med. 2015, 15(1), 1. DOI: 10.1186/s12906-015-0847-5.
  • Díaz-de-Cerio, E.; Verardo, V.; Gómez-Caravaca, A. M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States. Int. J. Mol. Sci. 2016, 17(5), 699. DOI: 10.3390/ijms17050699.
  • Tarko, T.; Duda-Chodak, A.; Soszka, A. Changes in Phenolic Compounds and Antioxidant Activity of Fruit Musts and Fruit Wines During Simulated Digestion. Molecules. 2020, 25(23), 5574. DOI: 10.3390/molecules25235574.
  • Marín, L.; Miguélez, E. M.; Villar, C. J.; Lombó, F. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties. Biomed Res. Int. 2015, 2015, 1–18. DOI: 10.1155/2015/905215.
  • D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the Polyphenols: Status and Controversies. Int. J. Mol. Sci. 2010, 11(4), 1321. DOI: 10.3390/ijms11041321.
  • Serra, V.; Salvatori, G.; Pastorelli, G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals (Basel). 2021, 11(2), 2. DOI: 10.3390/ani11020401.
  • Jaganath, I. B.; Crozier, A. Dietary Flavonoids and Phenolic Compounds. In Plant Phenolics and Human Health: Biochemistry, Nutrition, and Pharmacology, Fraga, C. G., Ed.; New York: John Wiley & Sons, 2010; pp 1.
  • Ferreyra, M. L. F.; Rius, S.; Casati, P. Flavonoids: Biosynthesis, Biological Functions, and Biotechnological Applications. Front. Plant Sci. 2012, 3, 222. DOI: 10.3389/fpls.2012.00222.
  • Kumar, S.; Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. DOI: 10.1155/2013/162750.
  • Pandey, K. B.; Rizvi, S. I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2(5), 270. DOI: 10.4161/oxim.2.5.9498.
  • Ozdal, T.; Sela, D. A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The Reciprocal Interactions Between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients. 2016, 8(2), 78. DOI: 10.3390/nu8020078.
  • Lafay, S.; Gil-Izquierdo, A. Bioavailability of Phenolic Acids. Phytochem. Rev. 2008, 7(2), 301. DOI: 10.1007/s11101-007-9077-x.
  • Quirós-Sauceda, A.; Palafox-Carlos, H.; Sáyago-Ayerdi, S.; Ayala-Zavala, J.; Bello-Perez, L. A.; Alvarez-Parrilla, E.; De La Rosa, L.; González-Córdova, A.; González-Aguilar, G. Dietary Fiber and Phenolic Compounds as Functional Ingredients: Interaction and Possible Effect After Ingestion. Food Funct. 2014, 5(6), 1063. DOI: 10.1039/C4FO00073K.
  • Vinholes, J.; Silva, B.; Silva, L. Hydroxycinnamic acids (HCAS): Structure, biological properties and health effects. In Advances in Medicine and Biology, New York: Nova Science Publishers, 2015; Vol. 88; pp 1.
  • Cederbaum, A. I. Alcohol Metabolism. Clin. Liver Dis. 2012, 16(4), 667. DOI: 10.1016/j.cld.2012.08.002.
  • Olthof, M. R.; Hollman, P. C.; Zock, P. L.; Katan, M. B. Consumption of High Doses of Chlorogenic Acid, Present in Coffee, or of Black Tea Increases Plasma Total Homocysteine Concentrations in Humans. Am. J. Clin. Nutr. 2001, 73(3), 532. DOI: 10.1093/ajcn/73.3.532.
  • Dall’Asta, M.; Bresciani, L.; Calani, L.; Cossu, M.; Martini, D.; Melegari, C.; Del Rio, D.; Pellegrini, N.; Brighenti, F.; Scazzina, F. In vitro Bioaccessibility of Phenolic Acids from a Commercial Aleurone-Enriched Bread Compared to a Whole Grain Bread. Nutrients. 2016, 8(1), 42. DOI: 10.3390/nu8010042.
  • Jan, K. C.; Hwang, L. S.; Ho, C. T. Tissue Distribution and Elimination of Sesaminol Triglucoside and Its Metabolites in Rat. Mol. Nutr. Food Res. Int. 2009, 53(7), 815. DOI: 10.1002/mnfr.200800380.
  • Deyama, T. The Constituents of Eucommia Ulmoides Oliv. I. Isolation of (+)-Medioresinol di-O-β-D-Glucopyranoside. Chem. Pharm. Bull. 1983, 31(9), 2993. DOI: 10.1248/cpb.31.2993.
  • Katsuzaki, H.; Kawakishi, S.; Osawa, T. Sesaminol Glucosides in Sesame Seeds. Phytochemistry. 1994, 35(3), 773. DOI: 10.1016/S0031-9422(00)90603-4.
  • Katsuzaki, H.; Kawasumi, M.; Kawakishi, S.; Osawa, T. Structure of Novel Antioxidative Lignan Glucosides Isolated from Sesame Seed. Biosci. Biotechnol. Biochem. 1992, 56(12), 2087. DOI: 10.1271/bbb.56.2087.
  • Moazzami, A.; Haese, S.; Kamal-eldin, A. Lignan Contents in Sesame Seeds and Products. Eur. J. Lipid Sci. Technol. 2007, 109(10), 1022. DOI: 10.1002/ejlt.200700057.
  • Park, S. -H.; Ryu, S. -N.; Bu, Y.; Kim, H.; Simon, J. E.; Kim, K. -S. Antioxidant Components as Potential Neuroprotective Agents in Sesame (Sesamum Indicum L.). Food Rev. Int. 2010, 26(2), 103. DOI: 10.1080/87559120903564464.
  • Peng, Z.; Xu, Y.; Meng, Q.; Raza, H.; Zhao, X.; Liu, B.; Dong, C. Preparation of Sesaminol from Sesaminol Triglucoside by β-Glucosidase and Cellulase Hydrolysis. J. Am. Oil Chem. Soc. 2016, 93(6), 765. DOI: 10.1007/s11746-016-2819-4.
  • Jan, K.; Hwang, L.; Ho, C. Biotransformation of Sesaminol Triglucoside to Mammalian Lignans by Intestinal Microbiota. J. Agric. Food Chem. 2009, 57(14), 6101. DOI: 10.1021/jf901215j.
  • Raffaelli, B.; Hoikkala, A.; Leppälä, E.; Wähälä, K. Enterolignans. J. Chromatogr. B. 2002, 777(1–2), 29. DOI: 10.1016/S1570-0232(02)00092-2.
  • Penalvo, J. L.; Heinonen, S. -M.; Aura, A. -M.; Adlercreutz, H. Dietary Sesamin is Converted to Enterolactone in Humans. J. Nutr. 2005, 135(5), 1056. DOI: 10.1093/jn/135.5.1056.
  • Clavel, T.; Henderson, G.; Alpert, C. -A.; Philippe, C.; Rigottier-Gois, L.; Doré, J.; Blaut, M. Intestinal Bacterial Communities That Produce Active Estrogen-Like Compounds Enterodiol and Enterolactone in Humans. Appl. Environ. Microbiol. 2005, 71(10), 6077. DOI: 10.1128/AEM.71.10.6077-6085.2005.
  • Wang, L. -Q.; Meselhy, M. R.; Li, Y.; Qin, G. -W.; Hattori, M. Human Intestinal Bacteria Capable of Transforming Secoisolariciresinol Diglucoside to Mammalian Lignans, Enterodiol and Enterolactone. Chem. Pharm. Bull. 2000, 48(11), 1606. DOI: 10.1248/cpb.48.1606.
  • Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J. J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules. 2019, 24(5), 917. DOI: 10.3390/molecules24050917.
  • Xie, L. -H.; Akao, T.; Hamasaki, K.; Deyama, T.; Hattori, M. Biotransformation of Pinoresinol Diglucoside to Mammalian Lignans by Human Intestinal Microflora, and Isolation of Enterococcus Faecalis Strain PDG-1 Responsible for the Transformation of (+)-Pinoresinol to (+)-Lariciresinol. Chem. Pharm. Bull. 2003, 51(5), 508. DOI: 10.1248/cpb.51.508.
  • Luo, J.; Li, M.; Wu, H.; Liu, Z.; Barrow, C.; Dunshea, F.; Suleria, H. A. R. Bioaccessibility of Phenolic Compounds from Sesame Seeds (Sesamum Indicum L.) During in vitro Gastrointestinal Digestion and Colonic Fermentation. J. Food Process. Preserv. 2022, 46(7), e16669. DOI: 10.1111/jfpp.16669.
  • Scholz, S.; Williamson, G. Interactions Affecting the Bioavailability of Dietary Polyphenols in vivo. Int. J. Vitam. Nutr. Res. 2007, 77(3), 224. DOI: 10.1024/0300-9831.77.3.224.
  • Appeldoorn, M. M.; Vincken, J. -P.; Aura, A. -M.; Hollman, P. C.; Gruppen, H. Procyanidin Dimers are Metabolized by Human Microbiota with 2-(3, 4-Dihydroxyphenyl) Acetic Acid and 5-(3, 4-Dihydroxyphenyl)-γ-Valerolactone as the Major Metabolites. J. Agric. Food Chem. 2009, 57(3), 1084. DOI: 10.1021/jf803059z.
  • Elferink, H.; Bruekers, J. P. J.; Veeneman, G. H.; Boltje, T. J. A Comprehensive Overview of Substrate Specificity of Glycoside Hydrolases and Transporters in the Small Intestine. Cell. Mol. Life Sci. 2020, 77(23), 4799. DOI: 10.1007/s00018-020-03564-1.
  • Erlund, I.; Kosonen, T.; Alfthan, G.; Mäenpää, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of Quercetin from Quercetin Aglycone and Rutin in Healthy Volunteers. Eur. J. Clin. Pharmacol. 2000, 56(8), 545. DOI: 10.1007/s002280000197.
  • Brand, W.; Shao, J.; Hoek-Van Den Hil, E. F.; Van Elk, K. N.; Spenkelink, B.; De Haan, L. H.; Rein, M. J.; Dionisi, F.; Williamson, G.; Van Bladeren, P. Stereoselective Conjugation, Transport and Bioactivity of S-And R-Hesperetin Enantiomers in vitro. J. Agric. Food Chem. 2010, 58(10), 6119. DOI: 10.1021/jf1008617.
  • Ottaviani, J. I.; Momma, T. Y.; Heiss, C.; Kwik-Uribe, C.; Schroeter, H.; Keen, C. L. The Stereochemical Configuration of Flavanols Influences the Level and Metabolism of Flavanols in Humans and Their Biological Activity in vivo. Free Radic. Biol. Med. 2011, 50(2), 237. DOI: 10.1016/j.freeradbiomed.2010.11.005.
  • Muthyala, R. S.; Ju, Y. H.; Sheng, S.; Williams, L. D.; Doerge, D. R.; Katzenellenbogen, B. S.; Helferich, W. G.; Katzenellenbogen, J. A. Equol, a Natural Estrogenic Metabolite from Soy Isoflavones: Convenient Preparation and Resolution of R-And S-Equols and Their Differing Binding and Biological Activity Through Estrogen Receptors Alpha and Beta. Bioorg. Med. Chem. 2004, 12(6), 1559. DOI: 10.1016/j.bmc.2003.11.035.
  • Kiela, P. R.; Ghishan, F. K. Physiology of Intestinal Absorption and Secretion. Best Practice & Research. Clin. Gastroenterol. 2016, 30(2), 145. DOI: 10.1016/j.bpg.2016.02.007.
  • Williamson, G.; Manach, C. Bioavailability and Bioefficacy of Polyphenols in Humans. II. Review of 93 Intervention Studies. Am. J. Clin. Nutr. 2005, 81(1), 243S. DOI: 10.1093/ajcn/81.1.243S.
  • Averina, E.; Kutyrev, I. Perspectives on the Use of Marine and Freshwater Hydrobiont Oils for Development of Drug Delivery Systems. Biochem. Adv. 2011, 29(5), 548. DOI: 10.1016/j.biotechadv.2011.01.009.
  • Frank, J.; Lee, S.; Leonard, S. W.; Atkinson, J. K.; Kamal-Eldin, A.; Traber, M. G. Sex Differences in the Inhibition of γ-Tocopherol Metabolism by a Single Dose of Dietary Sesame Oil in Healthy Subjects. Am. J. Clin. Nutr. 2008, 87(6), 1723. DOI: 10.1093/ajcn/87.6.1723.
  • Sachdeva, A. K.; Misra, S.; Kaur, I. P.; Chopra, K. Neuroprotective Potential of Sesamol and Its Loaded Solid Lipid Nanoparticles in ICV-STZ-Induced Cognitive Deficits: Behavioral and Biochemical Evidence. Eur. J. Pharmacol. 2015, 747, 132. DOI: 10.1016/j.ejphar.2014.11.014.
  • Kakkar, V.; Mishra, A. K.; Chuttani, K.; Chopra, K.; Kaur, I. P. Delivery of Sesamol-Loaded Solid Lipid Nanoparticles to the Brain for Menopause-Related Emotional and Cognitive Central Nervous System Derangements. Rejuvenation Res. 2011, 14(6), 597. DOI: 10.1089/rej.2011.1193.
  • Kakkar, V.; Kaur, I. P. Preparation, Characterization and Scale-Up of Sesamol Loaded Solid Lipid Nanoparticles. Nanotechnol. Dev. 2012, 2(1), e8. DOI: 10.4081/nd.2012.e8.
  • Geetha, T.; Kapila, M.; Prakash, O.; Deol, P. K.; Kakkar, V.; Kaur, I. P. Sesamol-Loaded Solid Lipid Nanoparticles for Treatment of Skin Cancer. J. Drug Targeting. 2015, 23(2), 159. DOI: 10.3109/1061186X.2014.965717.
  • Singh, N.; Khullar, N.; Kakkar, V.; Kaur, I. P. Sesamol Loaded Solid Lipid Nanoparticles: A Promising Intervention for Control of Carbon Tetrachloride Induced Hepatotoxicity. BMC Complementary Altern. Med. 2015, 15(1), 142. DOI: 10.1186/s12906-015-0655-y.
  • Liu, F.; Liu, H.; Liu, R.; Xiao, C.; Duan, X.; McClements, D. J.; Liu, X. Delivery of Sesamol Using Polyethylene-Glycol-Functionalized Selenium Nanoparticles in Human Liver Cells in Culture. J. Agric. Food Chem. 2019, 67(10), 2991. DOI: 10.1021/acs.jafc.8b06924.
  • Singh, N.; Khullar, N.; Kakkar, V.; Kaur, I. P. Hepatoprotective Effects of Sesamol Loaded Solid Lipid Nanoparticles in Carbon Tetrachloride Induced Sub-Chronic Hepatotoxicity in Rats. Environ. Toxicol. 2016, 31(5), 520.
  • ElMasry, S. R.; Hathout, R. M.; Abdel-Halim, M.; Mansour, S. In Vitro Transdermal Delivery of Sesamol Using Oleic Acid Chemically-Modified Gelatin Nanoparticles as a Potential Breast Cancer Medication. J. Drug Delivery Sci. Technol. 2018, 48, 30. DOI: 10.1016/j.jddst.2018.08.017.
  • Hassanzadeh, P.; Atyabi, F.; Dinarvand, R.; Dehpour, A. -R.; Azhdarzadeh, M.; Dinarvand, M. Application of Nanostructured Lipid Carriers: The Prolonged Protective Effects for Sesamol in in vitro and in vivo Models of Ischemic Stroke via Activation of PI3K Signalling Pathway. DARU J. Pharm. Sci. 2017, 25(1), 1. DOI: 10.1186/s40199-017-0191-z.
  • Yashaswini, P. S.; Kurrey, N. K.; Singh, S. A. Encapsulation of Sesamol in Phosphatidyl Choline Micelles: Enhanced Bioavailability and Anti-Inflammatory Activity. Food Chem. 2017, 228, 330. DOI: 10.1016/j.foodchem.2017.02.002.
  • Santos Basurto, M. A.; Cardador Martínez, A.; Castaño Tostado, E.; Bah, M.; Reynoso Camacho, R.; Amaya Llano, S. L. Study of the Interactions Occurring During the Encapsulation of Sesamol Within Casein Micelles Reformed from Sodium Caseinate Solutions. J. Food Sci. 2018, 83(9), 2295. DOI: 10.1111/1750-3841.14293.
  • Yashaswini, P.; Rao, A.; Singh, S. Inhibition of Lipoxygenase by Sesamol Corroborates Its Potential Anti-Inflammatory Activity. Int. J. Biol. Macromol. 2017, 94(Pt B), 781. DOI: 10.1016/j.ijbiomac.2016.06.048.
  • Puglia, C.; Lauro, M. R.; Offerta, A.; Crascì, L.; Micicchè, L.; Panico, A. M.; Bonina, F.; Puglisi, G. Nanostructured Lipid Carriers (NLC) as Vehicles for Topical Administration of Sesamol: In vitro Percutaneous Absorption Study and Evaluation of Antioxidant Activity. Planta. med. 2017, 83(05), 398. DOI: 10.1055/s-0042-105293.
  • Rossi, L.; ten Hoorn, J. W. S.; Melnikov, S. M.; Velikov, K. P. Colloidal Phytosterols: Synthesis, Characterization and Bioaccessibility. Soft Matter. 2010, 6(5), 928. DOI: 10.1039/B911371A.