205
Views
3
CrossRef citations to date
0
Altmetric
Review

Enhancing Immunity Against Pathogens Through Glycosylated Bovine Colostrum Proteins

, , & ORCID Icon

References

  • Borad, S. G.; Singh, A. K. Colostrum Immunoglobulins: Processing, Preservation and Application Aspects. Int. Dairy J. 2018, 85, 201–210. DOI: 10.1016/j.idairyj.2018.05.016.
  • Ceniti, C., Costanzo, N., Morittu, V. M., Tilocca, B., Roncada, P., Britti, D. Review: Colostrum as an Emerging Food: Nutraceutical Properties and Food Supplement. Food Rev. Int. 2022, 1–29. DOI:10.1080/87559129.2022.2034165.
  • Tripathi, V.; Vashishtha, B. Bioactive Compounds of Colostrum and Its Application. Food Rev. Int. 2006, 22(3), 225–244. DOI: 10.1080/87559120600694606.
  • Xu, R. J. Bioactive Peptides in Milk and Their Biological and Health Implications. Food Rev. Int. 1998, 14(1), 1–16. DOI: 10.1080/87559129809541147.
  • McGrath, B. A., Fox, P. F., McSweeney, P. L., Kelly, A. L. Composition and Properties of Bovine Colostrum: A Review. Dairy Sci. Technol. 2016, 96(2), 133–158.
  • Darewicz, M., Dziuba, B., Minkiewicz, P., Dziuba, J. The Preventive Potential of Milk and Colostrum Proteins and Protein Fragments. Food Rev. Int. 2011, 27(4), 357–388.
  • O’Riordan, N., Kane, M., Joshi, L., Hickey, R. M. Structural and Functional Characteristics of Bovine Milk Protein Glycosylation. Glycobiology. 2014, 24(3), 220–236.
  • Cao, X., Song, D., Yang, M., Yang, N., Ye, Q., Tao, D., Yue, X. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics. J. Agric. Food Chem. 2017, 65(47), 10360–10367.
  • Arslan, A., Kaplan, M., Duman, H., Bayraktar, A., Ertürk, M., Henrick, B. M., Karav, S. Bovine Colostrum and Its Potential for Human Health and Nutrition. Front. Nutrit. 2021, 8. DOI: 10.3389/fnut.2021.651721.
  • Shental-Bechor, D.; Levy, Y. Folding of Glycoproteins: Toward Understanding the Biophysics of the Glycosylation Code. Curr. Opin. Struct. Biol. 2009, 19(5), 524–533. DOI: 10.1016/j.sbi.2009.07.002.
  • Figueroa‐lozano, S.; Valk-Weeber, R. L.; van Leeuwen, S. S.; Dijkhuizen, L.; de Vos, P. Dietary N-Glycans from Bovine Lactoferrin and TLR Modulation. Mol. Nutr. Food Res. 2018, 62(2), 1700389. DOI: 10.1002/mnfr.201700389.
  • Ahnfeldt, A. M.; Hyldig, N.; Li, Y.; Kappel, S. S.; Aunsholdt, L.; Sangild, P. T.; Zachariassen, G.FortiColos–A Multicentre Study Using Bovine Colostrum as a Fortifier to Human Milk in Very Preterm Infants: Study Protocol for a Randomised Controlled Pilot TrialTrials20192011–9Trials10.1186/s13063-019-3367-7
  • Bagwe, S., Tharappel, L. J., Kaur, G., Buttar, H. S. Bovine Colostrum: An Emerging Nutraceutical. J. Complement. Integr. Med. 2015, 12(3), 175–185.
  • Goonatilleke, E., Huang, J., Xu, G., Wu, L., Smilowitz, J.T., German, J.B. and Lebrilla, C.B. Human Milk Proteins and Their Glycosylation Exhibit Quantitative Dynamic Variations During Lactation. J. Nutr. 2019, 149(8), 1317–1325.
  • Schroeder, H. W., Jr; Cavacini, L. Structure and Function of Immunoglobulins. J. Allergy Clin. Immunol. 2010, 125(2), S41–52. DOI: 10.1016/j.jaci.2009.09.046.
  • Arnold, J. N., Wormald, M.R., Suter, D.M., Radcliffe, C.M., Harvey, D.J., Dwek, R.A., Rudd, P.M. and Sim, R.B. Human Serum IgM Glycosylation: Identification of Glycoforms That Can Bind to Mannan-Binding Lectin. J. Biol. Chem. 2005, 280(32), 29080–29087.
  • Wada, Y.; Dell, A.; Haslam, S. M.; Tissot, B.; Canis, K.; Azadi, P.; Bäckström, M.; Costello, C. E.; Hansson, G. C.; Hiki, Y., and Ishihara, M. Comparison of Methods for Profiling O-Glycosylation: Human Proteome Organisation Human Disease Glycomics/Proteome Initiative Multi-Institutional Study of IgA1. Mol. Cell. Proteomics. 2010, 9(4), 719–727.
  • Royle, L.; Roos, A.; Harvey, D. J.; Wormald, M. R.; Van Gijlswijk-Janssen, D.; Redwan, E.R.M.; Wilson, I. A.; Daha, M. R.; Dwek, R. A.; Rudd, P. M. Secretory IgA N- and O-Glycans Provide a Link Between the Innate and Adaptive Immune Systems. J. Biol. Chem. 2003, 278(22), 20140–20153. DOI: 10.1074/jbc.M301436200.
  • Roos, A., Bouwman, L.H., van Gijlswijk-Janssen, D.J., Faber-Krol M.C., Stahl, G.L. and Daha, M.R. Human IgA Activates the Complement System via the Mannan-Binding Lectin Pathway. J. Immunol. 2001, 167(5), 2861–2868.
  • Thomä-Worringer, C.; Sørensen, J.; López-Fandiño, R. Health Effects and Technological Features of Caseinomacropeptide. Int. Dairy J. 2006, 16(11), 1324–1333. DOI: 10.1016/j.idairyj.2006.06.012.
  • Foisy Sauvé, M.; Spahis, S.; Delvin, E.; Levy, E. Glycomacropeptide: A Bioactive Milk Derivative to Alleviate Metabolic Syndrome Outcomes. Antioxid. redox signaling. 2021, 34(3), 201–222. DOI: 10.1089/ars.2019.7994.
  • Brody, E. P. Biological Activities of Bovine Glycomacropeptide. Br. J. Nutr. 2000, 84(S1), 39–46. DOI: 10.1017/S0007114500002233.
  • Nakajima, K.; Tamura, N.; Kobayashi-Hattori, K.; Yoshida, T.; Hara-Kudo, Y.; Ikedo, M.; Sugita-Konishi, Y.; Hattori, M. Prevention of Intestinal Infection by Glycomacropeptide. Bioscience, Biotechnology, and Biochemistry. Biosci. Biotechnol. Biochem. 2005, 69(12), 2294–2301. DOI: 10.1271/bbb.69.2294.
  • Requena, P., González, R., López-Posadas, R., Abadía-Molina, A., Suárez, M. D., Zarzuelo, A., Martínez-Augustin, O. The Intestinal Antiinflammatory Agent Glycomacropeptide Has Immunomodulatory Actions on Rat Splenocytes. Biochem. Pharmacol. 2010, 79(12), 1797–1804.
  • Feeney, S.; Ryan, J.; Kilcoyne, M.; Joshi, L.; Hickey, R. Glycomacropeptide Reduces Intestinal Epithelial Cell Barrier Dysfunction and Adhesion of Entero-Hemorrhagic and Entero-Pathogenic Escherichia Coli in vitro. Foods. 2017, 6(11), 93. DOI: 10.3390/foods6110093.
  • Zlatina, K.; Galuska, S. P. The N-Glycans of Lactoferrin: More Than Just a Sweet Decoration. Biochem. Cell Biol. 2021, 99(1), 117–127. DOI: 10.1139/bcb-2020-0106.
  • van Leeuwen, S. S.; Schoemaker, R. J. W.; Timmer, C. J. A. M.; Kamerling, J. P.; Dijkhuizen, L. Use of Wisteria Floribunda Agglutinin Affinity Chromatography in the Structural Analysis of the Bovine Lactoferrin N-Linked Glycosylation. Biochimica Et Biophysica Acta (BBA)-General Subjects. Biochimica Et Biophysica Acta (BBA) - General Subjects. 2012, 1820(9), 1444–1455. DOI: 10.1016/j.bbagen.2011.12.014.
  • Kumar, B. G.; Mattad, S. Comprehensive Analysis of Lactoferrin N-Glycans with Site-Specificity from Bovine Colostrum Using Specific Proteases and RP-UHPLC-MS/MS. Int. Dairy J. 2021, 119, 104999. DOI: 10.1016/j.idairyj.2021.104999.
  • Adlerova, L.; Bartoskova, A.; Faldyna, M.Lactoferrin: A ReviewVeterinarni Medicina: Czech Academy of Agricultural Sciences. 2008, 53(9), 457–468.
  • Barboza, M.; Pinzon, J.; Wickramasinghe, S.; Froehlich, J. W.; Moeller, I.; Smilowitz, J. T.; Ruhaak, L. R.; Huang, J.; Lönnerdal, B.; German, J. B.,and Medrano, J.F. Glycosylation of Human Milk Lactoferrin Exhibits Dynamic Changes During Early Lactation Enhancing Its Role in Pathogenic Bacteria-Host InteractionsMolecular & Cellular Proteomics2012116Mol. Cell. ProteomicsM111.01524810.1074/mcp.M111.015248
  • Hua, S., Nwosu, C.C., Strum, J.S., Seipert, R.R., An, H.J., Zivkovic, A.M., German, J.B. and Lebrilla, C.B. Site-Specific Protein Glycosylation Analysis with Glycan Isomer Differentiation. Anal. Bioanal. Chem. 2012, 403(5), 1291–1302.
  • Yoshida, S.; Wei, Z.; Shinmura, Y.; Fukunaga, N. Separation of Lactoferrin-A and -B from Bovine Colostrum. J. Dairy Sci. 2000, 83(10), 2211–2215. DOI: 10.3168/jds.S0022-0302(00)75104-6.
  • Farnaud, S.; Evans, R. W. Lactoferrin—a Multifunctional Protein with Antimicrobial Properties. Mol. Immunol. 2003, 40(7), 395–405. DOI: 10.1016/S0161-5890(03)00152-4.
  • Pan, Y., Rowney, M., Guo, P., Hobman, P. Biological Properties of Lactoferrin: An Overview. Aust. J. Dairy Technol. 2007, 62(1), 31.
  • Permyakov, E. A.; Berliner, L. J. α-Lactalbumin: Structure and Function. FEBS Lett. 2000, 473(3), 269–274. DOI: 10.1016/S0014-5793(00)01546-5.
  • Stanciuc, N.; Rapeanu, G.An Overview of Bovine [Alpha]-Lactalbumin Structure and Functionality. the Annals of the University of Dunarea de Jos of Galati. Fascicle VI. Annals of the University Dunarea de jos of Galati: Fascicle VI. Food Technology. 2010, 34(2), 82.
  • Recio, I.; Moreno, F. J.; López-Fandiño, R. Glycosylated Dairy Components: Their Roles in Nature and Ways to Make Use of Their Biofunctionality in Dairy Products. Dairy-Derived Ingredients. Woodhead Publishing. 2009, 170–211. DOI:10.1533/9781845697198.2.170.
  • Brück, W. M.; Kelleher, S. L.; Gibson, G. R.; Graverholt, G.; Lã¶nnerdal, B. L. The Effects of α-Lactalbumin and Glycomacropeptide on the Association of CaCo-2 Cells by Enteropathogenic Escherichia Coli, Salmonella Typhimurium and Shigella Flexneri. FEMS microbiol. lett. 2006, 259(1), 158–162. DOI: 10.1111/j.1574-6968.2006.00268.x.
  • Lönnerdal, B. Nutritional and Physiologic Significance of Human Milk Proteins. Am. J. Clin. Nutr. 2003, 77(6), 1537S–1543S. DOI: 10.1093/ajcn/77.6.1537S.
  • Chandrika, U. Purification and Partial Characterisation of Glycosylated Bovine Alpha Lactalbumin. Vidyodaya Journal of Science. 2005, 12, 71-76.
  • Wolf, S. M., Ferrari, R. P., Traversa, S., Biemann, K. Determination of the Carbohydrate Composition and the Disulfide Bond Linkages of Bovine Lactoperoxidase by Mass Spectrometry. J. Mass Spectrom. 2000, 35(2), 210–217.
  • Yang, M., Deng, W., Cao, X., Wang, L., Yu, N., Zheng, Y., Yue, X. Quantitative Phosphoproteomics of Milk Fat Globule Membrane in Human Colostrum and Mature Milk: New Insights into Changes in Protein Phosphorylation During Lactation. J. Agric. Food Chem. 2020, 68(15), 4546–4556.
  • Reinhardt, T. A.; Lippolis, J. D. Bovine Milk Fat Globule Membrane Proteome. J. Dairy Res. 2006, 73(4), 406–416. DOI: 10.1017/S0022029906001889.
  • Wilson, N. L., Robinson, L. J., Donnet, A., Bovetto, L., Packer, N. H., Karlsson, N. G. Glycoproteomics of Milk: Differences in Sugar Epitopes on Human and Bovine Milk Fat Globule Membranes. J. Proteome Res. 2008, 7(9), 3687–3696.
  • Cao, X., Kang, S., Yang, M., Li, W., Wu, S., Han, H., Yue, X. Quantitative N-Glycoproteomics of Milk Fat Globule Membrane in Human Colostrum and Mature Milk Reveals Changes in Protein Glycosylation During Lactation. Food & Function. 2018, 9(2), 1163–1172.
  • Cao, X., Zheng, Y., Wu, S., Yang, N., Wu, J., Liu, B., Yue, X. Characterization and Comparison of Milk Fat Globule Membrane N-Glycoproteomes from Human and Bovine Colostrum and Mature Milk. Food & Function. 2019, 10(8), 5046–5058.
  • Yang, M., Cong, M., Peng, X., Wu, J., Wu, R., Liu, B., Yue, X. Quantitative Proteomic Analysis of Milk Fat Globule Membrane (MFGM) Proteins in Human and Bovine Colostrum and Mature Milk Samples Through iTraq Labeling. Food & Function. 2016, 7(5), 2438–2450.
  • Inagaki, M., Takahashi, T., Yabe, T., Nakagomi, T. Production and Functional Properties of Dairy Products Containing Lactophorin and Lactadherin. Food Additives; InTech:Rijeka, Croatia, pp. 49–64. 2012.
  • Firth, M. A.; Shewen, P. E.; Hodgins, D. C. Passive and Active Components of Neonatal Innate Immune Defenses. Anim. Health Res. Rev. 2005, 6(2), 143–158. DOI: 10.1079/AHR2005107.
  • Pallesen, L., Pedersen, L. R. L., Petersen, T. E., Rasmussen, J. T. Characterization of Carbohydrate Structures of Bovine MUC15 and Distribution of the Mucin in Bovine Milk. J. Dairy Sci. 2007, 90(7), 3143–3152.
  • Pallesen, L., Andersen, M. H., Nielsen, R. L., Berglund, L., Petersen, T. E., Rasmussen, L. K., Rasmussen, J. T. Purification of MUC1 from Bovine Milk-Fat Globules and Characterization of a Corresponding Full-Length cDna Clone. J. Dairy Sci. 2001, 84(12), 2591–2598.
  • McGuckin, M. A., Every, A. L., Skene, C. D., Linden, S. K., Chionh, Y. T., Swierczak, A., Sutton, P. Muc1 Mucin Limits Both Helicobacter Pylori Colonization of the Murine Gastric Mucosa and Associated Gastritis. Gastroenterol. 2007, 133(4), 1210–1218.
  • Saeland, E., de Jong, M. A., Nabatov, A. A., Kalay, H., Geijtenbeek, T. B., van Kooyk, Y. MUC1 in Human Milk Blocks Transmission of Human Immunodeficiency Virus from Dendritic Cells to T Cells. Mol. Immunol. 2009, 46(11–12), 2309–2316.
  • Mather, I. H. A Review and Proposed Nomenclature for Major Proteins of the Milk-Fat Globule Membrane. J. Dairy Sci. 2000, 83(2), 203–247. DOI: 10.3168/jds.S0022-0302(00)74870-3.
  • Morrow, A. L., Ruiz-Palacios, G. M., Jiang, X., Newburg, D. S. Human-Milk Glycans That Inhibit Pathogen Binding Protect Breast-Feeding Infants Against Infectious Diarrhea. J. Nutr. 2005, 135(5), 1304–1307.
  • Kunz, C.; Rodriquez-Palmero, M.; Koletzko, B.; Jensen, R. Nutritional and Biochemical Properties of Human Milk, Part I: General Aspects, Proteins, and Carbohydrates. Clinics in Perinatology. Clinics in Perinatology. 1999, 26(2), 307–333. DOI: 10.1016/S0095-5108(18)30055-1.
  • Gopal, P. K.; Gill, H. Oligosaccharides and Glycoconjugates in Bovine Milk and Colostrum. Br. J. Nutr. 2000, 84(S1), 69–74. DOI: 10.1017/S0007114500002270.
  • Sánchez-Juanes, F.; Alonso, J. M.; Zancada, L.; Hueso, P. Glycosphingolipids from Bovine Milk and Milk Fat Globule Membranes: A Comparative Study. Adhesion to Enterotoxigenic Escherichia Coli Strains. Adhesion to Enterotoxigenic Escherichia Coli Strains. 2009, 390(1), 31–40. DOI: 10.1515/BC.2009.003.
  • Karav, S.; Le Parc, A.; Leite Nobrega de Moura Bell, J. M.; Frese, S. A.; Kirmiz, N.; Block, D. E.; Barile, D.; Mills, D. A. Oligosaccharides Released from Milk Glycoproteins are Selective Growth Substrates for Infant-Associated Bifidobacteria. Applied and Environmental Microbiology. Appl. Environ. Microbiol. 2016, 82(12), 3622–3630. DOI: 10.1128/AEM.00547-16.
  • Bunyatratchata, A., Huang, Y. P., Ozturk, G., Cohen, J. L., Bhattacharya, M., MLN de Moura Bell, J., Barile, D. Effects of Industrial Thermal Treatments on the Release of Bovine Colostrum Glycoprotein N-Glycans by Endo-β-N-Acetylglucosaminidase. J. Agric. Food Chem. 2020, 68(51), 15208–15215.
  • Duar, R. M.; Casaburi, G.; Mitchell, R. D.; Scofield, L. N. C.; Ortega Ramirez, C. A.; Barile, D.; Henrick, B. M.; Frese, S. A. Comparative Genome Analysis of Bifidobacterium Longum Subsp. Infantis Strains Reveals Variation in Human Milk Oligosaccharide Utilization Genes Among Commercial Probiotics. Nutrients. 2020, 12(11), 3247. DOI: 10.3390/nu12113247.
  • De Schutter, K.; Van Damme, E. J. Protein-Carbohydrate Interactions as Part of Plant Defense and Animal Immunity. Molecules. 2015, 20(5), 9029–9053. DOI: 10.3390/molecules20059029.
  • Öberg, F.; Sjöhamn, J.; Fischer, G.; Moberg, A.; Pedersen, A.; Neutze, R.; Hedfalk, K. Glycosylation Increases the Thermostability of Human Aquaporin 10 Protein. J. Biol. Chem. 2011, 286(36), 31915–31923. DOI: 10.1074/jbc.M111.242677.
  • Karlsson, K. -A. Pathogen-Host Protein-Carbohydrate Interactions as the Basis of Important Infections. the Molecular Immunology of Complex Carbohydrates—2. 2001, 431–443.
  • Lowe, J. B. Glycan-Dependent Leukocyte Adhesion and Recruitment in Inflammation. Current Opinion in Cell Biology. Curr. Opin. Cell Biol. 2003, 15(5), 531–538. DOI: 10.1016/j.ceb.2003.08.002.
  • de Witte, L.; Nabatov, A.; Pion, M.; Fluitsma, D.; de Jong, M. A. W. P.; de Gruijl, T.; Piguet, V.; van Kooyk, Y.; Geijtenbeek, T. B. H. Langerin is a Natural Barrier to HIV-1 Transmission by Langerhans Cells. Nat. Med. 2007, 13(3), 367–371. DOI: 10.1038/nm1541.
  • Peterson, R.; Cheah, W. Y.; Grinyer, J.; Packer, N. Glycoconjugates in Human Milk: Protecting Infants from Disease. Glycobiology. 2013, 23(12), 1425–1438. DOI: 10.1093/glycob/cwt072.
  • Kvistgaard, A.; Pallesen, L. T.; Arias, C. F.; López, S.; Petersen, T. E.; Heegaard, C. W.; Rasmussen, J. T. Inhibitory Effects of Human and Bovine Milk Constituents on Rotavirus Infections. J. Dairy Sci. 2004, 87(12), 4088–4096. DOI: 10.3168/jds.S0022-0302(04)73551-1.
  • Liu, B.; Yu, Z.; Chen, C.; Kling, D. E.; Newburg, D. S. Human Milk Mucin 1 and Mucin 4 Inhibit Salmonella Enterica Serovar Typhimurium Invasion of Human Intestinal Epithelial Cells in vitro. J. Nutr. 2012, 142(8), 1504–1509. DOI: 10.3945/jn.111.155614.
  • Shi, J.; Peng, Z.; Fu, F.; Xu, S.; Xu, S.; Cong, X.; Yuan, X.; Yu, J.; Wu, J.; Sun, W. Mutant Rep Protein of the Porcine Circovirus Type 2 N-Glycosylation:23–25aa, 256–258aa Mutation Reduced Virus Replication but 286–288aa Mutation Enhanced Virus Replication in PK-15 Cells. Vet. Microbiol. 2015, 177(3–4), 370–372.
  • Darkes, M. J.; Plosker, G. L. Pneumococcal Conjugate Vaccine (Prevnar™ 1; PNCRM7). Pediatric drugs. 2002, 4(9), 609–630. DOI: 10.2165/00128072-200204090-00005.
  • Playford, R. J.; MACDONALD, C. E.; CALNAN, D. P.; FLOYD, D. N.; PODAS, T.; JOHNSON, W.; WICKS, A. C.; BASHIR, O.; MARCHBANK, T. Co-Administration of the Health Food Supplement, Bovine Colostrum, Reduces the Acute Non-Steroidal Anti-Inflammatory Drug-Induced Increase in Intestinal Permeability. Clinical Sci. 2001, 100(6), 627–633. DOI: 10.1042/CS20010015.
  • Khan, Z.; Macdonald, C.; Wicks, A. C.; Holt, M. P.; Floyd, D.; Ghosh, S.; Wright, N. A.; Playford, R. J. Use of the ‘Nutriceutical’, Bovine Colostrum, for the Treatment of Distal Colitis: Results from an Initial Study. Aliment. Pharmacol. Ther. 2002, 16(11), 1917–1922. DOI: 10.1046/j.1365-2036.2002.01354.x.
  • Awan, F.; Dong, Y.; Wang, N.; Liu, J.; Ma, K.; Liu, Y. The Fight for Invincibility: Environmental Stress Response Mechanisms and Aeromonas Hydrophila. Microb. Pathogenesis. 2018, 116, 135–145. DOI: 10.1016/j.micpath.2018.01.023.
  • Kachrimanidou, M.; Malisiovas, N. Clostridium Difficile Infection: A Comprehensive Review. Critical Reviews in Microbiology. Crit. Rev. Microbiol. 2011, 37(3), 178–187. DOI: 10.3109/1040841X.2011.556598.
  • Kramski, M.; Center, R. J.; Wheatley, A. K.; Jacobson, J. C.; Alexander, M. R.; Rawlin, G.; Purcell, D. F. J. Hyperimmune Bovine Colostrum as a Low-Cost, Large-Scale Source of Antibodies with Broad Neutralizing Activity for HIV-1 Envelope with Potential Use in Microbicides. Antimicrob. Agents Chemother. 2012, 56(8), 4310–4319. DOI: 10.1128/AAC.00453-12.
  • Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S. S.; Bhaskara Rao, K. V. Protease Inhibitors from Marine Actinobacteria as a Potential Source for Antimalarial Compound. PLoS One. 2014, 9(3), e90972. DOI: 10.1371/journal.pone.0090972.
  • Pan, Y.; Lee, A.; Wan, J.; Coventry, M. J.; Michalski, W. P.; Shiell, B.; Roginski, H. Antiviral Properties of Milk Proteins and Peptides. Int. Dairy J. 2006, 16(11), 1252–1261. DOI: 10.1016/j.idairyj.2006.06.010.
  • Sarker, S. A.; Casswall, T. H.; Mahalanabis, D.; Alam, N. H.; Albert, M. J.; Brüssow, H.; Fuchs, G. J.; Hammerström, L. Successful Treatment of Rotavirus Diarrhea in Children with Immunoglobulin from Immunized Bovine Colostrum. Pediatr. Infect. Dis. J. 1998, 17(12), 1149–1154. DOI: 10.1097/00006454-199812000-00010.
  • Davidson, G.; Daniels, E.; Nunan, H.; Moore, A. G.; Whyte, P. B. D.; Franklin, K.; Mccloud, P. I.; Moore, D. J.Passive Immunisation of Children with Bovine Colostrum Containing Antibodies to Human RotavirusThe Lancet19893348665709–712Lancet.10.1016/S0140-6736(89)90771-X
  • Tzipori, S.; Roberton, D.; Chapman, C. Remission of Diarrhoea Due to Cryptosporidiosis in an Immunodeficient Child Treated with Hyperimmune Bovine Colostrum. Br. Med. J. (Clin. Res. Ed.). 1986, 293(6557), 1276–1277. DOI: 10.1136/bmj.293.6557.1276.
  • Yamauchi, K.; Tomita, M.; Giehl, T.; Ellison, R. T. Ellison Rr. Antibacterial Activity of Lactoferrin and a Pepsin derived Lactoferrin Peptide Fragment. Infect. Immun. 1993, 61(2), 719–728. DOI: 10.1128/iai.61.2.719-728.1993.
  • Tanaka, T., Xuan, X., Fujisaki, K., Shimazaki, K. I.Expression and Characterization of Bovine Milk Antimicrobial Proteins Lactoperoxidase and Lactoferrin by Vaccinia VirusInsight and Control of Infectious Disease in Global Scenario, In. Roy Priti, Ed.; IntechOpen; 2012, 249-260.
  • Fox, P.; Kelly, A. Indigenous Enzymes in Milk: Overview and Historical Aspects—part 2. Int. Dairy J. 2006, 16(6), 517–532. DOI: 10.1016/j.idairyj.2005.09.017.
  • Arslan, A.; Kaplan, M.; Duman, H.; Bayraktar, A.; Ertürk, M.; Henrick, B. M.; Frese, S. A.; Karav, S. Bovine Colostrum and Its Potential for Human Health and Nutrition. Front. Nutrit. 2021, 8, 350. DOI: 10.3389/fnut.2021.651721.
  • Choi, H. S.; Ko, Y. G.; Lee, J. S.; Kwon, O. Y.; Kim, S. -K.; Cheong, C.; Jang, K. -H.; Kang, S. A. Neuroprotective Effects of Consuming Bovine Colostrum After Focal Brain Ischemia/Reperfusion Injury in Rat Model. Nutr. Res. Pract. 2010, 4(3), 196–202. DOI: 10.4162/nrp.2010.4.3.196.
  • Rathe, M.; Müller, K.; Sangild, P. T.; Husby, S. Clinical Applications of Bovine Colostrum Therapy: A Systematic Review. Nutr. Rev. 2014, 72(4), 237–254. DOI: 10.1111/nure.12089.
  • Rona, Z. P. Determination of Transforming Growth Factor-β2 (TGF-β2) in Bovine Colostrum Samples. J. Immunoassay. 1998, 19(1), 19–23. DOI: 10.1080/01971529808005469.
  • Lane, J. A.; Mariño, K.; Naughton, J.; Kavanaugh, D.; Clyne, M.; Carrington, S. D.; Hickey, R. M. Anti-Infective Bovine Colostrum Oligosaccharides: Campylobacter Jejuni as a Case Study. Int. J. Food Microbiol. 2012, 157(2), 182–188. DOI: 10.1016/j.ijfoodmicro.2012.04.027.
  • Henrick, B. M.; Chew, S.; Casaburi, G.; Brown, H. K.; Frese, S. A.; Zhou, Y.; Underwood, M. A.; Smilowitz, J. T. Colonization by B. Infantis EVC001 Modulates Enteric Inflammation in Exclusively Breastfed Infants. Pediatr. Res. 2019, 86(6), 749–757. DOI: 10.1038/s41390-019-0533-2.
  • Duar, R.; Casaburi, G.; Mitchell, R. D.; Scofield, L. N. C.; Ortega Ramirez, C. A.; Barile, D.; Henrick, B. M.; Frese, S. A. Comparative Genome Analysis of Bifidobacterium Longum Subsp. Infantis Strains Reveals Variation in Human Milk Oligosaccharide Utilization Genes Among Commercial Probiotics. Nutrients. 2020, 12(11), 3247. DOI: 10.3390/nu12113247.
  • Playford, R.; Floyd, D. N.; Macdonald, C. E.; Calnan, D. P.; Adenekan, R. O.; Johnson, W.; Goodlad, R. A.; Marchbank, T.Bovine Colostrum is a Health Food Supplement Which Prevents NSAID Induced Gut DamageGut1999445653–658Gut10.1136/gut.44.5.653
  • Aalto, J. U., Jalkanen, M. T. , Jalonen, H. G., Kanttinen, A. P., Laato, M. K., Pakkanen, R. A. Method for the Improvement of Wound Healing and Compositions Therefore. 1995, WO1995000155 A1.
  • El-Loy, M.M. Colostrum Ingredients, its Nutritional and Health Benefits: An Overview. Clinical Nutrition Open Science. 44, 126-143. DOI: 10.1016/j.nutos.2022.07.001.
  • Jahantigh, M.; Heidari, M. H.; Mashhadi, R.; Mirzaei, R.; Jahantigh, M. Histological Study of the Toxic Effects of Solder Fumes on Spermatogenesis in Rats. Cell j. 2011, 13(1), 5–10.
  • Wong, E. B.; Mallet, J. -F.; Duarte, J.; Matar, C.; Ritz, B. W. Bovine Colostrum Enhances Natural Killer Cell Activity and Immune Response in a Mouse Model of Influenza Infection and Mediates Intestinal Immunity Through Toll-Like Receptors 2 and 4. Nutr. Res. 2014, 34(4), 318–325. DOI: 10.1016/j.nutres.2014.02.007.
  • Uchida, K.; Hiruta, N.; Yamaguchi, H.; Yamashita, K.; Fujimura, K.; Yasui, H. Augmentation of Cellular Immunity and Protection Against Influenza Virus Infection by Bovine Late Colostrum in Mice. Nutrition. 2012, 28(4), 442–446. DOI: 10.1016/j.nut.2011.07.021.
  • Keech, A. Novel Immunologically Active Peptide Fragments of a Proline-Rich Polypeptide Isolated from Colostral Mammalian Fluids for Treatment of Viral and Non-Viral Diseases or Diseased Conditions; Google Patents, 2007. Patent number: US20070212367A1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.