561
Views
4
CrossRef citations to date
0
Altmetric
Review

Metabolic Properties, Functional Characteristics, and Practical Application of Streptococcus thermophilus

, , , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all

References

  • Marco, M. L.; Heeney, D.; Binda, S.; Cifelli, C. J.; Cotter, P. D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A., et al. Health Benefits of Fermented Foods: Microbiota and Beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. DOI: 10.1016/j.copbio.2016.11.010.
  • Topisirovic, L.; Kojic, M.; Fira, D.; Golic, N.; Strahinic, I.; Lozo, J. Potential of Lactic Acid Bacteria Isolated from Specific Natural Niches in Food Production and Preservation. Int. J. Food Microbiol. 2006, 112(3), 230–235. DOI: 10.1016/j.ijfoodmicro.2006.04.009.
  • Terzić-Vidojević, A.; Veljović, K.; Tolinački, M.; Živković, M.; Lukić, J.; Lozo, J.; Fira, Đ.; Jovčić, B.; Strahinić, I.; Begović, J., et al. Diversity of Non-Starter Lactic Acid Bacteria in Autochthonous Dairy Products from Western Balkan Countries-Technological and Probiotic Properties. Food. Res. Int. 2020, 136, 109494. DOI: 10.1016/j.foodres.2020.109494.
  • Rajoka, M. S. R.; Mehwish, H. M.; Siddiq, M.; Haobin, Z.; Zhu, J.; Yan, L.; Shao, D.; Xu, J.; Shi, J. Identification, Characterization, and Probiotic Potential of Lactobacillus Rhamnosus Isolated from Human Milk. LWT Food Sci. Technol. 2017, 84, 271–280. DOI: 10.1016/j.lwt.2017.05.055.
  • Tang, W.; Dong, M.; Wang, W.; Han, S.; Rui, X.; Chen, X.; Jiang, M.; Zhang, Q.; Wu, J.; Li, W. Structural Characterization and Antioxidant Property of Released Exopolysaccharides from Lactobacillus delbrueckii Ssp. Bulgaricus SRFM-1. Carbohydr. Polym. 2017, 173, 654–664. DOI: 10.1016/j.carbpol.2017.06.039.
  • Gorbach, S. L. Lactic Acid Bacteria and Human Health. Ann. Med. 1990, 22(1), 37–41. DOI: 10.3109/07853899009147239.
  • Masood, M. I.; Qadir, M. I.; Shirazi, J. H.; Khan, I. U. Beneficial Effects of Lactic Acid Bacteria on Human Beings. Crit. Rev. Microbiol. 2011, 37(1), 91–98. DOI: 10.3109/1040841X.2010.536522.
  • De Simone, C. The Unregulated Probiotic Market. Clin. Gastroenterol. Hepatol. 2019, 17(5), 809–817. DOI: 10.1016/j.cgh.2018.01.018.
  • Dowarah, R.; Verma, A. K.; Agarwal, N.; Singh, P.; Singh, B. R. Selection and Characterization of Probiotic Lactic Acid Bacteria and Its Impact on Growth, Nutrient Digestibility, Health and Antioxidant Status in Weaned Piglets. PLoS One. 2018, 13(3), e0192978. DOI: 10.1371/journal.pone.0192978.
  • Tsai, Y. L.; Lin, T. L.; Chang, C. J.; Wu, T. R.; Lai, W. F.; Lu, C. C.; Lai, H. C. Probiotics, Prebiotics and Amelioration of Diseases. J. Biomed. Sci. 2019, 26(1), 1–8. DOI: 10.1186/s12929-018-0493-6.
  • Indira, M.; Venkateswarulu, T. C.; Abraham Peele, K.; Nazneen Bobby, M.; Krupanidhi, S. Bioactive Molecules of Probiotic Bacteria and Their Mechanism of Action: A Review. 3 Biotech. 2019, 9(8), 306. DOI: 10.1007/s13205-019-1841-2.
  • Lynch, K. M.; Zannini, E.; Coffey, A.; Arendt, E. K. Lactic Acid Bacteria Exopolysaccharides in Foods and Beverages: Isolation, Properties, Characterization, and Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9(1), 155–176. DOI: 10.1146/annurev-food-030117-012537.
  • Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. DOI: 10.3389/fbioe.2021.612285.
  • Lozo, J.; Topisirovic, L.; Kojic, M. Natural Bacterial Isolates as an Inexhaustible Source of New Bacteriocins. Appl. Microbiol. Biotechnol. 2021, 105(2), 477–492. DOI: 10.1007/s00253-020-11063-3.
  • Ogawa, J.; Kishino, S.; Ando, A.; Sugimoto, S.; Mihara, K.; Shimizu, S. Production of Conjugated Fatty Acids by Lactic Acid Bacteria. J. Biosci. Bioeng. 2005, 100(4), 355–364. DOI: 10.1263/jbb.100.355.
  • Prete, R.; Alam, M. K.; Perpetuini, G.; Perla, C.; Pittia, P.; Corsetti, A. Lactic Acid Bacteria Exopolysaccharides Producers: A Sustainable Tool for Functional Foods. Foods. 2021, 10(7), 1653. DOI: 10.3390/foods10071653.
  • Sauer, M.; Russmayer, H.; Grabherr, R.; Peterbauer, C. K.; Marx, H. The Efficient Clade: Lactic Acid Bacteria for Industrial Chemical Production. Trends Biotechnol. 2017, 35(8), 756–769. DOI: 10.1016/j.tibtech.2017.05.002.
  • Schleifer, K. H.; Ehrmann, M.; Krusch, U.; Neve, H. Revival of the Species Streptococcus Thermophilus (Ex Orla-Jensen, 1919) Nom. Rev. Syst. Appl. Microbiol. 1991, 14(4), 386–388. DOI: 10.1016/S0723-2020(11)80314-0.
  • Iyer, R.; Tomar, S. K.; Maheswari, T. U.; Singh, R. Streptococcus Thermophilus Strains: Multifunctional Lactic Acid Bacteria. Int. Dairy J. 2010, 20(3), 133–141. DOI: 10.1016/j.idairyj.2009.10.005.
  • Uriot, O.; Denis, S.; Junjua, M.; Roussel, Y.; Dary-Mourot, A.; Blanquet-Diot, S. Streptococcus thermophilus: From Yogurt Starter to a New Promising Probiotic Candidate? J. Funct. Foods. 2017, 37, 74–89. DOI: 10.1016/j.jff.2017.07.038.
  • Michaylova, M.; Minkova, S.; Kimura, K.; Sasaki, T.; Isawa, K. Isolation and Characterization of Lactobacillus delbrueckii Ssp. Bulgaricus and Streptococcus Thermophilus from Plants in Bulgaria. FEMS microbiol. lett. 2007, 269(1), 160–169. DOI: 10.1111/j.1574-6968.2007.00631.x.
  • Wasilewska, E.; Zlotkowska, D.; Wroblewska, B. Yogurt Starter Cultures of Streptococcus Thermophilus and Lactobacillus Bulgaricus Ameliorate Symptoms and Modulate the Immune Response in a Mouse Model of Dextran Sulfate Sodium-Induced Colitis. J. Dairy Sci. 2019, 102(1), 37–53. DOI: 10.3168/jds.2018-14520.
  • Cui, Y.; Xu, T.; Qu, X.; Hu, T.; Jiang, X.; Zhao, C. New Insights into Various Production Characteristics of Streptococcus Thermophilus Strains. Int. J. Mol. Sci. 2016, 17(10), 1701. DOI: 10.3390/ijms17101701.
  • Taye, Y.; Degu, T.; Fesseha, H.; Mathewos, M. Isolation and Identification of Lactic Acid Bacteria from Cow Milk and Milk Products. Sci. World J. 2021, 2021, 1–6. DOI: 10.1155/2021/4697445.
  • Li, Y.; Li, L.; Kromann, S.; Chen, M.; Shi, L.; Meng, H. Antibiotic Resistance of Lactobacillus Spp. and Streptococcus Thermophilus Isolated from Chinese Fermented Milk Products. Foodborne Pathogens Dis. 2019, 16(3), 221–228. DOI: 10.1089/fpd.2018.2516.
  • Mizuno, H.; Tomotsune, K.; Islam, M. A.; Funabashi, R.; Albarracin, L.; Ikeda-Ohtsubo, W.; Aso, H.; Takahashi, H.; Kimura, K.; Villena, J., et al. Exopolysaccharides from Streptococcus Thermophilus ST538 Modulate the Antiviral Innate Immune Response in Porcine Intestinal Epitheliocytes. Front. Microbiol. 2020, 11, 894. DOI: 10.3389/fmicb.2020.00894.
  • Shani, N.; Isolini, D.; Marzohl, D.; Berthoud, H. Evaluation of a New Culture Medium for the Enumeration and Isolation of Streptococcus Salivarius Subsp. Thermophilus from Cheese. Food Microbiol. 2021, 95, 103672. DOI: 10.1016/j.fm.2020.103672.
  • Kanamarlapudi, S. L. R. K.; Muddada, S. Characterization of Exopolysaccharide Produced by Streptococcus Thermophilus CC30. Biomed Res. Int. 2017, 2017, 1–11. DOI: 10.1155/2017/4201809.
  • Sun, Z.; Chen, X.; Wang, J.; Zhao, W.; Shao, Y.; Wu, L.; Zhou, Z.; Sun, T.; Wang, H.; Zhang, H., et al. Complete Genome Sequence of Streptococcus Thermophilus Strain ND03. J. Bacteriol. 2011, 193(3), 793–794.A. DOI: 10.1128/JB.01374-10.
  • Degeest, B.; De Vuyst, L. Indication That the Nitrogen Source Influences Both Amount and Size of Exopolysaccharides Produced by Streptococcus Thermophilus LY03 and Modelling of the Bacterial Growth and Exopolysaccharide Production in a Complex Medium. Appl. Environ. Microbiol. 1999, 65(7), 2863–2870. DOI: 10.1128/AEM.65.7.2863-2870.1999.
  • Kort, R.; Westerik, N.; Mariela Serrano, L.; Douillard, F. P.; Gottstein, W.; Mukisa, I. M.; Tuijin Sybesma, W. A Novel Consortium of Lactobacillus Rhamnosus and Streptococcus Thermophilus for Increased Access to Functional Fermented Foods. Microb. Cell Factories. 2015, 14(1), 1–14. DOI: 10.1186/s12934-015-0370-x.
  • Delorme, C.; Bartholini, C.; Luraschi, M.; Pons, N.; Loux, V.; Almeida, M.; Renault, P. Complete Genome Sequence of the Pigmented Streptococcus Thermophilus Strain JIM8232. Am. Soc. Microbiol. 2011, 193(19), 5581–5582. DOI: 10.1128/JB.05404-11.
  • Andrighetto, C.; Borney, F.; Barmaz, A.; Stefanon, B.; Lombardi, A. Genetic Diversity of Streptococcus Thermophilus Strains Isolated from Italian Traditional Cheeses. Int. Dairy J. 2002, 12(2–3), 141–144. DOI: 10.1016/S0958-6946(01)00134-0.
  • Han, F.; Wu, G.; Zhang, Y.; Zheng, H.; Han, S.; Li, X.; Cai, W.; Liu, J.; Zhang, W.; Zhang, X., et al. Streptococcus Thermophilus Attenuates Inflammation in Septic Mice Mediated by Gut Microbiota. Front. Microbiol. 2020, 11, 598010. DOI: 10.3389/fmicb.2020.598010.
  • Ban, O. H.; Oh, S.; Park, C.; Bang, W. Y.; Lee, B. S.; Yang, S. Y.; Chae, S. A.; Jung, Y. H.; Yang, J. Safety Assessment of Streptococcus Thermophilus IDCC 2201 Used for Product Manufacturing in Korea. Food Sci. Nutr. 2020, 8(11), 6269–6274. DOI: 10.1002/fsn3.1925.
  • Xiao, T.; Shah, N. P. Lactic Acid Produced by Streptococcus Thermophilus Activated Glutamate Decarboxylase (GadA) in Lactobacillus Brevis NPS-QW 145 to Improve γ-Amino Butyric Acid Production During Soymilk Fermentation. LWT Food Sci. Technol. 2021, 137, 110474. DOI: 10.1016/j.lwt.2020.110474.
  • Hu, J. S.; Huang, Y. Y.; Kuang, J. H.; Yu, J. J.; Zhou, Q. Y.; Liu, D. M. Streptococcus Thermophiles DMST-H2 Promotes Recovery in Mice with Antibiotic-Associated Diarrhea. Microorganisms. 2020, 8(11), 1650. DOI: 10.3390/microorganisms8111650.
  • Kang, X.; Liang, H.; Luo, Y.; Li, Z.; He, F.; Han, X.; Zhang, L. Anti‐adipogenesis and Metabolism‐regulating Effects of Heat‐inactivated Streptococcus Thermophilus MN‐ZLW‐002. Lett Appl. Microbiol. 2021, 72(6), 677–687. DOI: 10.1111/lam.13398.
  • Kong, L. H.; Xiong, Z. Q.; Song, X.; Xia, Y. J.; Zhang, N.; Ai, L. Z. Characterization of a Panel of Strong Constitutive Promoters from Streptococcus Thermophilus for Fine-Tuning Gene Expression. ACS Synth. Biol. 2019, 8(6), 1469–1472. DOI: 10.1021/acssynbio.9b00045.
  • Rizzotti, L.; La Gioia, F.; Dellaglio, F.; Torriani, S. Characterization of Tetracycline-Resistant Streptococcus Thermophilus Isolates from Italian Soft Cheeses. Appl. Environ. Microbiol. 2009, 75(12), 4224–4229. DOI: 10.1128/AEM.01380-08.
  • Zhang, H.; Ren, W.; Guo, Q.; Xiong, Z.; Wang, G.; Xia, Y.; Lai, P.; Yin, B.; Ai, L. Characterization of a Yogurt-Quality Improving Exopolysaccharide from Streptococcus Thermophilus AR333. Food Hydrocoll. 2018, 81, 220–228. DOI: 10.1016/j.foodhyd.2017.12.017.
  • Sun, N.; Liu, H.; Liu, S.; Zhang, X.; Chen, P.; Li, W.; Xu, X.; Tian, W. Purification, Preliminary Structure and Antitumor Activity of Exopolysaccharide Produced by Streptococcus Thermophilus CH9. Molecules. 2018, 23(11), 2898. DOI: 10.3390/molecules23112898.
  • Yang, S.; Yu, H.; You, Y.; Li, X.; Jiang, J. Effective Lactic Acid Production from Waste Paper Using Streptococcus Thermophilus at Low Enzyme Loading Assisted by Gleditsia Saponin. Carbohydr. Polym. 2018, 200, 122–127. DOI: 10.1016/j.carbpol.2018.07.063.
  • Korcz, E.; Varga, L.; Kerényi, Z. Relationship Between Total Cell Counts and Exopolysaccharide Production of Streptococcus Thermophilus T9 in Reconstituted Skim Milk. LWT Food Sci. Technol. 2021, 148, 111775. DOI: 10.1016/j.lwt.2021.111775.
  • Han, M.; Liao, W. Y.; Wu, S. M.; Gong, X.; Bai, C. Use of Streptococcus Thermophilus for the in situ Production of γ-Aminobutyric Acid-Enriched Fermented Milk. J. Dairy Sci. 2020, 103(1), 98–105. DOI: 10.3168/jds.2019-16856.
  • Hu, T.; Cui, Y.; Qu, X. Analysis of the Proteolytic System of Streptococcus Thermophilus Strains CS5, CS9, CS18 and CS20. Int. Dairy J. 2021, 118, 105025. DOI: 10.1016/j.idairyj.2021.105025.
  • Chen, Y.; Zhang, M.; Ren, F. A Role of Exopolysaccharide Produced by Streptococcus Thermophilus in the Intestinal Inflammation and Mucosal Barrier in Caco-2 Monolayer and Dextran Sulphate Sodium-Induced Experimental Murine Colitis. Molecules. 2019, 24(3), 513. DOI: 10.3390/molecules24030513.
  • Karadeniz, D. G.; Kaskatepe, B.; Kiymaci, M. E.; Tok, K. C.; Gumustas, M.; Karaaslan, C. Microbial Exopolysaccharide Production of Streptococcus Thermophilus and Its Antiquorum Sensing Activity. Arch. Microbiol. 2021, 203(6), 3331–3339. DOI: 10.1007/s00203-021-02313-7.
  • Achigar, R.; Scarrone, M.; Rousseau, G. M.; Philippe, C.; Machado, F.; Duvós, V.; Campot, M. P.; Dion, M. B.; Shao, Y.; Pianzzola, M. J., et al. Ectopic Spacer Acquisition in Streptococcus Thermophilus CRISPR3 Array. Microorganisms. 2021, 9(3), 512. DOI: 10.3390/microorganisms9030512.
  • Kong, L. H.; Xiong, Z. Q.; Xia, Y. J.; Ai, L. Z. High‐efficiency Transformation of Streptococcus Thermophilus Using Electroporation. J. Sci. Food Agric. 2021, 101(15), 6578–6585. DOI: 10.1002/jsfa.11292.
  • Meijers, A. S.; Troost, R.; Ummels, R.; Maaskant, J.; Speer, A.; Nejentsev, S.; Bitter, W.; Kuijl, C. P. Efficient Genome Editing in Pathogenic Mycobacteria Using Streptococcus Thermophilus CRISPR1-Cas9. Tuberculosis. 2020, 124, 101983. DOI: 10.1016/j.tube.2020.101983.
  • Krausova, G.; Kana, A.; Vecka, M.; Hyrslova, I.; Stankova, B.; Kantorova, V.; Mrvikova, I.; Huttl, M.; Malinska, H. In vivo Bioavailability of Selenium in Selenium-Enriched Streptococcus Thermophilus and Enterococcus Faecium in CD IGS Rats. Antioxidants. 2021, 10(3), 463. DOI: 10.3390/antiox10030463.
  • Tarrah, A.; Castilhos, J. D.; Rossi, R. C.; Duarte, V. D. S.; Ziegler, D. R.; Corich, V.; Giacomini, A. In vitro Probiotic Potential and Anti-Cancer Activity of Newly Isolated Folate-Producing Streptococcus Thermophilus Strains. Front. Microbiol. 2018, 9, 2214. DOI: 10.3389/fmicb.2018.02214.
  • Zhang, J.; Liu, M.; Xu, J.; Qi, Y.; Zhao, N.; Fan, M. First Insight into the Probiotic Properties of ten Streptococcus Thermophilus Strains Based on in vitro Conditions. Curr. Microbiol. 2020, 77(3), 343–352. DOI: 10.1007/s00284-019-01840-3.
  • Cao, F.; Liang, M.; Liu, J.; Liu, Y.; Renye, J. A., Jr; Qi, P. X.; Ren, D. Characterization of an Exopolysaccharide (EPS-3A) Produced by Streptococcus Thermophilus ZJUIDS-2-01 Isolated from Traditional Yak Yogurt. Int. J. Biol. Macromol. 2021, 192, 1331–1343. DOI: 10.1016/j.ijbiomac.2021.10.055.
  • McDonnell, B.; Hanemaaijer, L.; Bottacini, F.; Kelleher, P.; Lavelle, K.; Sadovskaya, I.; Vinogradov, E.; van Themaat, E. V. L.; Kouwen, T.; Jennifer, M., et al. A Cell Wall‐associated Polysaccharide is Required for Bacteriophage Adsorption to the Streptococcus Thermophilus Cell Surface. Mol. Microbiol. 2020, 114(1), 31–45. DOI: 10.1111/mmi.14494.
  • da Silva Duarte, V.; Giaretta, S.; Campanaro, S.; Treu, L.; Armani, A.; Tarrah, A.; de Paula, S. O.; Giacomini, A.; Corich, V. A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus Thermophilus M17PTZA496. Viruses. 2018, 11(1), 7. DOI: 10.3390/v11010007.
  • Mu, Y.; Xin, Y.; Guo, T.; Kong, J. Identification and Characterization of a Moonlighting Protein-Enolase for Surface Display in Streptococcus Thermophilus. Microb. Cell Factories. 2020, 19(1), 1–10. DOI: 10.1186/s12934-020-01389-y.
  • Drouault, S.; Anba, J.; Corthier, G. Streptococcus Thermophilus is Able to Produce a β-Galactosidase Active During Its Transit in the Digestive Tract of Germ-Free Mice. Appl. Environ. Microbiol. 2002, 68(2), 938–941. DOI: 10.1128/AEM.68.2.938-941.2002.
  • Shen, S. R.; Chen, W. J.; Chu, H. F.; Wu, S. H.; Wang, Y. R.; Shen, T. L. Amelioration of 5-Fluorouracil-Induced Intestinal Mucositis by Streptococcus Thermophilus ST4 in a Mouse Model. PLoS One. 2021, 16(7), e0253540. DOI: 10.1371/journal.pone.0253540.
  • Treu, L.; Vendramin, V.; Bovo, B.; Campanaro, S.; Corich, V.; Giacomini, A. Genome Sequences of Streptococcus Thermophilus Strains MTH17CL396 and M17PTZA496 from Fontina, an Italian PDO Cheese. Genome Announc. 2014, 2(1), e00067-14. DOI: 10.1128/genomeA.00067-14.
  • Shehata, H. R.; Chandler, R. A.; Newmaster, S. G. Draft Genome Sequence of Streptococcus Thermophilus Strain CBC-S77, Isolated from Homemade Dairy Foods in Bulgaria. Microbiol. Resour. Announc. 2020, 9(37), e00879-20. DOI: 10.1128/MRA.00879-20.
  • Selwal, K. K.; Selwal, M. K.; Gandhi, D. N. Effect of Freeze Drying Process on Some Properties of Streptococcus Thermophilus Isolated from Dairy Products. Braz. J. Microbiol. 2011, 42(4), 1500–1505. DOI: 10.1590/S1517-83822011000400037.
  • Bolotin, A.; Quinquis, B.; Renault, P.; Sorokin, A.; Ehrlich, S. D.; Kulakauskas, S.; Lapidus, A.; Goltsman, E.; Mazur, M.; Pusch, G. D., et al. Complete Sequence and Comparative Genome Analysis of the Dairy Bacterium Streptococcus Thermophilus. Nat. Biotechnol. 2004, 22(12), 1554–1558. DOI: 10.1038/nbt1034.
  • Lobo, R. E.; Gómez, M. I.; de Valdez, G. F.; Torino, M. I. Physicochemical and Antioxidant Properties of a Gastroprotective Exopolysaccharide Produced by Streptococcus Thermophilus CRL1190. Food Hydrocoll. 2019, 96, 625–633. DOI: 10.1016/j.foodhyd.2019.05.036.
  • Wu, Q.; Tun, H. M.; Leung, F. C. C.; Shah, N. P. Genomic Insights into High Exopolysaccharide-Producing Dairy Starter Bacterium Streptococcus Thermophilus ASCC 1275. Sci. Rep. 2014, 4(1), 1–8. DOI: 10.1038/srep04974.
  • Delorme, C.; Bartholini, C.; Luraschi, M.; Pons, N.; Loux, V.; Almeida, M.; Guédon, E.; Gibrat, J.; Renault, P. Complete Genome Sequence of the Pigmented Streptococcus Thermophilus Strain JIM8232. J. Bacteriol. 2011, 193(19), 5581–5582. DOI: 10.1128/JB.05404-11.
  • Shi, Y.; Chen, Y.; Li, Z.; Yang, L.; Chen, W.; Mu, Z. Complete Genome Sequence of Streptococcus Thermophilus MN-BM-A02, a Rare Strain with a High Acid-Producing Rate and Low Post-Acidification Ability. Genome Announc. 2015, 3(5), e00979-15. DOI: 10.1128/genomeA.00979-15.
  • Labrie, S. J.; Tremblay, D. M.; Plante, P. L.; Wasserscheid, J.; Dewar, K.; Corbeil, J.; Moineau, S. Complete Genome Sequence of Streptococcus Thermophilus SMQ-301, a Model Strain for Phage-Host Interactions. Genome Announc. 2015, 3(3), e00480-15. DOI: 10.1128/genomeA.00480-15.
  • Lu, Y.; Huang, L.; Yang, T.; Lv, F.; Lu, Z. Optimization of a Cryoprotective Medium to Increase the Viability of Freeze-Dried Streptococcus Thermophilus by Response Surface Methodology. LWT Food Sci. Technol. 2017, 80, 92–97. DOI: 10.1016/j.lwt.2017.01.044.
  • Bennama, R.; Fernández, M.; Ladero, V.; Alvarez, M. A.; Rechidi-Sidhoum, N.; Bensoltane, A. Isolation of an Exopolysaccharide-Producing Streptococcus Thermophilus from Algerian Raw Cow Milk. Eur. Food Res. Technol. 2012, 234(1), 119–125. DOI: 10.1007/s00217-011-1620-8.
  • Thibessard, A.; Fernandez, A.; Gintz, B.; Leblond-Bourget, N.; Decaris, B. Hydrogen Peroxide Effects on Streptococcus Thermophilus CNRZ368 Cell Viability. Res. Microbiol. 2001, 152(6), 593–596. DOI: 10.1016/S0923-2508(01)01234-7.
  • Soundharrajan, I.; Kim, D.; Kuppusamy, P.; Muthusamy, K.; Lee, H. J.; Choi, K. C. Probiotic and Triticale Silage Fermentation Potential of Pediococcus Pentosaceus and Lactobacillus Brevis and Their Impacts on Pathogenic Bacteria. Microorganisms. 2019, 7(9), 318. DOI: 10.3390/microorganisms7090318.
  • Tarrah, A.; Noal, V.; Treu, L.; Giaretta, S.; da Silva Duarte, V.; Corich, V.; Giacomini, A. Comparison of Growth Kinetics at Different Temperatures of Streptococcus Macedonicus and Streptococcus Thermophilus Strains of Dairy Origin. J. Dairy Sci. 2018, 101(9), 7812–7816. DOI: 10.3168/jds.2018-14731A.
  • Facklam, R. What Happened to the Streptococci: Overview of Taxonomic and Nomenclature Changes. Clin. Microbiol. Rev. 2002, 15(4), 613–630. DOI: 10.1128/CMR.15.4.613-630.2002.
  • Doyuk, E.; Ormerod, O. J.; Bowler, I. C. Native Valve Endocarditis Due to Streptococcus Vestibularis and Streptococcus Oralis. J. Infect. 2002, 45(1), 39–41. DOI: 10.1053/jinf.2002.1004.
  • Idigoras, P.; Valiente, A.; Iglesias, L.; Trieu-Cuot, P.; Poyart, C. Meningitis Due to Streptococcus Salivarius. J. Clin. Microbiol. 2001, 39(8), 3017. DOI: 10.1128/JCM.39.8.3017.2001.
  • Ruoff, K. L.; Miller, S. I.; Garner, C. V.; Ferraro, M. J.; Calderwood, S. B. Bacteremia with Streptococcus Bovis and Streptococcus Salivarius: Clinical Correlates of More Accurate Identification of Isolates. J. Clin. Microbiol. 1989, 27(2), 305–308. DOI: 10.1128/jcm.27.2.305-308.1989.
  • Silva, L. F.; Sunakozawa, T. N.; Amaral, D. M. F.; Casella, T.; Nogueira, M. C. L.; Lindner, J. D. D.; Bottari, B.; Gatti, M.; Penna, A. L. B. Safety and Technological Application of Autochthonous Streptococcus Thermophilus Cultures in the Buffalo Mozzarella Cheese. Food Microbiol. 2020, 87, 103383. DOI: 10.1016/j.fm.2019.103383.
  • Hols, P.; Hancy, F.; Fontaine, L.; Grossiord, B.; Prozzi, D.; Leblond-Bourget, N.; Decaris, B.; Bolotin, A.; Delorme, C.; Ehrlich, S. D., et al. New Insights in the Molecular Biology and Physiology of Streptococcus Thermophilus Revealed by Comparative Genomics. FEMS Microbiol. Rev. 2005, 29(3), 435–463. DOI: 10.1016/j.fmrre.2005.04.008.
  • Han, M.; Wu, Y.; Guo, X.; Jiang, L.; Wang, X.; Gai, Z. Milk Fermentation by Monocultures or Co-Cultures of Streptococcus Thermophilus Strains. Front. Bioeng. Biotechnol. 2022, 10, 1097013. DOI: 10.3389/fbioe.2022.1097013.
  • Marino, M.; Maifreni, M.; Rondinini, G. Microbiological Characterization of Artisanal Montasio Cheese: Analysis of Its Indigenous Lactic Acid Bacteria. FEMS microbiol. lett. 2003, 229(1), 133–140. DOI: 10.1016/S0378-1097(03)00816-4.
  • Ott, A.; Germond, J. E.; Chaintreau, A. Origin of Acetaldehyde During Milk Fermentation Using 13C-Labeled Precursors. J. Agric. Food Chem. 2000, 48(5), 1512–1517. DOI: 10.1021/jf9904867.
  • Agyei, D.; Danquah, M. Carbohydrate Utilization Affects Lactobacillus delbrueckii Subsp. Lactis 313 Cell-Enveloped-Associated Proteinase Production. Biotechnol. Bioprocess Eng. 2012, 17(4). DOI: 10.1007/s12257-012-0106-2.
  • Gude, S.; Pherribo, G. J.; Taga, M. E. A Salvaging Strategy Enables Stable Metabolite Provisioning Among Free-Living Bacteria. Msystems 2022, 7(4), e00288-22. DOI: 10.1128/msystems.00288-22.
  • Daliri, E. B. M.; Lee, B. H. New Perspectives on Probiotics in Health and Disease. Food Sci. Hum. Wellness. 2015, 4(2), 56–65. DOI: 10.1016/j.fshw.2015.06.002.
  • Peralta, G. H.; Bergamini, C. V.; Hynes, E. R. Aminotransferase and Glutamate Dehydrogenase Activities in Lactobacilli and Streptococci. Braz. J. Microbiol. 2016, 47(3), 741–748. DOI: 10.1016/j.bjm.2016.04.005.
  • Wa, Y.; Zhang, C.; Sun, G.; Qu, H.; Chen, D.; Huang, Y.; Gu, R. Effect of Amino Acids on Free Exopolysaccharide Biosynthesis by Streptococcus Thermophilus 937 in Chemically Defined Medium. J. Dairy Sci. 2022, 105(8), 6460–6468. DOI: 10.3168/jds.2022-21814.
  • Cui, Y.; Jiang, X.; Hao, M.; Qu, X.; Hu, T. New Advances in Exopolysaccharides Production of Streptococcus Thermophilus. Arch. Microbiol. 2017, 199(6), 799–809. DOI: 10.1007/s00203-017-1366-1.
  • Iyer, R.; Tomar, S. K.; Kapila, S.; Mani, J.; Singh, R. Probiotic Properties of Folate Producing Streptococcus Thermophilus Strains. Food Res. Int. 2010, 43(1), 103–110. DOI: 10.1016/j.foodres.2009.09.011.
  • Wright, A. J.; Dainty, J. R.; Finglas, P. M. Folic Acid Metabolism in Human Subjects Revisited: Potential Implications for Proposed Mandatory Folic Acid Fortification in the UK. Br. J. Nutr. 2007, 98(4), 667–675. DOI: 10.1017/S0007114507777140.
  • Crittenden, R. G.; Martinez, N. R.; Playne, M. J. Synthesis and Utilisation of Folate by Yoghurt Starter Cultures and Probiotic Bacteria. Int. J. Food Microbiol. 2003, 80(3), 217–222. DOI: 10.1016/S0168-1605(02)00170-8.
  • Holasová, M.; Fiedlerová, V.; Roubal, P.; Pechačová, M. Biosynthesis of Folates by Lactic Acid Bacteria and Propionibacteria in Fermented Milk. Czech J. Food Sci. 2004, 22(5), 175. DOI: 10.17221/3421-CJFS.
  • Senok, A. C.; Ismaeel, A. Y.; Botta, G. A. Probiotics: Facts and Myths. Clin. Microbiol. Infect. 2005, 11(12), 958–966. DOI: 10.1111/j.1469-0691.2005.01228.x.
  • Del Campo, R.; Bravo, D.; Cantón, R.; Ruiz-Garbajosa, P.; García-Albiach, R.; Montesi-Libois, A.; Yuste, F.; Abraira, V.; Baquero, F. Scarce Evidence of Yogurt Lactic Acid Bacteria in Human Feces After Daily Yogurt Consumption by Healthy Volunteers. Appl. Environ. Microbiol. 2005, 71(1), 547–549. DOI: 10.1128/AEM.71.1.547-549.2005.
  • Ballesta, S.; Velasco, C.; Borobio, M. V.; Argueelles, F.; Perea, E. J. Fresh versus Pasteurized Yogurt: Comparative Study of the Effects on Microbiological and Immunological Parameters, and Gastrointestinal Comfort. Enferm. Infecc. Microbiol. Clin. 2008, 26(9), 552–557. DOI: 10.1157/13128271.
  • Pochart, P.; Dewit, O.; Desjeux, J. F.; Bourlioux, P. Viable Starter Culture, Beta-Galactosidase Activity, and Lactose in Duodenum After Yogurt Ingestion in Lactase-Deficient Humans. Am. J. Clin. Nutr. 1989, 49(5), 828–831. DOI: 10.1093/ajcn/49.5.828.
  • García‐hernández, J.; Moreno, Y.; Chuan, C.; Hernández, M. In vivo Study of the Survival of Lactobacillus Delbruecki Subsp. Bulgaricus CECT 4005T and Streptococcus Thermophilus CECT 801 by Dvc‐fish After Consumption of Fermented Milk. J. Food Sci. 2012, 77(10), M593–597. DOI: 10.1111/j.1750-3841.2012.02918.x.
  • Brigidi, P.; Swennen, E.; Vitali, B.; Rossi, M.; Matteuzzi, D. PCR Detection of Bifidobacterium Strains and Streptococcus Thermophilus in Feces of Human Subjects After Oral Bacteriotherapy and Yogurt Consumption. Int. J. Food Microbiol. 2003, 81(3), 203–209. DOI: 10.1016/S0168-1605(02)00245-3.
  • Lick, S.; Drescher, K.; Heller, K. J. Survival of Lactobacillus delbrueckii Subsp. Bulgaricus and Streptococcus Thermophilus in the Terminal Ileum of Fistulated Gottingen Minipigs. Appl. Environ. Microbiol. 2001, 67(9), 4137–4143. DOI: 10.1128/AEM.67.9.4137-4143.2001.
  • Dilmi Bouras, A.; Sadoun, D. Survival of Starters of Yogurt in the Digestive Tract of Rabbits. Lait (France). 2002, 82(2), 247–253.
  • Thomas, M.; Wrzosek, L.; Ben-Yahia, L.; Noordine, M. L.; Gitton, C.; Chevret, D.; Langella, P.; Mayeur, C.; Cherbuy, C.; Rul, F. Carbohydrate Metabolism is Essential for the Colonization of Streptococcus Thermophilus in the Digestive Tract of Gnotobiotic Rats. PLoS One. 2011, 6(12), e28789. DOI: 10.1371/journal.pone.0028789.
  • Kebouchi, M.; Galia, W.; Genay, M.; Soligot, C.; Lecomte, X.; Awussi, A. A.; Perrin, C.; Roux, E.; Dary-Mourot, A.; Le Roux, Y. Implication of Sortase-Dependent Proteins of Streptococcus Thermophilus in Adhesion to Human Intestinal Epithelial Cell Lines and Bile Salt Tolerance. Appl. Microbiol. Biotechnol. 2016, 100(8), 3667–3679. DOI: 10.1007/s00253-016-7322-1.
  • Boke, H.; Aslim, B.; Alp, G. The Role of Resistance to Bile Salts and Acid Tolerance of Exopolysaccharides (EPSS) Produced by Yogurt Starter Bacteria. Arch. Biol. Sci. 2010, 62(2), 323–328. DOI: 10.2298/ABS1002323B.
  • Ziar, H.; Gérard, P.; Riazi, A. Effect of Prebiotic Carbohydrates on Growth, Bile Survival and Cholesterol Uptake Abilities of Dairy‐related Bacteria. J. Sci. Food Agric. 2014, 94(6), 1184–1190. DOI: 10.1002/jsfa.6395.
  • Marteau, P. M.; Minekus, M.; Havenaar, R.; Huis, J. H. J. Survival of Lactic Acid Bacteria in a Dynamic Model of the Stomach and Small Intestine: Validation and the Effects of Bile. J. Dairy Sci. 1997, 80(6), 1031–1037. DOI: 10.3168/jds.S0022-0302(97)76027-2.
  • Uriot, O.; Galia, W.; Awussi, A. A.; Perrin, C.; Denis, S.; Chalancon, S.; Lorson, E.; Poirson, C.; Junjua, M.; Roux, Y. L., et al. Use of the Dynamic Gastro-Intestinal Model TIM to Explore the Survival of the Yogurt Bacterium Streptococcus Thermophilus and the Metabolic Activities Induced in the Simulated Human Gut. Food Microbiol. 2016, 53, 18–29. DOI: 10.1016/j.fm.2015.05.007.
  • Minelli, E. B.; Benini, A. Relationship Between Number of Bacteria and Their Probiotic Effects. Microb. Ecol. Health Dis. 2008, 20(4), 180–183. DOI: 10.1080/08910600802408095.
  • Vesa, T. H.; Marteau, P.; Korpela, R. Lactose Intolerance. J. Am. Coll. Nutr. 2000, 19(sup2), 165S–175S. DOI: 10.1080/07315724.2000.10718086.
  • Mater, D. D.; Drouault-Holowacz, S.; Oozeer, R.; Langella, P.; Anba, J.; Corthier, G. β-Galactosidase Production by Streptococcus Thermophilus is Higher in the Small Intestine Than in the Caecum of Human-Microbiota-Associated Mice After Lactose Supplementation. Br. J. Nutr. 2006, 96(1), 177–181. DOI: 10.1079/BJN20051724.
  • Rodríguez, C.; Medici, M.; Rodriguez, A. V.; Mozzi, F.; de Valdez, G. F. Prevention of Chronic Gastritis by Fermented Milks Made with Exopolysaccharide-Producing Streptococcus Thermophilus Strains. J. Dairy Sci. 2009, 92(6), 2423–2434. DOI: 10.3168/jds.2008-1724.
  • Rodríguez, C.; Medici, M.; Mozzi, F.; de Valdez, G. F. Therapeutic Effect of Streptococcus Thermophilus CRL 1190-Fermented Milk on Chronic Gastritis. World J. Gastroenterol. 2010, 16(13), 1622. DOI: 10.3748/wjg.v16.i13.1622.
  • Saavedra, J. M.; Bauman, N. A.; Perman, J. A.; Yolken, R. H.; Oung, I. Feeding of Bifidobacterium Bifidum and Streptococcus Thermophilus to Infants in Hospital for Prevention of Diarrhoea and Shedding of Rotavirus. Lancet. 1994, 344(8929), 1046–1049. DOI: 10.1016/S0140-6736(94)91708-6.
  • Saavedra, J. M.; Abi-Hanna, A.; Moore, N.; Yolken, R. H. Long-Term Consumption of Infant Formulas Containing Live Probiotic Bacteria: Tolerance and Safety. Am. J. Clin. Nutr. 2004, 79(2), 261–267. DOI: 10.1093/ajcn/79.2.261.
  • Canani, R. B.; Cirillo, P.; Terrin, G.; Cesarano, L.; Spagnuolo, M. I.; De Vincenzo, A.; Albano, F.; Passariello, A.; De Marco, G.; Manguso, F., et al. Probiotics for Treatment of Acute Diarrhoea in Children: Randomised Clinical Trial of Five Different Preparations. Bmj-British Medical Journal. 2007, 335(7615), 340. DOI: 10.1136/bmj.39272.581736.55.
  • Beniwal, R. S.; Arena, V. C.; Thomas, L.; Narla, S.; Imperiale, T. F.; Chaudhry, R. A.; Ahmad, U. A. A Randomized Trial of Yogurt for Prevention of Antibiotic-Associated Diarrhea. Dig. Dis. Sci. 2003, 48(10), 2077–2082. DOI: 10.1023/A:1026155328638.
  • Conway, S.; Hart, A.; Clark, A.; Harvey, I. Does Eating Yogurt Prevent Antibiotic-Associated Diarrhoea?: A Placebo-Controlled Randomised Controlled Trial in General Practice. Br. J. Gen. Pract. 2007, 57(545), 953–959.
  • Patro-Golab, B.; Shamir, R.; Szajewska, H. Yogurt for Treating Antibiotic-Associated Diarrhea: Systematic Review and Meta-Analysis. Nutrition. 2015, 31(6), 796–800. DOI: 10.1016/j.nut.2014.11.013.
  • Priyodip, P.; Balaji, S. Probiotic Validation of a Non-Native, Thermostable, Phytase-Producing Bacterium: Streptococcus Thermophilus. Curr. Microbiol. 2020, 77(8), 1540–1549. DOI: 10.1007/s00284-020-01957-w.
  • Masumuzzaman, M.; Evivie, S. E.; Ogwu, M. C.; Li, B.; Du, J.; Li, W.; Huo, G.; Liu, F.; Wang, S. Genomic and in vitro Properties of the Dairy Streptococcus Thermophilus SMQ-301 Strain Against Selected Pathogens. Food Funct. 2021, 12(15), 7017–7028. DOI: 10.3390/antibiotics12020274.
  • Li, S.; Shah, N. P. Antioxidant and Antibacterial Activities of Sulphated Polysaccharides from Pleurotus Eryngii and Streptococcus Thermophilus ASCC 1275. Food Chem. 2014, 165, 262–270. DOI: 10.1016/j.foodchem.2014.05.110.
  • Kolling, G. L.; Wu, M.; Warren, C. A.; Durmaz, E.; Klaenhammer, T. R.; Guerrant, R. L. Lactic Acid Production by Streptococcus Thermophilus Alters Clostridium Difficile Infection and in vitro Toxin a Production. Gut Microbes. 2012, 3(6), 523–529. DOI: 10.4161/gmic.21757.
  • Rossi, F.; Marzotto, M.; Cremonese, S.; Rizzotti, L.; Torriani, S. Diversity of Streptococcus Thermophilus in Bacteriocin Production; Inhibitory Spectrum and Occurrence of Thermophilin Genes. Food Microbiol. 2013, 35(1), 27–33. DOI: 10.1016/j.fm.2013.02.006.
  • Ito, M.; Ohishi, K.; Yoshida, Y.; Yokoi, W.; Sawada, H. Antioxidative Effects of Lactic Acid Bacteria on the Colonic Mucosa of Iron-Overloaded Mice. J. Agric. Food Chem. 2003, 51(15), 4456–4460. DOI: 10.1021/jf0261957.
  • Ito, M.; Ohishi, K.; Yoshida, Y.; Okumura, T.; Sato, T.; Yokoi, W.; Sawada, H. Preventive Effect of Streptococcus Thermophilus YIT 2001 on Dextran Sulfate Sodium-Induced Colitis in Mice. Biosci. Biotechnol. Biochem. 2008, 72(10), 2543–2547. DOI: 10.1271/bbb.80240.
  • Ito, M.; Oishi, K.; Yoshida, Y.; Okumura, T.; Sato, T.; Naito, E.; Yokoi, H.; Sawada, H. Effects of Lactic Acid Bacteria on Low-Density Lipoprotein Susceptibility to Oxidation and Aortic Fatty Lesion Formation in Hyperlipidemic Hamsters. Beneficial Microbes. 2015, 6(3), 287–293. DOI: 10.3920/BM2014.0040.
  • Terahara, M.; Kurama, S.; Takemoto, N. Prevention by Lactic Acid Bacteria of the Oxidation of Human LDL. Bioscience, Biotechnology, and Biochemistry. 2001, 65(8), 1864–1868. DOI: 10.1271/bbb.65.1864.
  • Purwandari, U.; Shah, N. P.; Vasiljevic, T. Effects of Exopolysaccharide-Producing Strains of Streptococcus Thermophilus on Technological and Rheological Properties of Set-Type Yoghurt. Int. Dairy J. 2007, 17(11), 1344–1352. DOI: 10.1016/j.idairyj.2007.01.018.
  • Settachaimongkon, S.; Nout, M. R.; Fernandes, E. C. A.; Hettinga, K. A.; Vervoort, J. M.; van Hooijdonk, T. C.; Zwietering, M. H.; Smid, E. J.; van Valenberg, H. J. Influence of Different Proteolytic Strains of Streptococcus Thermophilus in Co-Culture with Lactobacillus delbrueckii Subsp. Bulgaricus on the Metabolite Profile of Set-Yoghurt. Int. J. Food Microbiol. 2014, 177, 29–36. DOI: 10.1016/j.ijfoodmicro.2014.02.008.
  • Xu, Z.; Guo, Q.; Zhang, H.; Xiong, Z.; Zhang, X.; Ai, L. Structural Characterisation of EPS of Streptococcus Thermophilus S-3 and Its Application in Milk Fermentation. Int. J. Biol. Macromol. 2021, 178, 263–269. DOI: 10.1016/j.ijbiomac.2021.02.173.
  • Xu, Z.; Guo, Q.; Zhang, H.; Wu, Y.; Hang, X.; Ai, L. Exopolysaccharide Produced by Streptococcus Thermophiles S-3: Molecular, Partial Structural and Rheological Properties. Carbohydr. Polym. 2018, 194, 132–138. DOI: 10.1016/j.carbpol.2018.04.014.
  • Meucci, A.; Rossetti, L.; Zago, M.; Monti, L.; Giraffa, G.; Carminati, D.; Tidona, F. Folates Biosynthesis by Streptococcus Thermophilus During Growth in Milk. Food Microbiol. 2018, 69, 116–122. DOI: 10.1016/j.fm.2017.08.001.
  • Xiong, Z. Q.; Kong, L. H.; Lai, P. F. H.; Xia, Y. J.; Liu, J. C.; Li, Q. Y.; Ai, L. Z. Genomic and Phenotypic Analyses of Exopolysaccharide Biosynthesis in Streptococcus Thermophilus S-3. J. Dairy Sci. 2019, 102(6), 4925–4934. DOI: 10.3168/jds.2018-15572.
  • Wang, Y. C.; Yu, R. C.; Yang, H. Y.; Chou, C. C. Sugar and Acid Contents in Soymilk Fermented with Lactic Acid Bacteria Alone or Simultaneously with Bifidobacteria. Food Microbiol. 2003, 20(3), 333–338. DOI: 10.1016/S0740-0020(02)00125-9.
  • Allouche, R.; Hafeez, Z.; Papier, F.; Dary-Mourot, A.; Genay, M.; Miclo, L. In vitro Anti-Inflammatory Activity of Peptides Obtained by Tryptic Shaving of Surface Proteins of Streptococcus Thermophilus LMD-9. Foods. 2022, 11(8), 1157. DOI: 10.3390/foods11081157.
  • Dargahi, N.; Johnson, J.; Donkor, O.; Vasiljevic, T.; Apostolopoulos, V. Immunomodulatory Effects of Streptococcus Thermophilus on U937 Monocyte Cell Cultures. J. Funct. Foods. 2018, 49, 241–249. DOI: 10.1016/j.jff.2018.08.038.
  • Dargahi, N.; Matsoukas, J.; Apostolopoulos, V. Streptococcus Thermophilus ST285 Alters Pro-Inflammatory to Anti-Inflammatory Cytokine Secretion Against Multiple Sclerosis Peptide in Mice. Brain Sci. 2020, 10(2), 126. DOI: 10.3390/brainsci10020126.
  • Jeon, M. G.; Kim, T. R.; Lee, J. Y.; Kim, H. S.; Ji, Y.; Holzapfel, W. H.; Bae, C.; Hwang, Y. P. Hepatoprotective Effects of Streptococcus Thermophilus LM1012 in Mice Exposed to Air Pollutants. J. Med. Food. 2020, 23(8), 852–861. DOI: 10.1089/jmf.2019.4636.
  • Li, Q.; Hu, W.; Liu, W. X.; Zhao, L. Y.; Huang, D.; Liu, X. D.; Chan, H.; Zhang, Y.; Zeng, J.; Coker, O. O., et al. Streptococcus Thermophilus Inhibits Colorectal Tumorigenesis Through Secreting β-Galactosidase. Gastroenterol. 2021, 160(4), 1179–1193. DOI: 10.1053/j.gastro.2020.09.003.
  • Tenea, G. N.; Suárez, J. Probiotic Potential and Technological Properties of Bacteriocinogenic Lactococcus lactis Subsp. Lactis UTNGt28 from a Native Amazonian Fruit as a Yogurt Starter Culture. Microorganisms. 2020, 8(5), 733. DOI: 10.3390/microorganisms8050733.
  • Li, D.; Fu, X.; Mu, S.; Fei, T.; Zhao, Y.; Fu, J.; Lee, B.; Ma, Y.; Zhao, J.; Hou, J., et al. Potato Starch Modified by Streptococcus Thermophilus GtfB Enzyme Has Low Viscoelastic and Slowly Digestible Properties. Int. J. Biol. Macromol. 2021, 183, 1248–1256. DOI: 10.1016/j.ijbiomac.2021.05.032.
  • Allam, N. G.; Ali, E. M. M.; Shabanna, S.; Abd-Elrahman, E. Protective Efficacy of Streptococcus Thermophilus Against Acute Cadmium Toxicity in Mice. Iran. J. Pharm. Res. 2018, 17(2), 695.
  • Wu, Y.; Li, S.; Tao, Y.; Li, D.; Han, Y.; Show, P. L.; Wen, G.; Zhou, J. Fermentation of Blueberry and Blackberry Juices Using Lactobacillus plantarum, Streptococcus Thermophilus and Bifidobacterium bifidum: Growth of Probiotics, Metabolism of Phenolics, Antioxidant Capacity in vitro and Sensory Evaluation. Food Chem. 2021, 348, 129083. DOI: 10.1016/j.foodchem.2021.129083.
  • Kumar, M.; Nagpal, R.; Kumar, R.; Hemalatha, R.; Verma, V.; Kumar, A.; Chakraborty, C.; Singh, B.; Marotta, F.; Jain, S., et al. Cholesterol-Lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases. Exp. Diabetes Res. 2012. DOI: 10.1155/2012/902917.
  • Shukla, R.; Goyal, A. Novel Dextran from Pediococcus Pentosaceus CRAG3 Isolated from Fermented Cucumber with Anti-Cancer Properties. Int. J. Biol. Macromol. 2013, 62, 352–357. DOI: 10.1016/j.ijbiomac.2013.09.043.
  • Lavelle, K.; Martinez, I.; Neve, H.; Lugli, G. A.; Franz, C. M.; Ventura, M.; Bello, F. D.; Sinderen, D. V.; Mahony, J. Biodiversity of Streptococcus Thermophilus Phages in Global Dairy Fermentations. Viruses-Basel. 2018, 10(10), 577. DOI: 10.3390/v10100577.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.