2,614
Views
1
CrossRef citations to date
0
Altmetric
Review

The Role of Probiotics in Dairy Foods and Strategies to Evaluate Their Functional Modifications

, , , & ORCID Icon

References

  • Sánchez, B.; De Los Reyes-Gavilán, C. G.; Margolles, A.; Gueimonde, M. Probiotic Fermented Milks: Present and Future. Int. J. Dairy Technol. 2009, 62(4), 472–483. DOI: 10.1111/j.1471-0307.2009.00528.x.
  • Heller, K. J. Probiotic Bacteria in Fermented Foods: Product Characteristics and Starter Organisms. Am. J. Clin. Nutr. 2001, 73(2), 374–379. DOI: 10.1093/ajcn/73.2.374s.
  • Ranadheera, R. D. C. S.; Baines, S. K.; Adams, M. C. Importance of Food in Probiotic Efficacy. Food Res. Int. 2010, 43(1), 1–7. DOI: 10.1016/j.foodres.2009.09.009.
  • Sanders, M. E. Considerations for Use of Probiotic Bacteria to Modulate Human Health. J. Nutr. 2000, 130(2), 384–390. DOI: 10.1093/jn/130.2.384S.
  • Oelschlaeger, T. A. Mechanisms of Probiotic Actions – a Review. International J. of Medical Microbiology. 2010, 300(1), 57–62. DOI: 10.1016/j.ijmm.2009.08.005.
  • Mokoena, M. P. Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications Against Uropathogens: A Mini-Review. Molecules. 2017, 22(8), 1255. DOI: 10.3390/molecules22081255.
  • Wieringa, F. T.; Dijkhuizen, M. A.; Berger, J. Micronutrient Deficiencies and Their Public Health Implications for South-East Asia. Current Opinion in Clin. Nutrition & Metabolic Care. 2019, 22(6), 479–482. DOI: 10.1097/mco.0000000000000603.
  • Gorji, A.; Khaleghi Ghadiri, M. Potential Roles of Micronutrient Deficiency and Immune System Dysfunction in the Coronavirus Disease 2019 (COVID-19) Pandemic. Nutrition. 2021, 82, 111047. DOI: 10.1016/j.nut.2020.111047.
  • Mahima; Verma, A. K.; Kumar, A.; Rahal, A.; Kumar, V.; Roy, D. Inorganic versus Organic Selenium Supplementation: A Review. Pak. J. Biological Sci. 2012, 15, 418–425. DOI: 10.3923/pjbs.2012.418.425.
  • Vahčić, N.; Hruškar, M.; Marković, K.; Banović, M.; Barić, I. C. Essential Minerals in Milk and Their Daily Intake Through Milk Consumption. Mljekarstvo. 2010, 60, 77–85.
  • Gupta, U. C.; Gupta, S. C. Sources and Deficiency Diseases of Mineral Nutrients in Human Health and Nutrition: A Review. Pedosphere. 2014, 24(1), 13–38. DOI: 10.1016/s1002-0160(13)60077-6.
  • Haug, A.; Graham, R. D.; Christophersen, O. A.; Lyons, G. H. How to Use the World’s Scarce Selenium Resources Efficiently to Increase the Selenium Concentration in Food. Microbial Ecology in Health. and Disease. 2009, 19(4), 209–228. DOI: 10.1080/08910600701698986.
  • Yang, J.; Wang, J.; Yang, K.; Liu, M.; Qi, Y.; Zhang, T.; Fan, M.; Wei, X. Antibacterial Activity of Selenium-Enriched Lactic Acid Bacteria Against Common Food-Borne Pathogens in vitro. J. Dairy Sci. 2018, 101(3), 1930–1942. DOI: 10.3168/jds.2017-13430.
  • Prasad, A. S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease. Adv. Nutr. 2013, 4(2), 176–190. DOI: 10.3945/an.112.003210.
  • Al Alawi, A. M.; Majoni, S. W.; Falhammar, H. Magnesium and Human Health: Perspectives and Research Directions. Int. J. Endocrinol. 2018, 2018, 1–17. DOI: 10.1155/2018/9041694.
  • Alleyne, M.; Horne, M. K.; Miller, J. L. Individualized Treatment for Iron-Deficiency Anemia in Adults. Am. j. med. 2008, 121(11), 943–948. DOI: 10.1016/j.amjmed.2008.07.012.
  • Paganini, D.; Zimmermann, M. B. The Effects of Iron Fortification and Supplementation on the Gut Microbiome and Diarrhea in Infants and Children: A Review. Am. J. Clin. Nutr. 2017, 106(Supplement 6), 1688S–1693S. DOI: 10.3945/ajcn.117.156067.
  • Campbell, J. D. Lifestyle, Minerals and Health. Med. Hypotheses. 2001, 57(5), 521–531. DOI: 10.1054/mehy.2001.1351.
  • Pacheco Da Silva, F. F.; Biscola, V.; LeBlanc, J. G.; Gombossy de Melo Franco, B. D. Effect of Indigenous Lactic Acid Bacteria Isolated from Goat Milk and Cheeses on Folate and Riboflavin Content of Fermented Goat Milk. LWT - Food Sci. Technol. 2016, 71, 155–161. DOI: 10.1016/j.lwt.2016.03.033.
  • Granato, D.; Branco, G. F.; Cruz, A. G.; Faria, J. D. A. F.; Shah, N. P. Probiotic Dairy Products as Functional Foods. Compr. Rev. Food Sci. Food Saf. 2010, 9, 455–470. DOI: 10.1111/j.1541-4337.2010.00120.x.
  • Busto, M. E. D. C.; Oster, C.; Cuello-Nuñez, S.; Deitrich, C. L.; Raab, A.; Konopka, A.; Lehmann, W. D.; Goenaga-Infante, H.; Fisicaro, P. Accurate Quantification of Selenoproteins in Human Plasma/Serum by Isotope Dilution ICP-MS: Focus on Selenoprotein P. J. Anal. At. Spectrom. 2016, 31(9), 1904–1912. DOI: 10.1039/c6ja00122j.
  • Lu, J.; Holmgren, A. Selenoproteins. J. Biol. Chem. 2009, 284(2), 723–727. DOI: 10.1074/jbc.R800045200.
  • Martínez, F. G.; Cuencas Barrientos, M. E.; Mozzi, F.; Pescuma, M. Survival of Selenium-Enriched Lactic Acid Bacteria in a Fermented Drink Under Storage and Simulated Gastro-Intestinal Digestion. Food Res. Int. 2019, 123, 115–124. DOI: 10.1016/j.foodres.2019.04.057.
  • Palomo, M.; Gutiérrez, A. M.; Pérez-Conde, M. C.; Cámara, C.; Madrid, Y. Se Metallomics During Lactic Fermentation of Se-Enriched Yogurt. Food Chem. 2014, 164, 371–379. DOI: 10.1016/j.foodchem.2014.05.007.
  • Axley, M. J.; Stadtman, T. C. Selenium Metabolism and Selenium-Dependent Enzymes in Microorganisms. Annu. Rev. Nutr. 1989, 9(1), 127–137. DOI: 10.1146/annurev.nu.09.070189.001015.
  • Mrvčić, J.; Stanzer, D.; Šolić, E.; Stehlik-Tomas, V. Interaction of Lactic Acid Bacteria with Metal Ions: Opportunities for Improving Food Safety and Quality. World J. Microbiol. Biotechnol. 2012, 28(9), 2771–2782. DOI: 10.1007/s11274-012-1094-2.
  • Metanis, N.; Hilvert, D. Natural and synthetic selenoproteins. Curr. Opin. Chem. Biol. 2014,22,27-34. DOI: 10.1016/j.cbpa.2014.09.010.
  • Pescuma, M.; Gomez-Gomez, B.; Perez-Corona, T.; Font, G.; Madrid, Y.; Mozzi, F. Food Prospects of Selenium Enriched-Lactobacillus Acidophilus CRL 636 and Lactobacillus Reuteri CRL 1101. J. Funct. Foods. 2017, 35, 466–473. DOI: 10.1016/j.jff.2017.06.009.
  • Palomo-Siguero, M.; Madrid, Y. Exploring the Behavior and Metabolic Transformations of SeNps in Exposed Lactic Acid Bacteria. Effect of Nanoparticles Coating Agent. Int. J. Mol. Sci. 2017, 18(8), 1712. DOI: 10.3390/ijms18081712.
  • Alzate, A.; Cañas, B.; Pérez-Munguía, S.; Hernández-Mendoza, H.; Pérez-Conde, C.; Gutiérrez, A. M.; Cámara, C. Evaluation of the Inorganic Selenium Biotransformation in Selenium-Enriched Yogurt by HPLC-ICP-MS. J. Agric. Food Chem. 2007, 55(24), 9776–9783. DOI: 10.1021/jf071596d.
  • Deng, Y.; Man, C.; Fan, Y.; Wang, Z.; Li, L.; Ren, H.; Cheng, W.; Jiang, Y. Preparation of Elemental Selenium-Enriched Fermented Milk by Newly Isolated Lactobacillus Brevis from Kefir Grains. Int. Dairy J. 2015, 44, 31–36. DOI: 10.1016/j.idairyj.2014.12.008.
  • Krausova, G.; Kana, A.; Hyrslova, I.; Mrvikova, I.; Kavkova, M. Development of Selenized Lactic Acid Bacteria and Their Selenium Bioaccummulation Capacity. Fermentation. 2020, 6(3), 91. DOI: 10.3390/fermentation6030091.
  • Eszenyi, P.; Sztrik, A.; Babka, B.; Prokisch, J.; Elemental, N.S. Selenium Production by Probiotic Lactic Acid Bacteria. Int. J. Biosci. Biochem. Bioinforma. 2011, 2011, 148–152. 100-500 nm DOI: 10.7763/ijbbb.2011.V1.27.
  • Shakibaie, M.; Mohammadi-Khorsand, T.; Adeli-Sardou, M.; Jafari, M.; Amirpour-Rostami, S.; Ameri, A.; Forootanfar, H. Probiotic and Antioxidant Properties of Selenium-Enriched Lactobacillus Brevis L. Se Isolated from an Iranian Traditional Dairy Product. J. Trace Elem. Med. Biol. 2017, 40, 1–9. DOI: 10.1016/j.jtemb.2016.11.013.
  • Yang, J.; Li, Y.; Zhang, L.; Fan, M.; Wei, X. Response Surface Design for Accumulation of Selenium by Different Lactic Acid Bacteria. 3 Biotech. 2017, 7(1). DOI: 10.1007/s13205-017-0709-6.
  • Kousha, M.; Yeganeh, S.; Keramat Amirkolaie, A. Effect of Sodium Selenite on the Bacteria Growth, Selenium Accumulation, and Selenium Biotransformation in Pediococcus Acidilactici. Food Sci. Biotechnol. 2017, 26(4), 1013–1018. DOI: 10.1007/s10068-017-0142-y.
  • Pieniz, S.; Andreazza, R.; Mann, M. B.; Camargo, F.; Brandelli, A. Bioaccumulation and Distribution of Selenium in Enterococcus Durans. J. Trace Elem. Med. Biol. 2017, 40, 37–45. DOI: 10.1016/j.jtemb.2016.12.003.
  • Xu, Y.; Wu, S.; He, J.; He, C.; Wang, P.; Zeng, Q.; Yang, F. Salt-Induced Osmotic Stress Stimulates Selenium Biotransformation in Lactobacillus Rhamnosus ATCC 53103. LWT. 2020, 131, 109763. DOI: 10.1016/j.lwt.2020.109763.
  • Chen, Y.; Li, Q.; Xia, C.; Yang, F.; Xu, N.; Wu, Q.; Hu, Y.; Xia, L.; Wang, C.; Zhou, M. Effect of Selenium Supplements on the Antioxidant Activity and Nitrite Degradation of Lactic Acid Bacteria. World J. Microbiol. Biotechnol. 2019, 35(4). DOI: 10.1007/s11274-019-2609-x.
  • Martínez, F. G.; Moreno-Martin, G.; Pescuma, M.; Madrid-Albarrán, Y.; Mozzi, F. Biotransformation of Selenium by Lactic Acid Bacteria: Formation of Seleno-Nanoparticles and Seleno-Amino Acids. Front. Bioeng. Biotechnol. 2020, 8. DOI: 10.3389/fbioe.2020.00506.
  • Morales Estrada, A.; González Olivares, L. G.; Contreras López, E.; Rodríguez Serrano, G. SelA and SelD Genes Involved in Selenium Absorption Metabolism in Lactic Acid Bacteria Isolated from Mexican Cheeses. Int. Dairy J. 2020, 103, 104629. DOI: 10.1016/j.idairyj.2019.104629.
  • Pusztahelyi, T.; Kovács, S.; Pócsi, I.; Prokisch, J. Selenite-Stress Selected Mutant Strains of Probiotic Bacteria for Se Source Production. J. Trace Elem. Med. Biol. 2015, 30, 96–101. DOI: 10.1016/j.jtemb.2014.11.003.
  • Kozłowicz, K.; Góral, M.; Góral, D.; Pankiewicz, U.; Bronowicka-Mielniczuk, U. Effect of Ice Cream Storage on the Physicochemical Properties and Survival of Probiotic Bacteria Supplemented with Zinc Ions. LWT. 2019, 116, 108562. DOI: 10.1016/j.lwt.2019.108562.
  • Pankiewicz, U.; Góral, M.; Kozłowicz, K.; Góral, D. Novel Method of Zinc Ions Supplementing with Fermented and Unfermented Ice Cream with Using PEF. Inter. J. of Food Science & Tech. 2019, 54(6), 2035–2044. DOI: 10.1111/ijfs.14103.
  • Han, X.; Liu, F.; Zhang, Q.; Mao, B.; Tang, X.; Huang, J.; Guo, R.; Zhao, J.; Zhang, H.; Cui, S., et al. Effects of Zn-Enriched Bifidobacterium Longum on the Growth and Reproduction of Rats. Nutrients. 2022, 14(4), 783.
  • Leonardi, A.; Zanoni, S.; De Lucia, M.; Amaretti, A.; Raimondi, S.; Rossi, M. Zinc Uptake by Lactic Acid Bacteria. ISRN Biotechnology. 2013, 2013, 1–5. DOI: 10.5402/2013/312917.
  • Góral, M.; Kozłowicz, K.; Pankiewicz, U.; Góral, D. Magnesium Enriched Lactic Acid Bacteria as a Carrier for Probiotic Ice Cream Production. Food Chem. 2018, 239, 1151–1159. DOI: 10.1016/j.foodchem.2017.07.053.
  • Znamirowska, A.; Szajnar, K.; Pawlos, M. Organic Magnesium Salts Fortification in Fermented Goat’s Milk. Int. J. Food Prop. 2019, 22(1), 1615–1625. DOI: 10.1080/10942912.2019.1666871.
  • Bernat, N.; Cháfer, M.; Chiralt, A.; Laparra, J. M.; González-Martínez, C. Almond Milk Fermented with Different Potentially Probiotic Bacteria Improves Iron Uptake by Intestinal Epithelial (Caco-2) Cells. Int. J. Food Stud. 2015, 4, 49–60. DOI: 10.7455/ijfs/4.1.2015.a4.
  • Ghaedi, M.; Ahmadi, F.; Soylak, M. Simultaneous Preconcentration of Copper, Nickel, Cobalt and Lead Ions Prior to Their Flame Atomic Absorption Spectrometric Determination. Annali di Chimica. 2007, 97(5–6), 277–285. DOI: 10.1002/adic.200790027.
  • Morotomi-Yano, K.; Akiyama, H.; Yano, K. -I. Different Involvement of Extracellular Calcium in Two Modes of Cell Death Induced by Nanosecond Pulsed Electric Fields. Arch. Biochem. Biophys. 2014, 555-556, 47–54. DOI: 10.1016/j.abb.2014.05.020.
  • Cruz, A. G.; Antunes, A. E. C.; Sousa, A. L. O. P.; Faria, J. A. F.; Saad, S. M. I. Ice-Cream as a Probiotic Food Carrier. Food Res. Int. 2009, 42(9), 1233–1239. DOI: 10.1016/j.foodres.2009.03.020.
  • Thakur, K.; Tomar, S. K.; De, S. Lactic Acid Bacteria as a Cell Factory for Riboflavin Production. Microb. Biotechnol. 2015, 9(4), 441–451. DOI: 10.1111/1751-7915.12335.
  • Perkins, J. B.; Sloma, A.; Hermann, T.; Theriault, K.; Zachgo, E.; Erdenberger, T.; Hannett, N.; Chatterjee, N. P.; Ii, W, V.; Jr, G. A. R.; et al. Genetic Engineering of Bacillus Subtilis for the Commercial Production of Riboflavin. J. of Industrial Microbiology and Biotechnology. 1999, 22(1), 8–18.
  • Rossi, M.; Amaretti, A.; Raimondi, S. Folate Production by Probiotic Bacteria. Nutrients. 2011, 3(1), 118–134. DOI: 10.3390/nu3010118.
  • Juarez Del Valle, M.; Laiño, J. E.; Savoy de Giori, G.; LeBlanc, J. G. Riboflavin Producing Lactic Acid Bacteria as a Biotechnological Strategy to Obtain Bio-Enriched Soymilk. Food Res. Int. 2014, 62, 1015–1019. DOI: 10.1016/j.foodres.2014.05.029.
  • Jayashree, S.; Jayaraman, K.; Kalaichelvan, G. Isolation, Screening and Characterization of Riboflavin Producing Lactic Acid Bacteria from Katpadi, Vellore District. Recent Research in Science and Tech. 2010, 2, 83–88.
  • Laiño, J. E.; LeBlanc, J. G.; Savoy de Giori, G. Production of Natural Folates by Lactic Acid Bacteria Starter Cultures Isolated from Artisanal Argentinean Yogurts. Can. J. Microbiol. 2012, 58(5), 581–588. DOI: 10.1139/w2012-026.
  • Gangadharan, D.; Sivaramakrishnan, S.; Pandey, A.; Madhavan Nampoothiri, K. Folate-Producing Lactic Acid Bacteria from Cow’s Milk with Probiotic Characteristics. Int. J. Dairy Technol. 2010, 63(3), 339–348. DOI: 10.1111/j.1471-0307.2010.00590.x.
  • Madhu, A. N.; Giribhattanavar, P.; Narayan, M. S.; Prapulla, S. G. Probiotic Lactic Acid Bacterium from Kanjika as a Potential Source of Vitamin B12: Evidence from LC-MS, Immunological and Microbiological Techniques. Biotechnol. Lett. 2009, 32(4), 503–506. DOI: 10.1007/s10529-009-0176-1.
  • Gu, Q.; Zhang, C.; Song, D.; Li, P.; Zhu, X. Enhancing Vitamin B12 Content in Soy-Yogurt by Lactobacillus Reuteri. Int. J. Food Microbiol. 2015, 206, 56–59. DOI: 10.1016/j.ijfoodmicro.2015.04.033.
  • Li, P.; Gu, Q.; Yang, L.; Yu, Y.; Wang, Y. Characterization of Extracellular Vitamin B12 Producing Lactobacillus Plantarum Strains and Assessment of the Probiotic Potentials. Food Chem. 2017, 234, 494–501. DOI: 10.1016/j.foodchem.2017.05.037.
  • Li, P.; Gu, Q.; Wang, Y.; Yu, Y.; Yang, L.; Chen, J. V. Novel Vitamin B12-Producing Enterococcus Spp. and Preliminary In Vitro Evaluation of Probiotic Potentials. Appl. Microbiol. Biotechnol. 2017, 101(15), 6155–6164. DOI: 10.1007/s00253-017-8373-7.
  • Teran, M. D. M.; de Moreno de LeBlanc, A.; Savoy de Giori, G.; LeBlanc, J. G. Thiamine-Producing Lactic Acid Bacteria and Their Potential Use in the Prevention of Neurodegenerative Diseases. Appl. Microbiol. Biotechnol. 2021, 105(5), 2097–2107. DOI: 10.1007/s00253-021-11148-7.
  • Albano, C.; Silvetti, T.; Brasca, M. Screening of Lactic Acid Bacteria Producing Folate and Their Potential Use as Adjunct Cultures for Cheese Bio-Enrichment. FEMS Microbiol. Lett. 2020, 367(9). DOI: 10.1093/femsle/fnaa059.
  • Gobbetti, M.; Ferranti, P.; Smacchi, E.; Goffredi, F.; Addeo, F. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus Delbrueckii Subsp. Bulgaricus SS1 and Lactococcus Lactis Subsp. Cremoris FT4. Appl. Environ. Microbiol. 2000, 66(9), 3898–3904. DOI: 10.1128/aem.66.9.3898-3904.2000.
  • Minervini, F.; Algaron, F.; Rizzello, C. G.; Fox, P. F.; Monnet, V.; Gobbetti, M. Angiotensin I-Converting-Enzyme-Inhibitory and Antibacterial Peptides from Lactobacillus Helveticus PR4 Proteinase-Hydrolyzed Caseins of Milk from Six Species. Appl. Environ. Microbiol. 2003, 69(9), 5297–5305. DOI: 10.1128/aem.69.9.5297-5305.2003.
  • Elkhtab, E.; El-Alfy, M.; Shenana, M.; Mohamed, A.; Yousef, A. E. New Potentially Antihypertensive Peptides Liberated in Milk During Fermentation with Selected Lactic Acid Bacteria and Kombucha Cultures. J. Dairy Sci. 2017, 100(12), 9508–9520. DOI: 10.3168/jds.2017-13150.
  • Wu, N.; Xu, W.; Liu, K.; Xia, Y.; Shuangquan. Angiotensin-Converting Enzyme Inhibitory Peptides from Lactobacillus Delbrueckii QS306 Fermented Milk. J. Dairy Sci. 2019, 102(7), 5913–5921. DOI: 10.3168/jds.2018-15901.
  • Quirós, A.; Hernández-Ledesma, B.; Ramos, M.; Amigo, L.; Recio, I. Angiotensin-Converting Enzyme Inhibitory Activity of Peptides Derived from Caprine Kefir. J. Dairy Sci. 2005, 88(10), 3480–3487. DOI: 10.3168/jds.S0022-0302(05)73032-0.
  • Yamamoto, N.; Maeno, M.; Takano, T. Purification and Characterization of an Antihypertensive Peptide from a Yogurt-Like Product Fermented by Lactobacillus Helveticus CPN4. J. Dairy Sci. 1999, 82(7), 1388–1393. DOI: 10.3168/jds.S0022-0302(99)75364-6.
  • Quirós, A.; Ramos, M.; Muguerza, B.; Delgado, M. A.; Miguel, M.; Aleixandre, A.; Recio, I. Identification of Novel Antihypertensive Peptides in Milk Fermented with Enterococcus Faecalis. Int. Dairy J. 2007, 17(1), 33–41. DOI: 10.1016/j.idairyj.2005.12.011.
  • Qian, B.; Xing, M.; Cui, L.; Deng, Y.; Xu, Y.; Huang, M.; Zhang, S. Antioxidant, Antihypertensive, and Immunomodulatory Activities of Peptide Fractions from Fermented Skim Milk with Lactobacillus Delbrueckii Ssp. Bulgaricus LB340. Bulgaricus J. of Dairy Researchbulgaricus J. of Dairy Research. 2011, 78(1), 72–79. LB340. DOI: 10.1017/s0022029910000889.
  • Siragusa, S.; De Angelis, M.; Di Cagno, R.; Rizzello, C. G.; Coda, R.; Gobbetti, M. Synthesis of γ-Aminobutyric Acid by Lactic Acid Bacteria Isolated from a Variety of Italian Cheeses. Appl. Environ. Microbiol. 2007, 73(22), 7283–7290. DOI: 10.1128/aem.01064-07.
  • Dolz, J.G. -T.; Brown, B. M.; García, J. C.; Trenor, B.; Yang, P. -C.; Rodriguez, J. S.; Clancy, C. E.; Romero, L. IC50 Evaluation is Critically Dependent on the Protocol Used for Measurement. J. Pharmacol. Toxicol. Methods. 2020, 105, 106807. DOI: 10.1016/j.vascn.2020.106807.
  • Bajpai, V. K.; Han, J. -H.; Rather, I. A.; Park, C.; Lim, J.; Paek, W. K.; Lee, J. S.; Yoon, J. -I.; Park, Y. -H. Characterization and Antibacterial Potential of Lactic Acid Bacterium Pediococcus Pentosaceus 4I1 Isolated from Freshwater Fish Zacco Koreanus. Front. Microbiol. 2016, 7. DOI: 10.3389/fmicb.2016.02037.
  • Carina Audisio, M.; Torres, M. J.; Sabaté, D. C.; Ibarguren, C.; Apella, M. C. Properties of Different Lactic Acid Bacteria Isolated from Apis Mellifera L. Bee-Gut. Microbiol. Res. 2011, 166(1), 1–13. DOI: 10.1016/j.micres.2010.01.003.
  • Saini, K.; Tomar, S. K. In vitro Evaluation of Probiotic Potential of Lactobacillus Cultures of Human Origin Capable of Selenium Bioaccumulation. LWT. 2017, 84, 497–504. DOI: 10.1016/j.lwt.2017.05.034.
  • Dalié, D. K. D.; Deschamps, A. M.; Richard-Forget, F. Lactic Acid Bacteria – Potential for Control of Mould Growth and Mycotoxins: A Review. Food Control. 2010, 21(4), 370–380. DOI: 10.1016/j.foodcont.2009.07.011.
  • Dhama, K.; Sachan, S.; Khandia, R.; Munjal, A.; Iqbal, H. M. N.; Latheef, S. K.; Karthik, K.; Samad, H. A.; Tiwari, R.; Dadar, M. Medicinal and Beneficial Health Applications of Tinospora Cordifolia (Guduchi): A Miraculous Herb Countering Various Diseases/Disorders and Its Immunomodulatory Effects. Recent Patents on Endocrine. Metabolic & Immune Drug Discovery. 2017, 10(2), 96–111. DOI: 10.2174/1872214811666170301105101.
  • He, T.; Priebe, M. G.; Zhong, Y.; Huang, C.; Harmsen, H. J. M.; Raangs, G. C.; Antoine, J. M.; Welling, G. W.; Vonk, R. J. Effects of Yogurt and Bifidobacteria Supplementation on the Colonic Microbiota in Lactose-Intolerant Subjects. J. Appl. Microbiol. 2007, 104, 595–604. DOI: 10.1111/j.1365-2672.2007.03579.x.
  • Oak, S. J.; Jha, R. The Effects of Probiotics in Lactose Intolerance: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2018, 59(11), 1675–1683. DOI: 10.1080/10408398.2018.1425977.
  • Le Luyer, B.; Makhoul, G.; Duhamel, J. F. Étude multicentrique, contrôlée en double insu d’une formule adaptée enrichie en Saccharomyces boulardii dans le traitement des diarrhées aiguës du nourrisson. Archives de Pédiatrie. 2010, 17(5), 459–465. DOI: 10.1016/j.arcped.2010.02.004.
  • Roškar, I.; Švigelj, K.; Štempelj, M.; Volfand, J.; Štabuc, B.; Malovrh, Š.; Rogelj, I. Effects of a Probiotic Product Containing Bifidobacterium Animalis Subsp. Animalis IM386 and Lactobacillus Plantarum MP2026 in Lactose Intolerant Individuals: Randomized, Placebo-Controlled Clinical Trial. J. Funct. Foods. 2017, 35, 1–8. DOI: 10.1016/j.jff.2017.05.020.
  • Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S. Surface Binding of Toxins and Heavy Metals by Probiotics. 2014, 14(1), 84–98. DOI: 10.2174/1389557513666131211105554.
  • Abdel-Megeed, R. M. Probiotics: A Promising Generation of Heavy Metal Detoxification. Biol. Trace Elem. Res. 2020, 199(6), 2406–2413. DOI: 10.1007/s12011-020-02350-1.
  • Halttunen, T.; Finell, M.; Salminen, S. Arsenic Removal by Native and Chemically Modified Lactic Acid Bacteria. Int. J. Food Microbiol. 2007, 120(1–2), 173–178. DOI: 10.1016/j.ijfoodmicro.2007.06.002.
  • Coryell, M.; McAlpine, M.; Pinkham, N. V.; McDermott, T. R.; Walk, S. T. The Gut Microbiome is Required for Full Protection Against Acute Arsenic Toxicity in Mouse Models. Nat. Commun. 2018, 9(1), 5424. DOI: 10.1038/s41467-018-07803-9.
  • Haskard, C. A.; El-Nezami, H. S.; Kankaanpää, P. E.; Salminen, S.; Ahokas, J. T. Surface Binding of Aflatoxin B1 by Lactic Acid Bacteria. Appl. Environ. Microbiol. 2001, 67(7), 3086–3091. DOI: 10.1128/aem.67.7.3086-3091.2001.
  • Byakika, S.; Mukisa, I. M.; Wacoo, A. P.; Kort, R.; Byaruhanga, Y. B.; Muyanja, C. Potential Application of Lactic Acid Starters in the Reduction of Aflatoxin Contamination in Fermented Sorghum-Millet Beverages. Inter. J. of Food Contamination. 2019, 6(1). DOI: 10.1186/s40550-019-0074-9.
  • Ghazvini, R. D.; Kouhsari, E.; Zibafar, E.; Hashemi, S. J.; Amini, A.; Niknejad, F. Antifungal Activity and Aflatoxin Degradation of Bifidobacterium Bifidum and Lactobacillus Fermentum Against Toxigenic Aspergillus Parasiticus. Open Microbiol. J. 2016, 10(1), 197–201. DOI: 10.2174/1874285801610010197.
  • Peng, X.; Zhang, S.; Fang, J.; Cui, H.; Zuo, Z.; Deng, J. Protective Roles of Sodium Selenite Against Aflatoxin B1-Induced Apoptosis of Jejunum in Broilers. Int. J. Environ. Res. Public Health. 2014, 11(12), 13130–13143. DOI: 10.3390/ijerph111213130.
  • Walkinson, J. H. Fluorometric Determination of Selenium in Biological Material with 2,3-Diaminonaphthalene. Anal. Chem. Analytical Chemistry. 2002, 38(1), 92–97. DOI: 10.1021/ac60233a025.
  • Kessi, J.; Ramuz, M.; Wehrli, E.; Spycher, M.; Bachofen, R. Reduction of Selenite and Detoxification of Elemental Selenium by the Phototrophic Bacterium Rhodospirillum Rubrum. Appl. Environ. Microbiol. 1999, 65(11), 4734–4740. DOI: 10.1128/aem.65.11.4734-4740.1999.
  • Chen, W.; Yang, Y.; Fu, K.; Zhang, D.; Wang, Z. Progress in ICP-MS Analysis of Minerals and Heavy Metals in Traditional Medicine. Front. Pharmacol. 2022, 13. DOI: 10.3389/fphar.2022.891273.
  • Cardoso, B. R.; Ganio, K.; Roberts, B. R. Expanding Beyond ICP-MS to Better Understand Selenium Biochemistry. Metallomics. 2019, 11(12), 1974–1983. DOI: 10.1039/c9mt00201d.
  • Chahrour, O.; Malone, J. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Applications in Quantitative Proteomics. Protein. & Peptide Letters. 2017, 24(3), 253–266. DOI: 10.2174/0929866523666161213094936.
  • Alzate, A.; Fernández-Fernández, A.; Pérez-Conde, M. C.; Gutiérrez, A. M.; Cámara, C. Comparison of Biotransformation of Inorganic Selenium by Lactobacillus and Saccharomyces in Lactic Fermentation Process of Yogurt and Kefir. J. Agric. Food Chem. 2008, 56(18), 8728–8736. DOI: 10.1021/jf8013519.
  • Zhang, K.; Guo, X.; Zhao, Q.; Han, Y.; Zhan, T.; Li, Y.; Tang, C.; Zhang, J. Development and Application of a HPLC-ICP-MS Method to Determine Selenium Speciation in Muscle of Pigs Treated with Different Selenium Supplements. Food Chem. 2020, 302, 125371. DOI: 10.1016/j.foodchem.2019.125371.
  • Pitt, J. J. Principles and Applications of Liquid Chromatography-Mass Spectrometry in Clinical Biochemistry. Clin. Biochem. Rev. 2009, 30(1), 19–34.
  • Combs, F.; G, J. Biomarkers of Selenium Status. Nutrients. 2015, 7(4), 2209–2236. DOI: 10.3390/nu7042209.
  • Luo, Y.; Chen, G.; Deng, X.; Cai, H.; Fu, X.; Xu, F.; Xiao, X.; Huo, Y.; Luo, J. Speciation of Selenium in Selenium-Enriched Foods by High-Performance Liquid Chromatography-Inductively Coupled Plasma-Tandem Mass Spectrometry. Separations. 2022, 9(9), 242. DOI: 10.3390/separations9090242.
  • Recio, I.; Pérez-Rodríguez, M. -L.; Ramos, M.; Amigo, L. Capillary Electrophoretic Analysis of Genetic Variants of Milk Proteins from Different Species. J. Chromatography. A. 1997, 768(1), 47–56. DOI: 10.1016/s0021-9673(96)00889-8.