499
Views
1
CrossRef citations to date
0
Altmetric
Review

Dietary Advanced Glycation End Products: An Emerging Concern for Processed Foods

, , , , , , & show all

References

  • Younus, H.; Anwar, S. Prevention of Non-Enzymatic Glycosylation (Glycation): Implication in the Treatment of Diabetic Complication. International Journal of Health Sciences. 2016, 10(2), 261–277. DOI: 10.12816/0048818.
  • Brownlee, M.; Vlassara, H.; Cerami, A. Nonenzymatic Glycosylation and the Pathogenesis of Diabetic Complications. Ann. Internal Med. 1984, 101(4), 527–537. DOI: 10.7326/0003-4819-101-4-527.
  • Zawada, A.; Machowiak, A.; Rychter, A. M.; Ratajczak, A. E.; Szymczak-Tomczak, A.; Dobrowolska, A.; Krela-Kazmierczak, I. Accumulation of Advanced Glycation End-Products in the Body and Dietary Habits. Nutrients. 2022, 14(19), 3982. Review. DOI: 10.3390/nu14193982.
  • Fu, M. X.; Requena, J. R.; Jenkins, A. J.; Lyons, T. J.; Baynes, J. W.; Thorpe, S. R. The Advanced Glycation End Product, N-(Epsilon)(carboxymethyl)lysine, is a Product of Both Lipid Peroxidation and Glycoxidation Reactions. J. Biol. Chem. 1996, 271(17), 9982–9986. DOI:10.1074/jbc.271.17.9982. Article.
  • Henle, T. Dietary Advanced Glycation End Products - a Risk to Human Health? A Call for an Interdisciplinary Debate. Molecular Nutrition & Food Research. 2007, 51(9), 1075–1078. DOI: 10.1002/mnfr.200700067.
  • Chauveau, P.; Lasseur, C.; Azar, R.; Niu, W.; Combe, C.; Aparicio, M. Place des recommandations hygiéno-diététiques dans la prévention de l’accumulation des produits de glycation avancée. Néphrologie & Thérapeutique. 2019, 15(7), 485–490. DOI: 10.1016/j.nephro.2019.05.005.
  • van Dongen, K. C. W.; Kappetein, L.; Estruch, I. M.; Belzer, C.; Beekmann, K.; Rietjens, I. M. C. M. Differences in Kinetics and Dynamics of Endogenous versus Exogenous Advanced Glycation End Products (AGEs) and Their Precursors. Food Chem. Toxicol. 2022, 164. DOI:10.1016/j.fct.2022.112987. Article.
  • Nowotny, K.; Schroeter, D.; Schreiner, M.; Grune, T. Dietary Advanced Glycation End Products and Their Relevance for Human Health. Ageing Res. Rev. 2018, 47, 55–66. Review. DOI: 10.1016/j.arr.2018.06.005.
  • Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G. E.; Vlassara, H. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 2010, 110(6), 911–916. DOI: 10.1016/j.jada.2010.03.018.
  • Peppa, M.; Mavroeidi, I. Experimental Animal Studies Support the Role of Dietary Advanced Glycation End Products in Health and Disease. Nutrients. 2021, 13, 10. DOI: 10.3390/nu13103467.
  • Luevano-Contreras, C.; Chapman-Novakofski, K. Dietary Advanced Glycation End Products and Aging. 2010, 2(12), 1247–1265. DOI: 10.3390/nu2121247.
  • Yamagishi, S. -I. Role of Advanced Glycation End Products (AGEs) and Receptor for AGEs (RAGE) in Vascular Damage in Diabetes. Exp. Gerontology. 2011, 46(4), 217–224. DOI: 10.1016/j.exger.2010.11.007.
  • Sharma, C.; Kaur, A.; Thind, S. S.; Singh, B.; Raina, S. Advanced Glycation End-Products (AGEs): An Emerging Concern for Processed Food Industries. J. Food Sci. Technol. 2015, 52(12), 7561–7576. DOI: 10.1007/s13197-015-1851-y.
  • Wu, R. L.; Jiang, Y.; Qin, R. K.; Shi, H. N.; Jia, C. H.; Rong, J. H.; Liu, R. Study of the Formation of Food Hazard Factors in Fried Fish Nuggets. Food Chem. 2022, 373, 131562. DOI: 10.1016/j.foodchem.2021.131562.
  • Huang, S. H.; Dong, X. L.; Zhang, Y. L.; Chen, Y. R.; Yu, Y. J.; Huang, M.; Zheng, Y. D. Formation of Advanced Glycation End Products in Raw and Subsequently Boiled Broiler Muscle: Biological Variation and Effects of Postmortem Ageing and Storage. Food Sci. Hum. Wellness. 2022, 11(2), 255–262. DOI: 10.1016/j.fshw.2021.11.012.
  • Li, Y.; Wu, Y. R.; Quan, W.; Jia, X. D.; He, Z. Y.; Wang, Z. J.; Adhikari, B.; Chen, J.; Zeng, M. M. Quantitation of Furosine, Furfurals, and Advanced Glycation End Products in Milk Treated with Pasteurization and Sterilization Methods Applicable in China. Food Res. Int. 2021, 140, 110088. DOI: 10.1016/j.foodres.2020.110088.
  • Eggen, M. D.; Glomb, M. A. Analysis of Glyoxal- and Methylglyoxal-Derived Advanced Glycation End Products During Grilling of Porcine Meat. J. Agr. Food. Chem. 2021, 15374–15383. DOI:10.1021/acs.jafc.1c06835.
  • Yu, L. G.; Chai, M.; Zeng, M. M.; He, Z. Y.; Chen, J. Effect of Lipid Oxidation on the Formation of N-Epsilon-Carboxymethyl-Lysine and N-Epsilon-Carboxyethyl-Lysine in Chinese-Style Sausage During Storage. Food Chem. 2018, 269, 466–472. DOI: 10.1016/j.foodchem.2018.07.051.
  • Yu, L. G.; Gao, C.; Zeng, M. M.; He, Z. Y.; Wang, L. X.; Zhang, S.; Chen, J. Effects of Raw Meat and Process Procedure on N-Epsilon-Carboxymethyllysine and N-Epsilon-Carboxyethyl-Lysine Formation in Meat Products. Food Sci. Biotechnol. 2016, 25(4), 1163–1168. DOI: 10.1007/s10068-016-0185-5.
  • Chen, G.; Smith, J. S. Determination of Advanced Glycation End Products in Cooked Meat Products. Food Chem. 2015, 168, 190–195. DOI: 10.1016/j.foodchem.2014.06.081.
  • Hull, G. L. J.; Woodside, J. V.; Ames, J. M.; Cuskelly, G. J. N-Epsilon-(Carboxymethyl)lysine Content of Foods Commonly Consumed in a Western Style Diet. Food Chem. 2012, 131(1), 170–174. DOI: 10.1016/j.foodchem.2011.08.055.
  • Goldberg, T.; Cai, W. J.; Peppa, M.; Dardaine, V.; Baliga, B. S.; Uribarri, J.; Vlassara, H. Advanced Glycoxidation End Products in Commonly Consumed Foods. J. Am. Diet. Assoc. 2004, 104(8), 1287–1291. DOI: 10.1016/j.jada.2004.05.214.
  • Scheijen, J.; Clevers, E.; Engelen, L.; Dagnelie, P. C.; Brouns, F.; Stehouwer, C. D. A.; Schalkwijk, C. G. Analysis of Advanced Glycation Endproducts in Selected Food Items by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry: Presentation of a Dietary AGE Database. Food Chem. 2016, 190, 1145–1150. DOI: 10.1016/j.foodchem.2015.06.049.
  • Xie, Y. J.; van der Fels-Klerx, H. J.; van Leeuwen, S. P. J.; Fogliano, V. Dietary Advanced Glycation End-Products, 2-Monochloropropane-1,3-Diol Esters and 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters in Infant Formulas: Occurrence, Formulation and Processing Effects, Mitigation Strategies. Compr. Rev. Food Sci. Food Saf. 2021, 20(6), 5489–5515. DOI: 10.1111/1541-4337.12842.
  • Aktag, I. G.; Hamzalioglu, A.; Gokmen, V. Lactose Hydrolysis and Protein Fortification Pose an Increased Risk for the Formation of Maillard Reaction Products in UHT Treated Milk Products. J. Food Compost. Anal. 2019, 84. DOI: 10.1016/j.jfca.2019.103308.
  • Wei, Q.; Liu, T.; Sun, D. Advanced Glycation End-Products (AGEs) in Foods and Their Detecting Techniques and Methods: A Review. Trends in Food Science & Technology. 2018, 82, 32–45. DOI: 10.1016/j.tifs.2018.09.020.
  • Oliveira, F. C. D.; Coimbra, J. S. D. R.; Oliveira, E. B. D.; Zuniga, A. D. G.; Rojas, E. E. G. Food Protein-Polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56(7), 1108–1125. DOI: 10.1080/10408398.2012.755669.
  • Brownlee, M. Advanced Protein Glycosylation in Diabetes and Aging. Annu. Rev. Med. 1995, 46(1), 223–234. DOI: 10.1146/annurev.med.46.1.223.
  • Baynes, J. W.; Thorpe, S. R. Role of Oxidative Stress in Diabetic Complications - a New Perspective on an Old Paradigm. Diabetes. 1999, 48(1), 1–9. DOI: 10.2337/diabetes.48.1.1.
  • Martins, S.; Jongen, W. M. F.; van Boekel, M. A Review of Maillard Reaction in Food and Implications to Kinetic Modelling. Trends in Food Science & Technology. 2000, 11(9–10), 364–373. DOI: 10.1016/s0924-2244(01)00022-x.
  • Zeng, M.; Chen, J.; Qin, F.; Wang, Z.; He, Z.; Shi, Z.; Xue, C. Formation of Three Selected AGEs and Their Corresponding Intermediates in Aldose- and Ketose-Lysine Systems. eFood. 2020, 1, 3. DOI: 10.2991/efood.k.200508.001.
  • Goldin, A.; Beckman, J. A.; Schmidt, A. M.; Creager, M. A. Advanced Glycation End Products - Sparking the Development of Diabetic Vascular Injury. Circulation. 2006, 114(6), 597–605. DOI: 10.1161/circulationaha.106.621854.
  • Zhao, D.; Sheng, B. L.; Li, H.; Wu, Y.; Xu, D.; Li, C. B. Glycation from Alpha-Dicarbonyl Compounds Has Different Effects on the Heat-Induced Aggregation of Bovine Serum Albumin and Beta-Casein. Food Chem. 2021, 340. DOI: 10.1016/j.foodchem.2020.128108.
  • Schmidt, A. M.; Yan, S. D.; Wautier, J. L.; Stern, D. Activation of Receptor for Advanced Glycation End Products - a Mechanism for Chronic Vascular Dysfunction in Diabetic Vasculopathy and Atherosclerosis. Circ. Res. 1999, 84(5), 489–497. DOI: 10.1161/01.Res.84.5.489.
  • Poulsen, M. W.; Hedegaard, R. V.; Andersen, J. M.; de Courten, B.; Bugel, S.; Nielsen, J.; Skibsted, L. H.; Dragsted, L. O. Advanced Glycation Endproducts in Food and Their Effects on Health. Food. Chem. Toxicol. 2013, 60, 10–37. DOI: 10.1016/j.fct.2013.06.052.
  • Zhao, X.; Zhang, X. Y.; Ye, B.; Yan, H. X.; Zhao, Y. B.; Liu, L. Effect of Unsaturated Fatty Acids on Glycation Product Formation Pathways (I) the Role of Oleic Acid. Food Res. Int. 2020, 136. DOI: 10.1016/j.foodres.2020.109560.
  • Sergi, D.; Boulestin, H.; Campbell, F. M.; Williams, L. M. The Role of Dietary Advanced Glycation End Products in Metabolic Dysfunction. Molecular Nutrition & Food Research. 2021, 65, 1. DOI: 10.1002/mnfr.201900934.
  • Zhang, Q.; Wang, Y.; Fu, L. Dietary Advanced Glycation End-Products: Perspectives Linking Food Processing with Health Implications. Compr. Rev. Food Sci. Food Saf. 2020, 19(5), 2559–2587. DOI: 10.1111/1541-4337.12593.
  • Li, H.; Wu, C. -J.; Yu, S. -J. Impact of Microwave-Assisted Heating on the pH Value, Color, and Flavor Compounds in Glucose-Ammonium Model System. Food Bioprocess. Technol. 2018, 11(6), 1248–1258. DOI: 10.1007/s11947-018-2093-6.
  • Norwood, E. -A.; Chevallier, M.; Le Floch-Fouere, C.; Schuck, P.; Jeantet, R.; Croguennec, T. Heat-Induced Aggregation Properties of Whey Proteins as Affected by Storage Conditions of Whey Protein Isolate Powders. Food Bioprocess. Technol. 2016, 9(6), 993–1001. DOI: 10.1007/s11947-016-1686-1.
  • Aalaei, K.; Sjoholm, I.; Rayner, M.; Tareke, E. The Impact of Different Drying Techniques and Controlled Storage on the Development of Advanced Glycation End Products in Skim Milk Powders Using Isotope Dilution ESI-LC-MS/MS. Food Bioprocess. Technol. 2017, 10(9), 1704–1714. DOI: 10.1007/s11947-017-1936-x.
  • Zhang, Q.; Huang, Z.; Wang, Y.; Wang, Y.; Fu, L.; Su, L. Chinese Bayberry (Myrica Rubra) Phenolics Mitigated Protein Glycoxidation and Formation of Advanced Glycation End-Products: A Mechanistic Investigation. Food Chem. 2021, 361, 130102. DOI: 10.1016/j.foodchem.2021.130102.
  • Anis, M. A.; Sreerama, Y. N. Inhibition of Protein Glycoxidation and Advanced Glycation End-Product Formation by Barnyard Millet (Echinochloa Frumentacea) Phenolics. Food Chem. 2020, 315, 126265. DOI: 10.1016/j.foodchem.2020.126265.
  • Shi, H.; Qin, R.; Wu, R.; Rong, J.; Jia, C.; Liu, R. Effect of Cryoprotectants on the Formation of Advanced Glycation End Products and Acrylamide in Fried Fish Cakes. Food Biosci. 2021, 44, 101433. DOI: 10.1016/j.fbio.2021.101433.
  • Feng, N.; Shen, Y.; Hu, C.; Tan, J.; Huang, Z.; Wang, C.; Guo, Z.; Wu, Q.; Xiao, J. Inhibition of Advanced Glycation End Products in Yogurt by Lotus Seedpod Oligomeric Procyanidin. Front. Nutrit. 2021, 8. DOI: 10.3389/fnut.2021.781998.
  • Zhang, H.; Troise, A. D.; Zhang, H.; Fogliano, V. Cocoa Melanoidins Reduce the Formation of Dietary Advanced Glycation End-Products in Dairy Mimicking System. Food Chem. 2021, 345, 128827. DOI: 10.1016/j.foodchem.2020.128827.
  • Tominaga, Y.; Sugawa, H.; Hirabayashi, K.; Ikeda, T.; Hoshi, Y.; Nagai, R. Drosera Tokaiensis Extract Containing Multiple Phenolic Compounds Inhibits the Formation of Advanced Glycation End-Products. Arch. Biochem. Biophys. 2020, 693, 108586. DOI: 10.1016/j.abb.2020.108586.
  • Fernandez-Gomez, B.; Nitride, C.; Ullate, M.; Mamone, G.; Ferranti, P.; Del Castillo, M. D. Inhibitors of Advanced Glycation End Products from Coffee Bean Roasting By-Product. Eur. Food Res. Technol. 2018, 244(6), 1101–1110. DOI: 10.1007/s00217-017-3023-y.
  • Lan, M. -Y.; Li, H. -M.; Tao, G.; Lin, J.; Lu, M. -W.; Yan, R. -A.; Huang, J. -Q. Effects of Four Bamboo Derived Flavonoids on Advanced Glycation End Products Formation In Vitro. J. Funct. Foods. 2020, 71, 103976. DOI: 10.1016/j.jff.2020.103976.
  • Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Przygonski, K.; Wojtowicz, E.; Zawirska-Wojtasiak, R. Phenolic Compounds Reduce Formation of N-Epsilon-(Carboxymethyl)lysine and Pyrazines Formed by Maillard Reactions in a Model Bread System. Food Chem. 2017, 231, 175–184. DOI: 10.1016/j.foodchem.2017.03.126.
  • Bhuiyan, M. N. I.; Mitsuhashi, S.; Sigetomi, K.; Ubukata, M. Quercetin Inhibits Advanced Glycation End Product Formation via Chelating Metal Ions, Trapping Methylglyoxal, and Trapping Reactive Oxygen Species. Biosci. Biotechnol. Biochem. 2017, 81(5), 882–890. DOI: 10.1080/09168451.2017.1282805.
  • Sun, X.; Tang, J.; Wang, J.; Rasco, B. A.; Lai, K.; Huang, Y. Formation of Advanced Glycation Endproducts in Ground Beef Under Pasteurisation Conditions. Food Chem. 2015, 172, 802–807. DOI: 10.1016/j.foodchem.2014.09.129.
  • Takeuchi, M.; Takino, J.; Furuno, S.; Shirai, H.; Kawakami, M.; Muramatsu, M.; Kobayashi, Y.; Yamagishi, S. Assessment of the Concentrations of Various Advanced Glycation End-Products in Beverages and Foods That are Commonly Consumed in Japan. PLoS One. 2015, 10, 3. DOI: 10.1371/journal.pone.0118652.
  • Fang, H.; Wang, L.; Zhang, S.; Liu, H.; Li, J.Advanced Glycation End Products(AGEs) Formation in High-Protein Foods Processing Model SystemJ. Chin. Inst. Food Sci. Technol.201414228–34Article
  • Li, L.; Han, L.; Fu, Q.; Li, Y.; Liang, Z.; Su, J.; Li, B. Formation and Inhibition of N-Epsilon-(Carboxymethyl)lysine in Saccharide-Lysine Model Systems During Microwave Heating. Molecules. 2012, 17(11), 12758–12770. DOI:10.3390/molecules171112758. Article.
  • Fu, Q.; Li, L.; Li, B. Formation of N Epsilon-(Carboxymethyl)lysine in Saccharide-Lysine Model Systems by Different Heat Treatments. Int. J. Food Eng. 2012, 8, 3. DOI: 10.1515/1556-3758.2724.
  • Rannou, C.; Laroque, D.; Renault, E.; Prost, C.; Sérot, T. Mitigation Strategies of Acrylamide, Furans, Heterocyclic Amines and Browning During the Maillard Reaction in Foods. Food Res. Int. 2016, 90, 154–176. DOI: 10.1016/j.foodres.2016.10.037.
  • Ramlagan, P.; Rondeau, P.; Planesse, C.; Neergheen-Bhujun, V. S.; Bourdon, E.; Bahorun, T. Comparative Suppressing Effects of Black and Green Teas on the Formation of Advanced Glycation End Products (AGEs) and AGE-Induced Oxidative Stress. Food & Function. 2017, 8(11), 4194–4209. DOI: 10.1039/c7fo01038a.
  • Grzegorczyk-Karolak, I.; Golab, K.; Gburek, J.; Wysokinska, H.; Matkowski, A. Inhibition of Advanced Glycation End-Product Formation and Antioxidant Activity by Extracts and Polyphenols from Scutellaria Alpina L. and S. Altissima L. Molecules. 2016, 21(6), 6. DOI: 10.3390/molecules21060739.
  • Liu, H.; Chen, X.; Zhang, D.; Wang, J.; Wang, S.; Sun, B. Effects of Highland Barley Bran Extract Rich in Phenolic Acids on the Formation of N-Epsilon-Carboxymethyllysine in a Biscuit Model. J. Agr. Food. Chem. 2018, 66(8), 1916–1922. DOI: 10.1021/acs.jafc.7b04957.
  • Przygodzka, M.; Zielinski, H. Evaluation of In Vitro Inhibitory Activity of Rye-Buckwheat Ginger Cakes with Rutin on the Formation of Advanced Glycation End-Products (AGEs). Pol. J. Food Nutr. Sci. 2015, 65(3), 191–198. DOI: 10.1515/pjfns-2015-0038.
  • Li, X.; Zheng, T.; Sang, S.; Lv, L. Quercetin Inhibits Advanced Glycation End Product Formation by Trapping Methylglyoxal and Glyoxal. J. Agr. Food. Chem. 2014, 62(50), 12152–12158. DOI: 10.1021/jf504132x.
  • Zheng, J.; Guo, H.; Ou, J.; Liu, P.; Huang, C.; Wang, M.; Simal-Gandara, J.; Battino, M.; Jafari, S. M.; Zou, L., et al. Benefits, Deleterious Effects and Mitigation of Methylglyoxal in Foods: A Critical Review. Trends in Food Science & Technology. 2021, 107, 201–212. DOI: 10.1016/j.tifs.2020.10.031.
  • Cai, S.; Yi, J.; Ma, Q.; Fu, Y.; Liu, X. Anti-Diabetic Effects of Different Phenolic-Rich Fractions from Rhus Chinensis Mill. Fruits in vitro. eFood. 2021, 2, 1. DOI: 10.2991/efood.k.210222.002.
  • Teegarden, M. D.; Schwartz, S. J.; Cooperstone, J. L. Profiling the Impact of Thermal Processing on Black Raspberry Phytochemicals Using Untargeted Metabolomics. Food Chem. 2019, 274, 782–788. DOI: 10.1016/j.foodchem.2018.09.053.
  • Ou, J.; Wang, M.; Zheng, J.; Ou, S. Positive and Negative Effects of Polyphenol Incorporation in Baked Foods. Food Chem. 2019, 284, 90–99. DOI: 10.1016/j.foodchem.2019.01.096.
  • Delgado-Andrade, C.; Fogliano, V. Dietary advanced glycosylation end-products (dAGEs) and melanoidins formed through the Maillard reaction: Physiological consequences of their intake. In Annual Review of Food Science and Technology, Vol 9; Doyle, M.P. and Klaenhammer, T.R. Eds.; Annual Review of Food Science and Technology: New York, NY, 2018; Vol. 9, pp 271–291.
  • Lotan, R.; Ganmore, I.; Shelly, S.; Zacharia, M.; Uribarri, J.; Beisswenger, P.; Cai, W.; Troen, A. M.; Schnaider Beeri, M. Long Term Dietary Restriction of Advanced Glycation End-Products (AGEs) in Older Adults with Type 2 Diabetes is Feasible and Efficacious-Results from a Pilot RCT. Nutrients. 2020, 12(10), 3143. DOI: 10.3390/nu12103143.
  • Oliveira, J. S.; de Almeida, C.; de Souza, A. M. N.; da Cruz, L. D.; Alfenas, R. C. G. Effect of Dietary Advanced Glycation End-Products Restriction on Type 2 Diabetes Mellitus Control: A Systematic Review. Nutr. Rev. 2022, 80(2), 294–305. DOI: 10.1093/nutrit/nuab020.
  • Luevano-Contreras, C.; Gomez-Ojeda, A.; Habacuc Macias-Cervantes, M.; Eugenia Garay-Sevilla, M. Dietary Advanced Glycation End Products and Cardiometabolic Risk. Current Diabetes Reports. 2017, 17(8), 8. DOI: 10.1007/s11892-017-0891-2.
  • Pertynska-Marczewska, M.; Merhi, Z. Relationship of Advanced Glycation End Products with Cardiovascular Disease in Menopausal Women. Reproductive Sciences. 2015, 22(7), 774–782. DOI: 10.1177/1933719114549845.
  • Vasdev, S.; Gill, V.; Singal, P. Role of Advanced Glycation End Products in Hypertension and Atherosclerosis: Therapeutic Implications. Cell Biochem. Biophys. 2007, 49(1), 48–63. DOI: 10.1007/s12013-007-0039-0.
  • Stirban, A.; Gawlowski, T.; Roden, M. Vascular Effects of Advanced Glycation Endproducts: Clinical Effects and Molecular Mechanisms. Mol. Metab. 2014, 3(2), 94–108. DOI: 10.1016/j.molmet.2013.11.006.
  • Linkens, A. M. A.; Houben, A. J. H. M.; Kroon, A. A.; Schram, M. T.; Berendschot, T. T. J. M.; Webers, C. A. B.; van Greevenbroek, M.; Henry, R. M. A.; de Galan, B.; Stehouwer, C. D. A., et al. Habitual Intake of Dietary Advanced Glycation End Products is Not Associated with Generalized Microvascular Function—the Maastricht Study. Am. J. Clin. Nutr.%J The American Journal of Clinical Nutrition. 2021, 115(2), 444–455. DOI: 10.1093/ajcn/nqab302. acccessed 3/23/2022.
  • Linkens, A. M.; Eussen, S. J.; Houben, A. J.; Kroon, A. A.; Schram, M. T.; Reesink, K. D.; Dagnelie, P. C.; Henry, R. M.; van Greevenbroek, M.; Wesselius, A., et al. Habitual Intake of Dietary Advanced Glycation End Products is Not Associated with Arterial Stiffness of the Aorta and Carotid Artery in Adults: The Maastricht Study. J. Nutr.%J The Journal of Nutrition. 2021, 151(7), 1886–1893. DOI: 10.1093/jn/nxab097. acccessed 3/23/2022.
  • Perrone, L.; Grant, W. B. Observational and Ecological Studies of Dietary Advanced Glycation End Products in National Diets and Alzheimer’s Disease Incidence and Prevalence. Journal of Alzheimers Disease. 2015, 45(3), 965–979. DOI: 10.3233/jad-140720.
  • Lotan, R.; Ganmore, I.; Livny, A.; Itzhaki, N.; Waserman, M.; Shelly, S.; Zacharia, M.; Moshier, E.; Uribarri, J.; Beisswenger, P., et al. Effect of Advanced Glycation End Products on Cognition in Older Adults with Type 2 Diabetes: Results from a Pilot Clinical Trial. Journal of Alzheimers Disease. 2021, 82(4), 1785–1795. DOI: 10.3233/jad-210131.
  • Yin, Q. -Q.; Dong, C. -F.; Dong, S. -Q.; Dong, X. -L.; Hong, Y.; Hou, X. -Y.; Luo, D. -Z.; Pei, J. -J.; Liu, X. -P. AGES Induce Cell Death via Oxidative and Endoplasmic Reticulum Stresses in Both Human SH-SY5Y Neuroblastoma Cells and Rat Cortical Neurons. Cellular and Molecular Neurobiology. 2012, 32(8), 1299–1309. DOI: 10.1007/s10571-012-9856-9.
  • Kouidrat, Y.; Amad, A.; Arai, M.; Miyashita, M.; Lalau, J. -D.; Loas, G.; Itokawa, M. Advanced Glycation End Products and Schizophrenia: A Systematic Review. J. Psychiatr. Res. 2015, 66-67, 112–117. DOI: 10.1016/j.jpsychires.2015.04.023.
  • Delgado-Andrade, C.; Seiquer, I.; Haro, A.; Castellano, R.; Pilar Navarro, M. Development of the Maillard Reaction in Foods Cooked by Different Techniques. Intake of Maillard-Derived Compounds. Food Chem. 2010, 122(1), 145–153. DOI: 10.1016/j.foodchem.2010.02.031.
  • Salahuddin, P.; Rabbani, G.; Khan, R. H. The Role of Advanced Glycation End Products in Various Types of Neurodegenerative Disease: A Therapeutic Approach. Cellular & Molecular Biology Letters. 2014, 19(3), 407–437. DOI: 10.2478/s11658-014-0205-5.
  • Merhi, Z.; Du, X. Q.; Charron, M. J. Perinatal Exposure to High Dietary Advanced Glycation End Products Affects the Reproductive System in Female Offspring in Mice. Molecular Human Reproduction. 2020, 26(8), 615–623. DOI: 10.1093/molehr/gaaa046.
  • Thornton, K.; Merhi, Z.; Jindal, S.; Goldsammler, M.; Charron, M. J.; Buyuk, E. Dietary Advanced Glycation End Products (AGEs) Could Alter Ovarian Function in Mice. Mol. Cell. Endocrinol. 2020, 510, 110826. DOI: 10.1016/j.mce.2020.110826.
  • Kandaraki, E.; Chatzigeorgiou, A.; Piperi, C.; Palioura, E.; Palimeri, S.; Korkolopoulou, P.; Koutsilieris, M.; Papavassiliou, A. G. Reduced Ovarian Glyoxalase-I Activity by Dietary Glycotoxins and Androgen Excess: A Causative Link to Polycystic Ovarian Syndrome. Molecular Medicine. 2012, 18(8), 1183–1189. DOI: 10.2119/molmed.2012.00293.
  • Sharaf, H.; Matou-Nasri, S.; Wang, Q.; Rabhan, Z.; Al-Eidi, H.; Al Abdulrahman, A.; Ahmed, N. Advanced Glycation Endproducts Increase Proliferation, Migration and Invasion of the Breast Cancer Cell Line MDA-MB-231. Biochimica Et Biophysica Acta-Molecular Basis of Disease. 2015, 1852(3), 429–441. DOI: 10.1016/j.bbadis.2014.12.009.
  • Van Heijst, <.N.A.I.<.N.W.J.; Niessen, H. W. M.; Hoekman, K.; Schalkwijk, C. G. Advanced Glycation End Products in Human Cancer Tissues - Detection of N-Epsilon-(Carboxymethyl)lysine and Argpyrimidine. In Maillard Reaction: Chemistry at the Interface of Nutrition, Aging, and DiseaseMaillard Reaction: Chemistry at the Interface of Nutrition, Aging, and Disease; Baynes, J.W., Monnier, V.M., Ames, J.M. and Thorpe, S.R. Eds.; New York Academy of Sciences: Palo Alto, CA, 2005; Vol. 1043, pp 725–733.
  • Peterson, L. L.; Park, S.; Park, Y.; Colditz, G. A.; Anbardar, N.; Turner, D. P. Dietary Advanced Glycation End Products and the Risk of Postmenopausal Breast Cancer in the National Institutes of Health-AARP Diet and Health Study. Cancer. 2020, 126(11), 2648–2657. DOI: 10.1002/cncr.32798.
  • Jiao, L.; Stolzenberg-Solomon, R.; Zimmerman, T. P.; Duan, Z. G.; Chen, L.; Kahle, L.; Risch, A.; Subar, A. F.; Cross, A. J.; Hollenbeck, A., et al. Dietary Consumption of Advanced Glycation End Products and Pancreatic Cancer in the Prospective NIH-AARP Diet and Health Study. Am. J. Clin. Nutr. 2015, 101(1), 126–134. DOI: 10.3945/ajcn.114.098061.
  • Aglago, E. K.; Mayen, A. L.; Knaze, V.; Freisling, H.; Fedirko, V.; Hughes, D. J.; Jiao, L.; Eriksen, A. K.; Tjonneland, A.; Boutron-Ruault, M. C., et al. Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients. 2021, 13, 9. DOI: 10.3390/nu13093132.
  • Mao, Z. L.; Aglago, E. K.; Zhao, Z. W.; Schalkwijk, C.; Jiao, L.; Freisling, H.; Weiderpass, E.; Hughes, D. J.; Eriksen, A. K.; Tjonneland, A., et al. Dietary Intake of Advanced Glycation End Products (AGEs) and Mortality Among Individuals with Colorectal Cancer. Nutrients. 2021, 13, 12. DOI: 10.3390/nu13124435.
  • Yang, S.; Wang, G.; Ma, Z. F.; Qin, L. Q.; Zhai, Y. J.; Yu, Z. L.; Xue, M.; Zhang, Y. H.; Wan, Z. Dietary Advanced Glycation End Products-Induced Cognitive Impairment in Aged ICR Mice: Protective Role of Quercetin. Molecular Nutrition & Food Research. 2020, 64(3), e1901019. DOI:10.1002/mnfr.201901019. From NLM.
  • Alam, M. M.; Ahmad, I.; Naseem, I. Inhibitory Effect of Quercetin in the Formation of Advance Glycation End Products of Human Serum Albumin: An in vitro and Molecular Interaction Study. Int. J. Biol. Macromol. 2015, 79, 336–343. From NLM. DOI: 10.1016/j.ijbiomac.2015.05.004.
  • Hashemzaei, M.; Tabrizian, K.; Alizadeh, Z.; Pasandideh, S.; Rezaee, R.; Mamoulakis, C.; Tsatsakis, A.; Skaperda, Z.; Kouretas, D.; Shahraki, J. Resveratrol, Curcumin and Gallic Acid Attenuate Glyoxal-Induced Damage to Rat Renal Cells. Toxicology Reports. 2020, 7, 1571–1577. From NLM DOI: 10.1016/j.toxrep.2020.11.008.
  • Ahmed, O. A. A.; El-Bassossy, H. M.; Azhar, A. S.; Tarkhan, M. M.; El-Mas, M. M. Interference with AGEs Formation and AGEs-Induced Vascular Injury Mediates Curcumin Vascular Protection in Metabolic Syndrome. Sci. Rep. 2020, 10(1), 315. DOI:10.1038/s41598-019-57268-z. From NLM.
  • Justino, A. B.; Franco, R. R.; Silva, H. C. G.; Saraiva, A. L.; Sousa, R. M. F.; Espindola, F. S. B Procyanidins of Annona Crassiflora Fruit Peel Inhibited Glycation, Lipid Peroxidation and Protein-Bound Carbonyls, with Protective Effects on Glycated Catalase. Sci. Rep. 2019, 9(1), 19183. DOI:10.1038/s41598-019-55779-3. From NLM.
  • Seo, K.; Seo, S.; Han, J. Y.; Ki, S. H.; Shin, S. M. Resveratrol Attenuates Methylglyoxal-Induced Mitochondrial Dysfunction and Apoptosis by Sestrin2 Induction. Toxicol. Appl. Pharmacol. 2014, 280(2), 314–322. DOI:10.1016/j.taap.2014.08.011. From NLM.
  • Yılmaz, Z.; Kalaz, E. B.; Aydın, A. F.; Olgaç, V.; Doğru-Abbasoğlu, S.; Uysal, M.; Koçak-Toker, N. The Effect of Resveratrol on Glycation and Oxidation Products in Plasma and Liver of Chronic Methylglyoxal-Treated Rats. Pharmacol. Rep. 2018, 70(3), 584–590. DOI:10.1016/j.pharep.2017.12.005. From NLM.
  • Minakawa, M.; Kawano, A.; Miura, Y.; Yagasaki, K. Hypoglycemic Effect of Resveratrol in Type 2 Diabetic Model Db/Db Mice and Its Actions in Cultured L6 Myotubes and RIN-5F Pancreatic β-Cells. J. Clin. Biochem. Nutr. 2011, 48(3), 237–244. DOI:10.3164/jcbn.10-119. From NLM.
  • Lee, B. H.; Lee, C. C.; Cheng, Y. H.; Chang, W. C.; Hsu, W. H.; Wu, S. C. Graptopetalum Paraguayense and Resveratrol Ameliorates Carboxymethyllysine (CML)-Induced Pancreas Dysfunction and Hyperglycemia. Food. Chem. Toxicol. 2013, 62, 492–498. From NLM. DOI: 10.1016/j.fct.2013.09.005.
  • Sompong, W.; Cheng, H.; Adisakwattana, S. Ferulic Acid Prevents Methylglyoxal-Induced Protein Glycation, DNA Damage, and Apoptosis in Pancreatic β-Cells. J. Physiol. Biochem. 2017, 73(1), 121–131. From NLM. DOI: 10.1007/s13105-016-0531-3.
  • El-Bassossy, H.; Badawy, D.; Neamatallah, T.; Fahmy, A. Ferulic Acid, a Natural Polyphenol, Alleviates Insulin Resistance and Hypertension in Fructose Fed Rats: Effect on Endothelial-Dependent Relaxation. Chem. Biol. Interact. 2016, 254, 191–197. From NLM. DOI: 10.1016/j.cbi.2016.06.013.
  • Miroliaei, M.; Aminjafari, A.; Ślusarczyk, S.; Nawrot-Hadzik, I.; Rahimmalek, M.; Matkowski, A. Inhibition of Glycation-Induced Cytotoxicity, Protein Glycation, and Activity of Proteolytic Enzymes by Extract from Perovskia Atriplicifolia Roots. Pharmacogn. Mag. 2017, 13(Suppl 3), S676–683. DOI:10.4103/pm.pm_559_16. From NLM.
  • Huang, S. M.; Hsu, C. L.; Chuang, H. C.; Shih, P. H.; Wu, C. H.; Yen, G. C. Inhibitory Effect of Vanillic Acid on Methylglyoxal-Mediated Glycation in Apoptotic Neuro-2A Cells. Neurotoxicology. 2008, 29(6), 1016–1022. DOI:10.1016/j.neuro.2008.07.002. From NLM.
  • Ávila, F.; Theoduloz, C.; López-Alarcón, C.; Dorta, E.; Schmeda-Hirschmann, G. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries Against Free Radical-Induced Damage on AGS Cells. Oxid. Med. Cell. Long. 2017, 2017, 9808520. From NLM. DOI: 10.1155/2017/9808520.
  • Zhang, X.; Hu, S.; Chen, F.; Wang, M. Treatment of Proteins with Dietary Polyphenols Lowers the Formation of AGEs and AGE-Induced Toxicity. Food Funct. 2014, 5(10), 2656–2661. DOI:10.1039/c4fo00244j. From NLM.
  • Preetha Rani, M. R.; Anupama, N.; Sreelekshmi, M.; Raghu, K. G. Chlorogenic Acid Attenuates Glucotoxicity in H9c2 Cells via Inhibition of Glycation and PKC α Upregulation and Safeguarding Innate Antioxidant Status. Biomed. Pharmacother. 2018, 100, 467–477. From NLM. DOI: 10.1016/j.biopha.2018.02.027.
  • Wang, Y. H.; Yu, H. T.; Pu, X. P.; Du, G. H. Myricitrin Alleviates Methylglyoxal-Induced Mitochondrial Dysfunction and AGEs/RAGE/NF-Κb Pathway Activation in SH-SY5Y Cells. J. Mol. Neurosci. 2014, 53(4), 562–570. DOI:10.1007/s12031-013-0222-2. From NLM.
  • Liu, Q.; Qiao, A. M.; Yi, L. T.; Liu, Z. L.; Sheng, S. M. Protection of Kinsenoside Against AGEs-Induced Endothelial Dysfunction in Human Umbilical Vein Endothelial Cells. Life. sci. 2016, 162, 102–107. From NLM. DOI: 10.1016/j.lfs.2016.08.022.
  • Chu, J. M.; Lee, D. K.; Wong, D. P.; Wong, R. N.; Yung, K. K.; Cheng, C. H.; Yue, K. K. Ginsenosides Attenuate Methylglyoxal-Induced Impairment of Insulin Signaling and Subsequent Apoptosis in Primary Astrocytes. Neuropharmacology 2014, 85, 215–223. From NLM. DOI: 10.1016/j.neuropharm.2014.05.029.
  • Koike, S.; Kayama, T.; Yamamoto, S.; Komine, D.; Tanaka, R.; Nishimoto, S.; Suzuki, T.; Kishida, A.; Ogasawara, Y. Polysulfides Protect SH-SY5Y Cells from Methylglyoxal-Induced Toxicity by Suppressing Protein Carbonylation: A Possible Physiological Scavenger for Carbonyl Stress in the Brain. Neurotoxicology. 2016, 55, 13–19. From NLM DOI: 10.1016/j.neuro.2016.05.003.
  • Sun, C.; Zhao, C.; Guven, E. C.; Paoli, P.; Simal-Gandara, J.; Ramkumar, K. M.; Wang, S.; Buleu, F.; Pah, A.; Turi, V., et al. Dietary Polyphenols as Antidiabetic Agents: Advances and Opportunities. Food Front. 2020, 1(1), 18–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.