411
Views
2
CrossRef citations to date
0
Altmetric
Review

Edible Flowers and Their Relationship with Human Health: Biological Activities

, ORCID Icon, , , &

References

  • Matyjaszczyk, E.; Śmiechowska, M. Edible Flowers. Benefits and Risks Pertaining to Their Consumption. Trends Food Sci. Technol. 2019, 91, 670–674. DOI: 10.1016/j.tifs.2019.07.017.
  • Zhao, L.; Fan, H.; Zhang, M.; Chitrakar, B.; Bhandari, B.; Wang, B. Edible Flowers: Review of Flower Processing and Extraction of Bioactive Compounds by Novel Technologies. Food. Res. Int. 2019, 126, 108660. DOI: 10.1016/j.foodres.2019.108660.
  • Chitrakar, B.; Zhang, M.; Bhandari, B. Edible Flowers with the Common Name “Marigold”: Their Therapeutic Values and Processing. Trends Food Sci. Technol. 2019, 89, 76–87. DOI: 10.1016/j.tifs.2019.05.008.
  • Takahashi, J. A.; Rezende, F. A. G. G.; Moura, M. A. F.; Dominguete, L. C. B.; Sande, D. Edible Flowers: Bioactive Profile and Its Potential to Be Used in Food Development. Food. Res. Int. 2020, 129, 108868. DOI: 10.1016/j.foodres.2019.108868.
  • Newman, S. E.; O´connor, A. S. Edible flowers. Fact sheet 7.237; Colorado State University: Fort Collins, Colorado, USA. 2013. https://extension.colostate.edu/topic-areas/yard-garden/edible-flowers-7-237/(accessed Oct, 9, 2022).
  • Da-Costa, R. I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. H. S. L. A Phytochemical and Pharmacological Review. Food Chem. 2014, 165, 424–443. DOI: 10.1016/j.foodchem.2014.05.002.
  • Fernandes, L.; Casal, S.; Pereira, J. A.; Saraiva, J. A.; Ramalhosa, E. Edible Flowers: A Review of the Nutritional, Antioxidant, Antimicrobial Properties and Effects on Human Health. J. Food Compost. Anal. 2017, 60, 38–50. DOI: 10.1016/j.jfca.2017.03.017.
  • Mulík, S.; Ozuna, C. Mexican Edible Flowers: Cultural Background, Traditional Culinary Uses, and Potential Health Benefits. Int. J. Gastron. Food Sci. 2020, 21, 100235. DOI: 10.1016/j.ijgfs.2020.100235.
  • Pinakin, D. J.; Kumar, V.; Suri, S.; Sharma, R.; Kaushal, M. Nutraceutical Potential of Tree Flowers: A Comprehensive Review on Biochemical Profile, Health Benefits, and Utilization. Food. Res. Int. 2020, 127, 108724. DOI: 10.1016/j.foodres.2019.108724.
  • Navarro-González, I.; González-Barrio, R.; García-Valverde, V.; Bautista-Ortín, A. B.; Periago, M. J. Nutritional Composition and Antioxidant Capacity in Edible Flowers: Characterisation of Phenolic Compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 2015, 16(1), 805–822. DOI: 10.3390/ijms16010805.
  • Pires, T. C. S. P.; Dias, M. I.; Barros, L.; Calhelha, R. C.; Alves, M. J.; Oliveira, M. B. P. P.; Santos-Buelga, C.; Ferreira, I. C. F. R. Edible Flowers as Sources of Phenolic Compounds with Bioactive Potential. Food. Res. Int. 2018, 105, 580–588. DOI: 10.1016/j.foodres.2017.11.014.
  • Nicolau, A. I.; Gostin, A. I. Safety of Edible Flowers. In Regulating Safety of Traditional and Ethnic Foods;. Eds. Prakash, V., Belloso, O.M., Keener, L., Astley, S., Braun, S., McMahon, H. and Lelieveld, H. Academic Press Cambridge: Massachusetts, 2016; pp. 395–419. doi: 10.1016/B978-0-12-800605-4.00021-9.
  • Zeng, Y.; Deng, M.; Lv, Z.; Peng, Y. Evaluation of Antioxidant Activities of Extracts from 19 Chinese Edible Flowers. SpringerPlus. 2014, 3(1), 1–5. DOI: 10.1186/2193-1801-3-315.
  • Lu, B.; Li, M.; Yin, R. Phytochemical Content, Health Benefits, and Toxicology of Common Edible Flowers: A Review (2000–2015). Crit. Rev. Food Sci. Nutr. 2016, 56(sup1), S130–148. DOI: 10.1080/10408398.2015.1078276.
  • Fernandes, L.; Ramalhosa, E.; Pereira, J. A.; Saraiva, J. A.; Casal, S. Borage, Camellia, Centaurea and Pansies: Nutritional, Fatty Acids, Free Sugars, Vitamin E, Carotenoids and Organic Acids Characterization. Food. Res. Int. 2020, 132, 109070. DOI: 10.1016/j.foodres.2020.109070.
  • Mlcek, J.; Rop, O. Fresh Edible Flowers of Ornamental Plants - a New Source of Nutraceutical Foods. Trends Food Sci. Technol. 2011, 22(10), 561–569. DOI: 10.1016/j.tifs.2011.04.006.
  • Kaisoon, O.; Konczak, I.; Siriamornpun, S. Potential Health Enhancing Properties of Edible Flowers from Thailand. Food. Res. Int. 2012, 46(2), 563–571. DOI: 10.1016/j.foodres.2011.06.016.
  • Alasalvar, C.; Pelvan, E.; Özdemir, K. S.; Kocadagìli, T.; Mogol, B. A.; Pasli, A. A.; Özcan, N.; Özçelik, B.; Gökmen, V. C. Nutritional, and Functional Characteristics of Instant Teas Produced from Low- and High-Quality Black Teas. J. Agric. Food. Chem. 2013, 61(31), 7529–7536. DOI: 10.1021/jf4015137.
  • Chen, N. H.; Wei, S. Factors Influencing consumers’ Attitudes Towards the Consumption of Edible Flowers. Food Qual. Prefer. 2017, 56, 93–100. DOI: 10.1016/j.foodqual.2016.10.001.
  • Pires, T. C. S. P.; Barros, L.; Santos-Buelga, C.; Ferreira, I. C. F. R. Edible Flowers: Emerging Components in the Diet. Trends Food Sci. Technol. 2019, 93, 244–258. DOI: 10.1016/j.tifs.2019.09.020.
  • Fernandes, L.; Pereira, J. A.; Baptista, P.; Saraiva, J. A.; Ramalhosa, E.; Casal, S. Effect of Application of Edible Coating and Packaging on the Quality of Pansies (Viola × Wittrockiana) of Different Colors and Sizes. Food Sci. Technol. Int. 2018, 24(4), 321–329. DOI: 10.1177/1082013217753229.
  • Pereira, A. M.; Cruz, R. R. P.; Gadelha, T. M.; da Silva, Á. G. F.; da Costa, F. B.; Ribeiro, W. S. Edible Flowers: Beauty, Health and Nutrition. Res. Soc. Dev. 2020, 9(7), 1–21, e336972994. DOI: 10.33448/rsd-v9i7.2994.
  • Hnin, K. K.; Zhang, M.; Ju, R.; Wang, B. A Novel Infrared Pulse-Spouted Freeze Drying on the Drying Kinetics, Energy Consumption and Quality of Edible Rose Flowers; Elsevier Ltd, 2021; Vol. 136. DOI: 10.1016/j.lwt.2020.110318.
  • Fernandes, L.; Casal, S.; Pereira, J. A.; Saraiva, J. A.; Fernandes, L.; Casal, S. An Overview on the Market of Edible Flowers an Overview on the Market of Edible Flowers. Food Rev. Int. 2019, 0(0), 1–18. DOI: 10.1080/87559129.2019.1639727.
  • Oyeyemi, S. D.; Arowosegbe, S.; Famosa, M. A. Phytochemical Constituents and Nutritional Evaluation of Three Selected Edible Flowers in Ado-Ekiti, Nigeria. ChemSearch J. 2017, 8(1), 41–48. DOI: 10.4314/csj.v8i1.6.
  • Chensom, S.; Okumura, H.; Mishima, T. Primary Screening of Antioxidant Activity, Total Polyphenol Content, Carotenoid Content, and Nutritional Composition of 13 Edible Flowers from Japan. Prev. Nutr. Food Sci. 2019, 24(2), 171–178. DOI: 10.3746/pnf.2019.24.2.171.
  • Pinedo-Espinoza, J. M.; Gutiérrez-Tlahque, J.; Santiago-Saenz, Y. O.; Aguirre-Mancilla, C. L.; Reyes-Fuentes, M.; López-Palestina, C. U. Nutritional Composition, Bioactive Compounds and Antioxidant Activity of Wild Edible Flowers Consumed in Semiarid Regions of Mexico. Plant Food Hum Nutr. 2020, 75(3), 413–419. DOI: 10.1007/s11130-020-00822-2.
  • Eryilmaz Acikgoz, F.; Çelik, Ö. Edible Flowers. J. Exp. Agric. Int. 2017, 17(1), 1–5. DOI: 10.9734/jeai/2017/34564.
  • Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible Flowers - a New Promising Source of Mineral Elements in Human Nutrition. Molecules. 2012, 17(6), 6672–6683. DOI: 10.3390/molecules17066672.
  • Araújo, S.; Matos, C.; Correia, E.; Antunes, M. C. Evaluation of Phytochemicals Content, Antioxidant Activity and Mineral Composition of Selected Edible Flowers. Qual. Assur. Saf. Crop Foods. 2019, 11(5), 471–478. DOI: 10.3920/QAS2018.1497.
  • Hassan, L.; Bagudo, B.; Aliero, A.; Umar, K.; Sani, N. Evaluation of Nutrient and Anti-Nutrient Contents of Parkia Biglobosa (L.) Flower. Niger. J. Basic Appl. Sci. 2011, 19(1). DOI: 10.4314/njbas.v19i1.69347.
  • González-Barrio, R.; Periago, M. J.; Luna-Recio, C.; Garcia-Alonso, F. J.; Navarro-González, I. Chemical Composition of the Edible Flowers, Pansy (Viola Wittrockiana) and Snapdragon (Antirrhinum Majus) as New Sources of Bioactive Compounds. Food Chem. 2018, 252, 373–380. DOI: 10.1016/j.foodchem.2018.01.102.
  • Rivas-García, L.; Navarro-Hortal, M. D.; Romero-Márquez, J. M.; Forbes-Hernández, T. Y.; Varela-López, A.; Llopis, J.; Quiles, J. L.; Quiles, J. L. Edible Flowers as a Health Promoter: An Evidence-Based Review. Trends Food Sci. Technol. 2021, 117, 46–59. DOI: 10.1016/j.tifs.2020.12.007.
  • Purohit, S. R.; Rana, S. S.; Idrishi, R.; Sharma, V.; Ghosh, P. A Review on Nutritional, Bioactive, Toxicological Properties and Preservation of Edible Flowers. Future Foods. 2021, 4, 100078. DOI: 10.1016/j.fufo.2021.100078.
  • Skrajda-Brdak, M.; Dąbrowski, G.; Konopka, I. Edible Flowers, a Source of Valuable Phytonutrients and Their Pro-Healthy Effects – a Review. Trends Food Sci. Technol. 2020, 103, 179–199. DOI: 10.1016/j.tifs.2020.06.016.
  • Ghosh, P. K.; Bhattacharjee, P.; Das, S. Extension of Shelf Life of Tuberose Flowers Using a Combination of Gamma Irradiation and Generally Regarded as Safe (GRAS) Preservatives and Assessment of Antimicrobial Potency of Senesced Flowers. J. Hortic. Sci. Biotechnol. 2017, 92(2), 130–145. DOI: 10.1080/14620316.2016.1234340.
  • Ben-Fadhel, Y.; Saltaji, S.; Ali, M.; Salmieri, S.; Dang, K.; Lacroix, M. Active Edible Coating and γ-Irradiation as Cold Combined Treatments to Assure the Safety of Broccoli Florets (Brassica Oleracea L.). Int. J. Food Microbiol. 2017, 241, 30–38. DOI: 10.1016/j.ijfoodmicro.2016.10.010.
  • Fadda, A.; Palma, A.; Azara, E.; D’Aquino, S. Effect of Modified Atmosphere Packaging on Overall Appearance and Nutraceutical Quality of Pot Marigold Held at 5 ° C. Food. Res. Int. 2020, 134(April), 109248. DOI: 10.1016/j.foodres.2020.109248.
  • Ke, Y.; Shyu, Y.; Wu, S. Evaluating the Anti-Inflammatory and Antioxidant Effects of Broccoli Treated with High Hydrostatic Pressure in Cell Models. Foods. 2021, 10(1), 167. DOI: 10.3390/foods10010167.
  • Traversari, S.; Pistelli, L.; Del, B.; Cacini, S.; Costamagna, G.; Ginepro, M.; Marchioni, I.; Orlandini, A.; Massa, D. Plant Physiology and Biochemistry Combined Effect of Silicon and Non-Thermal Plasma Treatments on Yield, Mineral Content, and Nutraceutical Proprieties of Edible Flowers of Begonia Cucullata. Plant Physiol. Biochem. 2021, 166(June), 1014–1021. DOI: 10.1016/j.plaphy.2021.07.012.
  • Rodrigues, H.; Cielo, D. P.; Silveira, A. A. S.; Marchesan, T. A.; Galmarini, M. V.; Richards, N. S. P. S. PT NU. Food. Res. Int. 2017. DOI: 10.1016/j.foodres.2017.08.018.
  • da Silva, L. A.; Fischer, S. Z.; Zambiazi, R. C. Proximal Composition, Bioactive Compounds Content and Color Preference of Viola X Wittrockiana Flowers. Int. J. Gastron. Food Sci. 2020, 22, 100236. DOI: 10.1016/j.ijgfs.2020.100236.
  • Moore, D. J. Is Anticipation Delicious? Visceral Factors as Mediators of the Effect of Olfactory Cues on Purchase Intentions. J. Bus. Res. 2013, 67(9), 2045–2051. DOI: 10.1016/j.jbusres.2013.10.005.
  • Güneş, E.; Özkan, M. Insects as Food and Feed in the Turkey. Current Behaviours. 2018, 1(July 2017), 10–15.
  • Sotelo, A.; López-García, S.; Basurto-Peña, F. Content of Nutrient and Antinutrient in Edible Flowers of Wild Plants in Mexico. Plant Food Hum Nutr. 2007, 62(3), 133–138. DOI: 10.1007/s11130-007-0053-9.
  • Wang, F.; Miao, M.; Xia, H.; Yang, L. G.; Wang, S. K.; Sun, G. J. Antioxidant Activities of Aqueous Extracts from 12 Chinese Edible Flowers in vitro and in vivo. Food Nutr. Res. 2016, 61(1), 1265324. DOI: 10.1080/16546628.2017.1265324.
  • Yang, H.; Shin, Y. Antioxidant Compounds and Activities of Edible Roses (Rosa Hybrida Spp.) from Different Cultivars Grown in Korea. Appl. Biol. Chem. 2017, 60(2), 129–136. DOI: 10.1007/s13765-017-0261-4.
  • Barros, R. G. C.; Andrade, J. K. S.; Pereira, U. C.; de Oliveira, C. S.; Rezende, Y. R. R. S.; Silva, T. O. M.; Nogueira, J. P.; Gualberto, N. C.; Araujo, H. C. S.; Narain, N. Phytochemicals Screening, Antioxidant Capacity and Chemometric Characterization of Four Edible Flowers from Brazil. Food. Res. Int. 2020, 130, 108899. DOI: 10.1016/j.foodres.2019.108899.
  • Benvenuti, S.; Bortolotti, E.; Maggini, R. Antioxidant Power, Anthocyanin Content and Organoleptic Performance of Edible Flowers. Sci. Hortic. 2016, 199, 170–177. DOI: 10.1016/j.scienta.2015.12.052.
  • Grzeszczuk, M.; Stefaniak, A.; Pachlowska, A. Biological Value of Various Edible Flower Species. Acta Sci. Pol. Hortorum Cultus. 2016, 15, 109–119.
  • Zheng, J.; Yu, X.; Maninder, M.; Xu, B. Total Phenolics and Antioxidants Profiles of Commonly Consumed Edible Flowers in China. Int. J. Food. Prop. 2018, 21(1), 1524–1540. DOI: 10.1080/10942912.2018.1494195.
  • Qureshi, S.; Adil, S.; El-Hack, M. E. A.; Alagawany, M.; Farag, M. R. Beneficial Uses of Dandelion Herb (Taraxacum Officinale) in Poultry Nutrition. World’s Poult. Sci. J. 2017, 73(3), 591–602. DOI: 10.1017/S0043933917000459.
  • Mikołajczak, N.; Sobiechowska, D. A.; Tańska, M. Edible Flowers as a New Source of Natural Antioxidants for Oxidative Protection of Cold-Pressed Oils Rich in Omega-3 Fatty Acids. Food. Res. Int. 2020, 134, 109216. DOI: 10.1016/j.foodres.2020.109216.
  • Kumari, P.; Ujala, B.; Bhargava, B. Phytochemicals from Edible Flowers: Opening a New Arena for Healthy Lifestyle. J. Funct. Foods. 2021, 78, 104375. DOI: 10.1016/j.jff.2021.104375.
  • Barros, L.; Carvalho, A. M.; Ferreira, I. C. F. R. Leaves, Flowers, Immature Fruits and Leafy Flowered Stems of Malva Sylvestris: A Comparative Study of the Nutraceutical Potential and Composition. Food. Chem. Toxicol. 2010, 48(6), 1466–1472. DOI: 10.1016/j.fct.2010.03.012.
  • Fernandes, L.; Pereira, J. A.; Saraiva, J. A.; Ramalhosa, E.; Casal, S. Phytochemical Characterization of Borago Officinalis L. and Centaurea Cyanus L. During Flower Development. Food. Res. Int. 2019, 123, 771–778. DOI: 10.1016/j.foodres.2019.05.014.
  • Soh, Y.; Kim, J. A.; Sohn, N. W.; Lee, K. R.; Kim, S. Y. Protective Effects of Quinic Acid Derivatives on Tetrahydropapaveroline-Induced Cell Death in C6 Glioma Cells. Biol. Pharm. Bull. 2003, 26(6), 803–807. DOI: 10.1248/bpb.26.803.
  • Muthamil, S.; Balasubramaniam, B.; Balamurugan, K.; Pandian, S. K. Synergistic Effect of Quinic Acid Derived from Syzygium Cumini and Undecanoic Acid Against Candida Spp. Biofilm and Virulence. Front. Microbiol. 2018, 9, 2835. DOI: 10.3389/fmicb.2018.02835.
  • Xiang, T.; Xiong, Q. B.; Ketut, A. I.; Tezuka, Y.; Nagaoka, T.; Wu, L. J.; Kadota, S. Studies on the Hepatocyte Protective Activity and the Structure-Activity Relationships of Quinic Acid and Caffeic Acid Derivatives from the Flower Buds of Lonicera Bournei. Planta. med. 2001, 67(4), 322–325. DOI: 10.1055/S-2001-14337.
  • Chen, G. L.; Chen, S. G.; Xiao, Y.; Fu, N. L. Antioxidant Capacities and Total Phenolic Contents of 30 Flowers. Ind. Crop Prod. 2018, 111, 430–445. DOI: 10.1016/j.indcrop.2017.10.051.
  • Vuolo, M. M.; Lima, V. S.; Junior, M. R. M. Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds, Campos, M.R.S., Ed.; Woodhead Publishing: Sawston, 2019; pp. 33–50. DOI: 10.1016/B978-0-12-814774-0.00002-5.
  • Ammar, I.; Ben, S. M.; Harrabi, B.; Mzid, M.; Bardaa, S.; Sahnoun, Z.; Attia, H.; Ennouri, M. Anti-Inflammatory Activity and Phenolic Composition of Prickly Pear (Opuntia Ficus-Indica) Flowers. Ind. Crop Prod. 2018, 112, 313–319. DOI: 10.1016/j.indcrop.2017.12.028.
  • Xiong, L.; Yang, J.; Jiang, Y.; Lu, B.; Hu, Y.; Zhou, F.; Mao, S.; Shen, C. Phenolic Compounds and Antioxidant Capacities of 10 Common Edible Flowers from China. J. Food Sci. 2014, 79(4), 1–9. DOI: 10.1111/1750-3841.12404.
  • Li, A. N.; Li, S.; Li, H. B.; Xu, D. P.; Xu, X. R.; Chen, F. Total Phenolic Contents and Antioxidant Capacities of 51 Edible and Wild Flowers. J. Funct. Foods. 2014, 6, 319–330. DOI: 10.1016/j.jff.2013.10.022.
  • Karimi, E.; Oskoueian, E.; Hendra, R.; Oskoueian, A.; Jaafar, H. Z. E. Phenolic Compounds Characterization and Biological Activities of Citrus Aurantium Bloom. Molecules. 2012, 17(2), 1203–1218. DOI: 10.3390/molecules17021203.
  • Kim, J. K.; Park, S. U. Chlorogenic Acid and Its Role in Biological Functions: An Up to Date. Excli J. 2019, 18, 310–316. DOI: 10.17179/excli2019-1404.
  • Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New Progress in the Pharmacology of Protocatechuic Acid: A Compound Ingested in Daily Foods and Herbs Frequently and Heavily. Pharmacol. Res. 2020, 161, 105109. DOI: 10.1016/j.phrs.2020.105109.
  • Loizzo, M. R.; Pugliese, A.; Bonesi, M.; Tenuta, M. C.; Menichini, F.; Xiao, J.; Tundis, R. Edible Flowers: A Rich Source of Phytochemicals with Antioxidant and Hypoglycemic Properties. J. Agric. Food. Chem. 2016, 64(12), 2467–2474. DOI: 10.1021/acs.jafc.5b03092.
  • Barriada-Bernal, L. G.; Almaraz-Abarca, N.; Delgado-Alvarado, E. A.; Gallardo-Velázquez, T.; Ávila-Reyes, J. A.; Torres-Morán, M. I.; González-Elizondo, M. D. S.; Herrera-Arrieta, Y. Flavonoid Composition and Antioxidant Capacity of the Edible Flowers of Agave Durangensis (Agavaceae). CyTa – J. Food. 2014, 12(2), 105–114. DOI: 10.1080/19476337.2013.801037.
  • Pires, T. C. S. P.; Dias, M. I.; Barros, L.; Ferreira, I. C. F. R. Nutritional and Chemical Characterization of Edible Petals and Corresponding Infusions: Valorization as New Food Ingredients. Food Chem. 2017, 220, 337–343. DOI: 10.1016/j.foodchem.2016.10.026.
  • Huang, W.; Mao, S.; Zhang, L.; Lu, B.; Zheng, L.; Zhou, F.; Li, M.; Li, M. Phenolic Compounds, Antioxidant Potential and Antiproliferative Potential of 10 Common Edible Flowers from China Assessed Using a Simulated in vitro Digestion-Dialysis Process Combined with Cellular Assays. J. Sci. Food Agric. 2017, 97(14), 4760–4769. DOI: 10.1002/jsfa.8345.
  • Hellinger, R.; Koehbach, J.; Fedchuk, H.; Sauer, B.; Huber, R.; Gruber, C. W.; Gründemann, C. Immunosuppressive Activity of an Aqueous Viola Tricolor Herbal Extract. J. Ethnopharmacol. 2014, 151(1), 299–306. DOI: 10.1016/j.jep.2013.10.044.
  • Fernandes, L.; Casal, S.; Pereira, J. A.; Ramalhosa, E.; Saraiva, J. A. Effect of High Hydrostatic Pressure (HHP) Treatment on Edible flowers’ Properties. Food Bioprocess Technol. 2017, 10(5), 799–807. DOI: 10.1007/s11947-017-1887-2.
  • Kelley, K. M.; Behe, B. K.; Biernbaum, J. A.; Poff, K. L. Consumer Preference for Edible-Flower Color, Container Size, and Price. HortScience. 2001, 36(4), 801–804. DOI: 10.21273/hortsci.36.4.801.
  • Falguera, V.; Aliguer, N.; Falguera, M. An Integrated Approach to Current Trends in Food Consumption: Moving Toward Functional and Organic Products? Food Control. 2012, 26(2), 274–281. DOI: 10.1016/j.foodcont.2012.01.051.
  • Cunningham, E. What Nutritional Contribution Do Edible Flowers Make? J. Acad. Nutr. Diet. 2015, 115(5), 856. DOI: 10.1016/j.jand.2015.03.002.
  • Anantharaju, P. G.; Gowda, P. C.; Vimalambike, M. G.; Madhunapantula, S. V. An Overview on the Role of Dietary Phenolics for the Treatment of Cancers. Nutr. J. 2016, 15(1), 1–16. DOI: 10.1186/s12937-016-0217-2.
  • Gutierrez-Grijalva, E. P.; Ambriz-Pere, D. L.; Leyva-Lopez, N.; Castillo-Lopez, R. I.; Heiedia, J. B. Review: Dietary Phenolic Compounds, Health Benefits and Bioaccessibility. Arch. Latinoam. Nutr. 2016, 66(2), 87–100.
  • Lee, M. H.; Nam, T. G.; Lee, I.; Shin, E. J.; Han, A. R.; Lee, P.; Lee, S. Y.; Lim, T. G. Skin Anti-Inflammatory Activity of Rose Petal Extract (Rosa Gallica) Through Reduction of MAPK Signaling Pathway. Food Sci. Nutr. 2018, 6(8), 2560–2567. DOI: 10.1002/fsn3.870.
  • Li, Y.; Hao, Y.; Gao, B.; Geng, P.; Huang, H.; Yu, L.; Choe, U.; Liu, J.; Sun, J.; Chen, P., et al. Chemical Profile and in vitro Gut Microbiota Modulatory, Anti-Inflammatory and Free Radical Scavenging Properties of Chrysanthemum Morifolium Cv. Fubaiju. J. Funct. Foods. 2019, 58, 114–122. DOI: 10.1016/j.jff.2019.04.053.
  • Meurer, M. C.; Mees, M.; Mariano, L. N. B.; Boeing, T.; Somensi, L. B.; Mariott, M.; da Silva, R. D. C. M. V. D. A. F.; dos Santos, A. C.; Longo, B.; Santos, F. T. C., et al. Hydroalcoholic Extract of Tagetes Erecta L. Flowers, Rich in the Carotenoid Lutein, Attenuates Inflammatory Cytokine Secretion and Improves the Oxidative Stress in an Animal Model of Ulcerative Colitis. Nutr. Res. 2019, 66, 95–106. DOI: 10.1016/j.nutres.2019.03.005.
  • Xiong, L.; Mao, S.; Lu, B.; Yang, J.; Zhou, F.; Hu, Y.; Jiang, Y.; Shen, C.; Zhao, Y. Osmanthus Fragrans Flower Extract and Acteoside Protect Against D-Galactose-Induced Aging in an ICR Mouse Model. J. Med. Food. 2016, 19(1), 54–61. DOI: 10.1089/jmf.2015.3462.
  • Kwon, J. H.; Oh, H. J.; Lee, D. S.; In, S. J.; Seo, K. H.; Jung, J. W.; Cha, B. J.; Lee, D. Y.; Baek, N. I. Pharmacological Activity and Quantitative Analysis of Flavonoids Isolated from the Flowers of Begonia Semperflorens Link Et Otto. Appl. Biol. Chem. 2019, 62(1). DOI: 10.1186/s13765-019-0416-6.
  • Yang, P. F.; Yang, Y. N.; Feng, Z. M.; Jiang, J. S.; Zhang, P. C. Six New Compounds from the Flowers of Chrysanthemum Morifolium and Their Biological Activities. Bioorg. Chem. 2019, 82, 139–144. DOI: 10.1016/j.bioorg.2018.10.007.
  • Tian, Z.; Jia, H.; Jin, Y.; Wang, M.; Kou, J.; Wang, C.; Rong, X.; Xie, X.; Han, G.; Pang, X. Chrysanthemum Extract Attenuates Hepatotoxicity via Inhibiting Oxidative Stress in vivo and in vitro. Food Nutr. Res. 2019, 63(0), 1–15. DOI: 10.29219/fnr.v63.1667.
  • Liu, Z.; Cheng, Z.; He, Q.; Lin, B.; Gao, P.; Li, L.; Liu, Q.; Song, S. Secondary Metabolites from the Flower Buds of Lonicera Japonica and Their in vitro Anti-Diabetic Activities. Fitoterapia. 2016, 110, 44–51. DOI: 10.1016/j.fitote.2016.02.011.
  • Tang, D.; Liu, L.; Ajiakber, D.; Ye, J.; Xu, J.; Xin, X.; Aisa, H. A. Anti-Diabetic Effect of Punica Granatum Flower Polyphenols Extract in Type 2 Diabetic Rats: Activation of Akt/gsk-3β and Inhibition of IRE1α-XBP1 Pathways. Front. Endocrinol. 2018, 9, 1–11. DOI: 10.3389/fendo.2018.00586.
  • Acharya, J.; Karak, S.; De, B. Metabolite Profile and Bioactivity of Musa X Paradisiaca L. Flower Extracts. J. Food Biochem. 2016, 40(6), 724–730. DOI: 10.1111/jfbc.12263.
  • Chiou, S. Y.; Sung, J. M.; Huang, P. W.; Lin, S. D. Antioxidant, Antidiabetic, and Antihypertensive Properties of Echinacea Purpurea Flower Extract and Caffeic Acid Derivatives Using in vitro Models. J. Med. Food. 2017, 20(2), 171–179. DOI: 10.1089/jmf.2016.3790.
  • Lin, J. T.; Chang, Y. Y.; Chen, Y. C.; Hu, C. C.; Chang, Y. P.; Hsu, S. H.; Yang, D. J. Induction of Apoptotic Death of Human Hepatocellular Carcinoma (HepG2) Cells by Ethanolic Extract from Litchi (Litchi Chinensis Sonn.) Flower. J. Funct. Foods. 2015, 19, 100–109. DOI: 10.1016/j.jff.2015.08.023.
  • Alam, P.; Al-Yousef, H. M.; Siddiqui, N. A.; Alhowiriny, T. A.; Alqasoumi, S. I.; Amina, M.; Hassan, W. H. B.; Abdelaziz, S.; Abdalla, R. H. Anticancer Activity and Concurrent Analysis of Ursolic Acid, β-Sitosterol and Lupeol in Three Different Hibiscus Species (Aerial Parts) by Validated HPTLC Method. Saudi Pharm. J. 2018, 26(7), 1060–1067. DOI: 10.1016/J.JSPS.2018.05.015.
  • Kim, H. G.; Oh, H. J.; Ko, J. H.; Song, H. S.; Lee, Y. G.; Kang, S. C.; Lee, D. Y.; Baek, N. I. Lanceoleins A–G, Hydroxychalcones, from the Flowers of Coreopsis Lanceolata and Their Chemopreventive Effects Against Human Colon Cancer Cells. Bioorg. Chem. 2019, 85, 274–281. DOI: 10.1016/j.bioorg.2019.01.003.
  • Nanda, B. L. Antioxidant and Anticancer Activity of Edible Flowers. J. Drug Delivery Ther. 2019, 9(3–s), 290–295. DOI: 10.22270/jddt.v9i3-s.2996.
  • Nguyen, C.; Baskaran, K.; Pupulin, A.; Ruvinov, I.; Zaitoon, O.; Grewal, S.; Scaria, B.; Mehaidli, A.; Vegh, C.; Pandey, S. Hibiscus Flower Extract Selectively Induces Apoptosis in Breast Cancer Cells and Positively Interacts with Common Chemotherapeutics. BMC Complementary Altern. Med. 2019, 19(1), 1–14. DOI: 10.1186/s12906-019-2505-9.
  • Marian, E.; Vicas, L. G.; Jurca, T.; Mureșan, M.; Stan, R. L.; Sevastre, B.; Diaconeasa, Z.; Ionescu, C.; Hangan, A. C. A Comparative Study on the Biologic Activity of Centaurea Cyanus versus Calendula Officinalis. Farmacia. 2017, 65(6), 940–946.
  • Escher, G. B.; Santos, J. S.; Rosso, N. D.; Marques, M. B.; Azevedo, L.; Do Carmo, M. A. V.; Daguer, H.; Molognoni, L.; Prado-Silva, L. D.; Sant’ana, A. S., et al. Chemical Study, Antioxidant, Anti-Hypertensive, and Cytotoxic/Cytoprotective Activities of Centaurea Cyanus L. Petals Aqueous Extract. Food. Chem. Toxicol. 2018, 118, 439–453. DOI: 10.1016/j.fct.2018.05.046.
  • Karakas, F. P.; Turker, A. U.; Karakas, A.; Mshvildadze, V.; Pichette, A.; Legault, J. In vitro Cytotoxic, Antibacterial, Anti-Inflammatory and Antioxidant Activities and Phenolic Content in Wild-Grown Flowers of Common Daisy—a Medicinal Plant. J. Herb. Med. 2017, 8, 31–39. DOI: 10.1016/j.hermed.2016.11.003.
  • Ge, L.; Xiao, L.; Wan, H.; Li, J.; Lv, K.; Peng, S.; Zhou, B.; Li, T.; Zeng, X. Chemical Constituents from Lonicera Japonica Flower Buds and Their Anti-Hepatoma and Anti-HBV Activities. Bioorg. Chem. 2019, 92, 103198. DOI: 10.1016/j.bioorg.2019.103198.
  • Wan, H.; Ge, L.; Li, J.; Zhang, K.; Wu, W.; Peng, S.; Zou, X.; Zhou, H.; Zhou, B.; Zeng, X. Effects of a Novel Biflavonoid of Lonicera Japonica Flower Buds on Modulating Apoptosis Under Different Oxidative Conditions in Hepatoma Cells. Phytomedicine. 2019, 57, 282–291. DOI: 10.1016/j.phymed.2018.12.044.
  • Li, Y.; Pu, R.; Zhou, L.; Wang, D.; Li, X.; Malfa, G. Effects of a Chlorogenic Acid-Containing Herbal Medicine (LASNB) on Colon Cancer. Evidence-Based Complementary Altern. Med. 2021, 2021, 1–12. DOI: 10.1155/2021/9923467.
  • Gao, X. M.; Shu, L. D.; Yang, L. Y.; Shen, Y. Q.; Zhang, Y. J.; Hu, Q. F. Phenylethanoids from the Flowers of Rosa Rugosa and Their Biological Activities. Bull. Korean Chem. Soc. 2013, 34(1), 246–248. DOI: 10.5012/bkcs.2013.34.1.246.
  • Hu, Q. F.; Zhou, B.; Huang, J. M.; Jiang, Z. Y.; Huang, X. Z.; Yang, L. Y.; Gao, X. M.; Yang, G. Y.; Che, C. T. Cytotoxic Oxepinochromenone and Flavonoids from the Flower Buds of Rosa Rugosa. J. Nat. Prod. 2013, 76(10), 1866–1871. DOI: 10.1021/np4004068.
  • Nowak, R.; Olech, M.; Pecio, U.; Oleszek, W.; Los, R.; Malm, A.; Rzymowska, J. Cytotoxic, Antioxidant, Antimicrobial Properties and Chemical Composition of Rose Petals. J. Sci. Food Agric. 2013, 94(3), 560–567. DOI: 10.1002/jsfa.6294.
  • Olech, M.; Nowacka-Jechalke, N.; Masłyk, M.; Martyna, A.; Pietrzak, W.; Kubiński, K.; Załuski, D.; Nowak, R. Polysaccharide-Rich Fractions from Rosa Rugosa Thunb. Composition and Chemopreventive Potential. Molecules. 2019, 24(7), 1354. DOI: 10.3390/molecules24071354.
  • Malacrida, A.; Cavalloro, V.; Martino, E.; Costa, G.; Ambrosio, F. A.; Alcaro, S.; Rigolio, R.; Cassetti, A.; Miloso, M.; Collina, S. Anti-Multiple Myeloma Potential of Secondary Metabolites from Hibiscus Sabdariffa—part 2. Molecules. 2021, 26(21), 6596. DOI: 10.3390/molecules26216596.
  • Apaza, T. L.; Pérez-Uz, B.; García, E. M. T.; Aguilar, R. F.; Slowing, K. Anti-Melanogenic and Anti-Inflammatory Activities of Hibiscus Sabdariffa. Rev. Bras. Farmacogn. 2022, 32(1), 127–132. DOI: 10.1007/s43450-022-00236-y.
  • Wang, D.; Zhao, X.; Liu, Y. Hypoglycemic and Hypolipidemic Effects of a Polysaccharide from Flower Buds of Lonicera Japonica in Streptozotocin-Induced Diabetic Rats. Int. J. Biol. Macromol. 2017, 102, 396–404. DOI: 10.1016/j.ijbiomac.2017.04.056.
  • Bin Muhamad, N. M. T.; Mohd, Z. H. Z. B.; Bin Abdul, A. M. Y.; Bin Tuan, J. S. A. T.; Binti, W. O. W. N. Cytotoxicity Effect and Morphological Changes of Chrysanthemum Morifolium Methanolic Extract Against Chronic Myeloid Leukaemia K-562 Cell Line. Asian J. Med. Biomed. 2021, 5(S1), 22–28. DOI: 10.37231/ajmb.2021.5.s1.446.
  • Liu, Y.; Mou, X.; Zhou, D.; Zhou, D.; Shou, C. Extraction of Flavonoids from Chrysanthemum Morifolium and Antitumor Activity in vitro. Exp. Ther. Med. 2018, 15(2), 1203–1210. DOI: 10.3892/etm.2017.5574.
  • García-Risco, M. R.; Mouhid, L.; Salas-Pérez, L.; López-Padilla, A.; Santoyo, S.; Jaime, L.; Ramírez De Molina, A.; Reglero, G.; Fornari, T. Biological Activities of Asteraceae (Achillea Millefolium and Calendula Officinalis) and Lamiaceae (Melissa Officinalis and Origanum Majorana) Plant Extracts. Plant Food Hum Nutr. 2017, 72(1), 96–102. DOI: 10.1007/s11130-016-0596-8.
  • Abou Baker, D. H. Achillea Millefolium L. Ethyl Acetate Fraction Induces Apoptosis and Cell Cycle Arrest in Human Cervical Cancer (HeLa) Cells. Ann. Agric. Sci. 2020, 65(1), 42–48. DOI: 10.1016/j.aoas.2020.03.003.
  • Zulfiqar, S.; Benton, K.; Hassan, T.; Marshall, L.; Boesch, C. In vitro and in vivo Anti-Diabetic Properties of Hibiscus Sabdariffa. Proc. Nutr. Soc. 2019, 78(OCE2). DOI: 10.1017/s0029665119000855.
  • Tripathi, A. K.; Gupta, P. S.; Singh, S. K. Antidiabetic, Anti-Hyperlipidemic and Antioxidant Activities of Bauhinia Variegata Flower Extract. Biocatal Agric. Biotechnol. 2019, 19, 101142. DOI: 10.1016/j.bcab.2019.101142.
  • Zheoat, A. M.; Gray, A. I.; Igoli, J. O.; Ferro, V. A.; Drummond, R. M. Hibiscus Acid from Hibiscus Sabdariffa (Malvaceae) Has a Vasorelaxant Effect on the Rat Aorta. Fitoterapia. 2019, 134, 5–13. DOI: 10.1016/j.fitote.2019.01.012.
  • Al-Anbaki, M.; Cavin, A. L.; Nogueira, R. C.; Taslimi, J.; Ali, H.; Najem, M.; Shukur, M. M.; Abdullah, K. I.; Saad, M. A.; Ramadhan, H. H., et al. Hibiscus Sabdariffa, a Treatment for Uncontrolled Hypertension. Pilot Comparative Intervention. Plants. 2021, 10(5), 1018.
  • Ojulari, O. V.; Lee, S. G.; Nam, J. O. Beneficial Effects of Natural Bioactive Compounds from Hibiscus Sabdariffa L. on Obesity. Molecules. 2019, 24(1), 210. DOI: 10.3390/molecules24010210.
  • Silva, D.; Ferreira, M. S.; Sousa-Lobo, J. M.; Cruz, M. T.; Almeida, I. F. Anti-Inflammatory Activity of Calendula Officinalis L. Flower Extract. Cosmetics. 2021, 8(2), 31. DOI: 10.3390/cosmetics8020031.
  • Bragueto, E. G.; Cardoso, B. L. C.; Sousa, S. J.; Mendanha, C. T.; Boscacci, M. M.; Araújo, M. V. D. C.; Azevedo, L.; Furtado, M. M.; Sant’ana, A. S.; Wen, M., et al. From the Field to the Pot: Phytochemical and Functional Analyses of Calendula Officinalis L. Flower for Incorporation in an Organic Yogurt. Antioxidants. 2019, 8(11), 559.
  • Olennikov, D. N.; Kashchenko, N. I.; Vennos, C. A New Esculetin Glycoside from Calendula Officinalis (Asteraceae) and Its Bioactivity. Farmacia. 2017, 65(5), 698–702.
  • Kim, E.; Mok, H. K.; Hyun, T. K. Variations in the Antioxidant, Anticancer, and Anti-Inflammatory Properties of Different Rosa Rugosa Organ Extracts. Agronomy. 2022, 12(2), 238. DOI: 10.3390/agronomy12020238.
  • Kim, G. C.; Kim, J. S.; Kim, G. M.; Choi, S. Y. Anti-Adipogenic Effects of Tropaeolum Majus (Nasturtium) Ethanol Extract on 3T3-L1 Cells. Food Nutr. Res. 2017, 61(1), 1339555. DOI: 10.1080/16546628.2017.1339555.
  • Yan, J. Y.; Ai, G.; Zhang, X. J.; Xu, H. J.; Huang, Z. M. Investigations of the Total Flavonoids Extracted from Flowers of Abelmoschus Manihot (L.) Medic Against α-Naphthylisothiocyanate-Induced Cholestatic Liver Injury in Rats. J. Ethnopharmacol. 2015, 172, 202–213. DOI: 10.1016/j.jep.2015.06.044.
  • Olanrewaju, E.; Anyaehie, B.; Ezeh, C. O.; Onyekwelu, K. C.; Ezeh, R. C. Effect of Methanolic Extract of Hibiscus Sabdariffa in Ethanol-Induced Hepatotoxicity. African J. Biomed. Res. 2017, 20(1), 99–102.
  • Nurkhasanah, L. H. N.; Hakim, Z. R. Effect of Rosella (Hibiscus Sabdariffa L) Extract on Glutathione-S-Transferase Activity in Rats. Trop. J. Pharm. Res. 2017, 16(10), 2411–2416. DOI: 10.4314/tjpr.v16i10.14.
  • Shalgum, A.; Govindarajulu, M.; Majrashi, M.; Ramesh, S.; Collier, W. E.; Griffin, G.; Amin, R.; Bradford, C.; Moore, T.; Dhanasekaran, M. Neuroprotective Effects of Hibiscus Sabdariffa Against Hydrogen Peroxide-Induced Toxicity. J. Herb. Med. 2019, 17-18, 100253. DOI: 10.1016/j.hermed.2018.100253.
  • Su, D.; Li, S.; Zhang, W.; Wang, J.; Wang, J.; Lv, M. Structural Elucidation of a Polysaccharide from Lonicera Japonica Flowers, and Its Neuroprotective Effect on Cerebral Ischemia-Reperfusion Injury in Rat. Int. J. Biol. Macromol. 2017, 99, 350–357. DOI: 10.1016/j.ijbiomac.2017.02.096.
  • Yagi, M.; Nomoto, K.; Hori, M.; Kitano, T.; Yabukita, H.; Ogura, M.; Yonei, Y. The Effect of Edible Purple Chrysanthemum Extract on Advanced Glycation End Products Generation in Skin: A Randomized Controlled Clinical Trial and in vitro Study. Anti-Aging Med. 2012, 9(2), 61–74.
  • Li, M. X.; Xie, J.; Bai, X.; Du, Z. Z. Anti-Aging Potential, Anti-Tyrosinase and Antibacterial Activities of Extracts and Compounds Isolated from Rosa Chinensis Cv. ‘JinBian’. Ind. Crops Prod. 2021, 159, 113059. DOI: 10.1016/j.indcrop.2020.113059.
  • Rahnama, S.; Rabiei, Z.; Alibabaei, Z.; Mokhtari, S.; Rafieian-Kopaei, M.; Deris, F. Anti-Amnesic Activity of Citrus Aurantium Flowers Extract Against Scopolamine-Induced Memory Impairments in Rats. Neurol. Sci. 2014, 36(4), 553–560. DOI: 10.1007/s10072-014-1991-2.
  • Raju, M. G.; Srilakshmi, S. Anti-Amnesic Effect of Methanolic Extract of Tagetes Erecta Flower Heads on Aluminium Induced Cognitive Impairment in Albino Mice. Res. J. Pharmacogn. Phytochem. 2018, 10(4), 299. DOI: 10.5958/0975-4385.2018.00048.1.
  • Nowicka, P.; Wojdyło, A. Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers. Antioxidants. 2019, 8(8), 308. DOI: 10.3390/antiox8080308.
  • Samarghandian, S.; Azimi-Nezhad, M.; Farkhondeh, T. Immunomodulatory and Antioxidant Effects of Saffron Aqueous Extract (Crocus Sativus L.) on Streptozotocin-Induced Diabetes in Rats. Indian Heart J. 2017, 69(2), 151–159. DOI: 10.1016/j.ihj.2016.09.008.
  • Talaei, A.; Hassanpour, M. M.; Sajadi, T. S. A.; Mohajeri, S. A. C. The Main Active Saffron Constituent, as an Adjunctive Treatment in Major Depressive Disorder: A Randomized, Double-Blind, Placebo-Controlled, Pilot Clinical Trial. J. Affect. Disord. 2015, 174, 51–56. DOI: 10.1016/j.jad.2014.11.035.
  • Ahmadpanah, M.; Ramezanshams, F.; Ghaleiha, A.; Akhondzadeh, S.; Sadeghi Bahmani, D.; Brand, S. Crocus Sativus L. (Saffron) versus Sertraline on Symptoms of Depression Among Older People with Major Depressive Disorders–A Double-Blind, Randomized Intervention Study. Psychiatry Res. 2019, 282, 112613. DOI: 10.1016/J.PSYCHRES.2019.112613.
  • Lee, Y. R.; Chang, C. M.; Yeh, Y. C.; Huang, C. Y.; Lin, F. M.; Huang, J. T.; Hsieh, C. C.; Wang, J. R.; Liu, H. S. Honeysuckle Aqueous Extracts Induced Let-7a Suppress EV71 Replication and Pathogenesis in vitro and in vivo and is Predicted to Inhibit SARS-CoV-2. Viruses. 2021, 13(2), 308. DOI: 10.3390/v13020308.
  • Jabri, M. A.; Aissani, N.; Tounsi, H.; Sakly, M.; Marzouki, L.; Sebai, H. Protective Effect of Chamomile (Matricaria Recutita L.) Decoction Extract Against Alcohol-Induced Injury in Rat Gastric Mucosa. Pathophysiology. 2017, 24(1), 1–8. DOI: 10.1016/j.pathophys.2016.11.001.
  • Jurca, T.; Baldea, I.; Filip, G. A.; Olteanu, D.; Clichici, S.; Pallag, A.; Muresan, M.; Marian, E.; Micle, O.; Muresan, M. The Effect of Tropaeolum Majus L. on Bacterial Infections and in vitro Efficacy on Apoptosis and DNA Lesions in Hyperosmotic Stress. J. Physiol. Pharmacol. 2018, 69(3). DOI: 10.26402/jpp.2018.3.06.
  • Pensamiento-Niño, C. A.; Campos-Montiel, R. G.; Añorve-Morga, J.; Ramírez-Moreno, E.; Ascacio-Valdés, J. A.; Hernández-Fuentes, A. D. Nutritional Characterization of the Functional and Antioxidant Activity of Cactus Flowers from Hidalgo, Mexico. Appl. Sci. 2021, 11(13), 5965. DOI: 10.3390/app11135965.
  • Egebjerg, M. M.; Olesen, P. T.; Eriksen, F. D.; Ravn-Haren, G.; Bredsdorff, L.; Pilegaard, K. Are Wild and Cultivated Flowers Served in Restaurants or Sold by Local Producers in Denmark Safe for the Consumer? Food. Chem. Toxicol. 2018, 120, 129–142. DOI: 10.1016/j.fct.2018.07.007.
  • Villavicencio, A. L. C. H.; Heleno, S. A.; Calhelha, R. C.; Santos-Buelga, C.; Barros, L.; Ferreira, I. C. F. R. The Influence of Electron Beam Radiation in the Nutritional Value, Chemical Composition and Bioactivities of Edible Flowers of Bauhinia Variegata L. Var. Candida Alba Buch.-Ham from Brazil. Food Chem. 2018, 241, 163–170. DOI: 10.1016/j.foodchem.2017.08.093.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.