2,415
Views
3
CrossRef citations to date
0
Altmetric
Review

Significance of Glass Transition Temperature of Food Material in Selecting Drying Condition: An In-Depth Analysis

, , , &

References

  • Červenka, L.; Stępień, A.; Frühbauerová, M.; Velichová, H.; Witczak, M. Thermodynamic Properties and Glass Transition Temperature of Roasted and Unroasted Carob (Ceratonia Siliqua L.) Powder. Food Chem. 2019, 300, 125208. DOI: 10.1016/j.foodchem.2019.125208.
  • Mahato, S.; Zhu, Z.; Sun, D. W. Glass Transitions as Affected by Food Compositions and by Conventional and Novel Freezing Technologies: A Review. Trends Food Sci. Technol. 2019, 94, 1–11. Elsevier Ltd. DOI: 10.1016/j.tifs.2019.09.010.
  • Nastasović, A. B.; Onjia, A. E. Determination of Glass Temperature of Polymers by Inverse Gas Chromatography. J. Chromatography. A. 2008, 1195(1–2), 1–15. DOI: 10.1016/j.chroma.2008.05.009.
  • Rahman, M. S. (Ed.). (2009). Food Properties Handbook, 2nd ed.; CRC Press. DOI: 10.1201/9781420003093.
  • Noel, T. R.; Ring, S. G.; Whittam, M. A. Glass Transitions in Low-Moisture Foods. Trends Food Sci. Technol. 1990, 1(C), 62–67. DOI: 10.1016/0924-2244(90)90048-4.
  • Masud, M. H.; Karim, A.; Ananno, A. A.; Ahmed, A. Sustainable Food Drying Techniques in Developing Countries: Prospects and Challenges; Springer International Publishing, 2020
  • Joardder, M. U.; Mourshed, M.; Hasan Masud, M. State of Bound Water: Measurement and Significance in Food Processing; Springer International Publishing, 2019
  • Gordon, M.; Taylor, J. S. Ideal Copolymers and the Second-Order Transitions of Synthetic Rubbers. I. Noncrystalline Copolymers. J. Appl. Chem. 1952, 26(2), 493–500. DOI: 10.1002/jctb.5010020901.
  • Balasubramanian, S.; Devi, A.; Singh, K. K.; Bosco, S. J. D.; Mohite, A. M. Application of Glass Transition in Food Processing. Crit. Rev. Food Sci. Nutr. 2016, 56(6), 919–936. DOI: 10.1080/10408398.2012.734343.
  • Pinal, R. Entropy of Mixing and the Glass Transition of Amorphous Mixtures. Entropy. 2008, 10(3), 207–223. DOI: 10.3390/entropy-e10030207.
  • Matveev, Y. I.; Grinberg, V. Y.; Tolstoguzov, V. B. The Plasticizing Effect of Water on Proteins, Polysaccharides and Their Mixtures. Glassy State of Biopolymers, Food and Seeds. Food Hydrocoll. 2000, 14(5), 425–437. DOI: 10.1016/S0268-005X(00)00020-5.
  • Couchman, P. R. The Effect of Molecular Weight on Glass-Transition Temperatures (Compositional Variation of Glass-Transition Temperatures 3). J. Appl. Phys. 1979, 50(10), 6043–6046. DOI: 10.1063/1.325792.
  • Williams, M. L.; Landel, R. F.; Ferry, J. D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids. Temp. Depend. Relax. Mech. 1955, 77(14), 3701–3707. DOI: 10.1016/j.jnoncrysol.2017.12.029.
  • Karmas, R.; Buera, M. P.; Karel, M. Effect of Glass Transition on Rates of Nonenzymic Browning in Food Systems. Effect of Glass Transition on Rates of Nonenzymic Browning in Food Systems. 1992, 40(5), 873–879. Woodhead Publishing Ltd. DOI: 10.1021/jf00017a035.
  • Peleg, M. On the Use of the WLF Model in Polymers and Foods. Crit. Rev. Food Sci. Nutr. 1992, 32(1), 59–66. DOI: 10.1080/10408399209527580.
  • Kwei, T. K. The Effect of Hydrogen Bonding on the Glass Transition Temperatures of Polymer Mixtures Introduction. J. Polym. Sci. Lett. Ed. 1984, 22(1), 307–313. DOI: 10.1002/pol.1984.130220603.
  • Lin, A. A.; Kwei, T. K.; Reiser, A. On the Physical Meaning of the Kwei Equation for the Glass Transition Temperature of Polymer Blends. Macromolecules. 1989, 22(10), 4112–4119. DOI: 10.1021/ma00200a052.
  • Mandelkern, L.; Martin, G. M.; Quinn, F. A. Glassy State Transitions of Poly-(Chlorotrifluoroethylene), Poly-(Vinylidene Fluoride), and Their Copolymers. J. Res. Natl. Bur. Stand. 1957, 58(3), 137. DOI: 10.6028/jres.058.019.
  • Shen, M. C.; Eisenberg, A. Glass Transitions in Polymers. Prog. Solid State Chem. 1967, 3(C), 407–481. DOI: 10.1016/0079-6786(67)90039-8.
  • Boonyai, P.; Howes, T.; Bhandari, B. Instrumentation and Testing of a Thermal Mechanical Compression Test for Glass-Rubber Transition Analysis of Food Powders. J. Food Eng. 2007, 78(4), 1333–1342. DOI: 10.1016/j.jfoodeng.2006.01.005.
  • Rahman, M. S.; Al-Marhubi, I. M.; Al-Mahrouqi, A. Measurement of Glass Transition Temperature by Mechanical (DMTA), Thermal (DSC and MDSC), Water Diffusion and Density Methods: A Comparison Study. Chem. Phys. Lett. 2007, 440(4–6), 372–377. DOI: 10.1016/j.cplett.2007.04.067.
  • Backfolk, K.; Holmes, R.; Ihalainen, P.; Sirviö, P.; Triantafillopoulos, N.; Peltonen, J. Determination of the Glass Transition Temperature of Latex Films: Comparison of Various Methods. Polym. Test. 2007, 26(8), 1031–1040. DOI: 10.1016/j.polymertesting.2007.07.007.
  • Meares, P. The Second-Order Transition of Polyvinyl Acetate. Trans. Faraday Soc. 1957, 53(i), 31–40. DOI: 10.1039/tf9575300031.
  • Gugenberger, F.; Heid, R.; Meingast, C.; Adelmann, P.; Braun, M.; Wühl, H.; Haluska, M.; Kuzmany, H. Glass Transition in Single-Crystal C60 Studied by High-Resolution Dilatometry. Phys. Rev. Lett. 1992, 69(26), 3774–3777. DOI: 10.1103/PhysRevLett.69.3774.
  • Abiad, M. G.; Carvajal, M. T.; Campanella, O. H. A Review on Methods and Theories to Describe the Glass Transition Phenomenon: Applications in Food and Pharmaceutical Products. Food Eng. Rev. 2009, 1(2), 105–132. DOI: 10.1007/s12393-009-9009-1.
  • Meincken, M.; Balk, L. J.; Sanderson, R. D. Improved Sensitivity in the Thermal Investigation of Polymeric Nanophases by Measuring the Resonance Frequency Shift Using an Atomic Force Microscope. Macromol. Mater. Eng. 2001, 286(7), 412–420. DOI: 10.1002/1439-2054(20010701)286:7<412:AID-MAME412>3.0.CO;2-V.
  • Yu, Z.; Yahsi, U.; McGervey, J. D.; Jamieson, A. M.; Simha, R. Molecular Weight‐dependence of Free Volume in Polystyrene Studied by Positron Annihilation Measurements. J. Polym. Sci. Part B: Polym. Phys. 1994, 32(16), 2637–2644. DOI: 10.1002/polb.1994.090321609.
  • Liu, J.; Deng, Q.; Jean, Y. C. Free-Volume Distributions of Polystyrene Probed by Positron Annihilation: Comparison with Free-Volume Theories. Macromolecules. 1993, 26(26), 7149–7155. DOI: 10.1021/ma00078a006.
  • Ruan, R.; Long, Z.; Chen, P.; Huang, V.; Almaer, S.; Taub, I. Pulse NMR Study of Glass Transition in Maltodextrin. J. Food Sci. 1999, 64(1), 6–9. DOI: 10.1111/j.1365-2621.1999.tb09850.x.
  • Dammert, R. M.; Maunu, S. L.; Maurer, F. H.; Neelov, I. M.; Niemelä, S.; Sundholm, F.; Wästlund, C. Free Volume and Tacticity in Polystyrenes. Macromolecules. 1999, 32(6), 1930–1938.
  • Kalichevsky, M. T.; Jaroszkiewicz, E. M.; Ablett, S.; Blanshard, J. M. V.; Lillford, P. J. The Glass Transition of Amylopectin Measured by DSC, DMTA and NMR. Carbohydr. Polym. 1992, 18(2), 77–88. DOI: 10.1016/0144-8617(92)90129-E.
  • Ruan, R. R.; Long, Z.; Song, A.; Chen, P. L. Determination of the Glass Transition Temperature of Food Polymers Using Low Field NMR. LWT - Food Sci. Technol. 1998, 31(6), 516–521. DOI: 10.1006/fstl.1998.0409.
  • Schaefer, D.; Spiess, H. W. Two-Dimensional Exchange Nuclear Magnetic Resonance of Powder Samples. IV. Distribution of Correlation Times and Line Shapes in the Intermediate Dynamic Range. J. Chem. Phys. 1992, 97(11), 7944–7954. DOI: 10.1063/1.463469.
  • Duddu, S. P.; Dal Monte, P. R. Effect of Glass Transition Temperature on the Stability of Lyophilized Formulations Containing a Chimeric Therapeutic Monoclonal Antibody. Pharm. Res. 1997, 14(5), 591–595. DOI: 10.1023/A:1012144810067.
  • Alie, J.; Lacabanne, C.; Menegotto, J.; Cardon, P.; Duplaa, H.; Caron, A.; Bauer, M. Dielectric Study of the Molecular Mobility and the Isothermal Crystallization Kinetics of an Amorphous Pharmaceutical Drug Substance. J. Pharm. Sci. 2004, 93(1), 218–233. DOI: 10.1002/jps.10520.
  • Faivre, A.; Niquet, G.; Maglione, M.; Fornazero, J.; Jal, J. F.; David, L. Dynamics of Sorbitol and Maltitol Over a Wide Time-Temperature Range. Eur. Phys. J. B. 1999, 10(2), 277–286. DOI: 10.1007/s100510050856.
  • Pratt, G. J.; Smith, M. J. A. Dielectric Relaxation Spectroscopy of Poly(ethylene Terephthalate). Polym. Int. 2002, 51(1), 21–26. DOI: 10.1002/pi.785.
  • Noel, T. R.; Parker, R.; Ring, S. G. Effect of Molecular Structure and Water Content on the Dielectric Relaxation Behaviour of Amorphous Low Molecular Weight Carbohydrates Above and Below Their Glass Transition. Carbohydr. Res. 2000, 329(4), 839–845. DOI: 10.1016/S0008-6215(00)00227-5.
  • Venir, E.; Maltini, E. Relevance of Physical Properties in the Stability of Plant-Based Food Products. Indian J. Exp. Biol. 2013, 51(11), 894–904.
  • Folmer, J. C. W.; Franzen, S. Study of Polymer Glasses by Modulated Differential Scanning Calorimetry in the Undergraduate Physical Chemistry Laboratory. J. Chem. Educ. 2003, 80(7), 813–818. DOI: 10.1021/ed080p813.
  • Hill, V. L.; Craig, D. Q. M.; Feely, L. C. Characterisation of Spray-Dried Lactose Using Modulated Differential Scanning Calorimetry. Int. J. Pharm. 1998, 161(1), 95–107. DOI: 10.1016/S0378-5173(97)00334-7.
  • McPhillips, H.; Craig, D. Q. M.; Royall, P. G.; Hill, V. L. Characterisation of the Glass Transition of HPMC Using Modulated Temperature Differential Scanning Calorimetry. Int. J. Pharm. 1999, 180(1), 83–90. DOI: 10.1016/S0378-5173(98)00407-4.
  • Okazaki, I.; Wunderlich, B. Modulated Differential Scanning Calorimetry in the Glass Transition Region. V. Activation Energies and Relaxation Times of Poly(ethylene Terephthalate)s. J. Polym. Sci. Part B: Polym. Phys. 1996, 34(17), 2941–2952. DOI: 10.1002/(SICI)1099-0488(199612)34:17<2941:AID-POLB7>3.0.CO;2-T.
  • Song, M.; Hammiche, A.; Pollock, H. M.; Hourston, D. J.; Reading, M. Modulated Differential Scanning Calorimetry: 4. Miscibility and Glass Transition Behaviour in Poly(methyl Methacrylate) and Poly(epichlorohydrin) Blends. Polymer (Guildf.). 1996, 37(25), 5661–5665. DOI: 10.1016/S0032-3861(96)00430-2.
  • Shmeis, R. A.; Wang, Z.; Krill, S. L. A Mechanistic Investigation of an Amorphous Pharmaceutical and Its Solid Dispersions, Part I: A Comparative Analysis by Thermally Stimulated Depolarization Current and Differential Scanning Calorimetry. Pharm. Res. 2004, 21(11), 2025–2030. DOI: 10.1023/B:PHAM.0000048193.94922.09.
  • Diogo, H. P.; Moura Ramos, J. J. Slow Molecular Mobility in the Crystalline and Amorphous Solid States of Glucose as Studied by Thermally Stimulated Depolarization Currents (TSDC). Carbohydr. Res. 2008, 343(16), 2797–2803. DOI: 10.1016/j.carres.2008.07.002.
  • D’Souza, N. A. Thermally Stimulated Depolarization Current. Int. J. Polym. Mater. 2000, 45(3–4), 299–306. DOI: 10.1080/00914030008035047.
  • Topić, M.; Moguš-Milanković, A.; Katović, Z. The Study of Glass Transition in Epoxy Resin Using Thermally Stimulated Depolarization Current Measurements. Polymer (Guildf.). 1991, 32(16), 2892–2897. DOI: 10.1016/0032-3861(91)90183-J.
  • Ambarkhane, A. V.; Pincott, K.; Buckton, G. The Use of Inverse Gas Chromatography and Gravimetric Vapour Sorption to Study Transitions in Amorphous Lactose. Int. J. Pharm. 2005, 294(1–2), 129–135. DOI: 10.1016/j.ijpharm.2005.01.034.
  • Newell, H. E.; Buckton, G.; Butler, D. A.; Thielmann, F.; Williams, D. R. The Use of Inverse Phase Gas Chromatography to Study the Change of Surface Energy of Amorphous Lactose as a Function of Relative Humidity and the Processes of Collapse and Crystallisation. Int. J. Pharm. 2001, 217(1–2), 45–56. DOI: 10.1016/S0378-5173(01)00589-0.
  • Glass, A. S.; Larsen, J. W. Inverse Gas Chromatography of Glassy Polymer Surfaces. Macromolecules. 1993, 26(24), 6354–6358. DOI: 10.1021/ma00076a009.
  • Mukhopadhyay, P.; Schreiber, H. P. Inverse Gas Chromatography for Polymer Surface Characterization Above and Below Tg. Macromolecules. 1993, 26(24), 6391–6396. DOI: 10.1021/ma00076a014.
  • Mahieux, C. A. Environmental Degradation of Industrial Composites; Elsevier, 2005
  • Joardder, M.; Masud, M.; Karim, A. Relationship Between Intermittency of Drying, Microstructural Changes, and Food Quality. In Intermittent and Nonstationary Drying Technologies: Principles and Applications (Advances in Drying Science and Technology); Law, C.L. and Karim, A., Eds.; CRC Press: United States of America, 2017; pp. 123–137.
  • Naumis, G. G. Variation of the Glass Transition Temperature with Rigidity and Chemical Composition. Phys. Rev. B. 2006, 73(17), 172202-1-172202–4. DOI: 10.1103/PhysRevB.73.172202.
  • Khan, M. I. H.; Wellard, R. M.; Nagy, S. A.; Joardder, M. U. H.; Karim, M. A. Experimental Investigation of Bound and Free Water Transport Process During Drying of Hygroscopic Food Material. Int. J. Therm. Sci. 2017, 117, 266–273. DOI: 10.1016/j.ijthermalsci.2017.04.006.
  • Kawai, K.; Fukami, K.; Thanatuksorn, P.; Viriyarattanasak, C.; Kajiwara, K. Effects of Moisture Content, Molecular Weight, and Crystallinity on the Glass Transition Temperature of Inulin. Carbohydr. Polym. 2011, 83(2), 934–939. DOI: 10.1016/j.carbpol.2010.09.001.
  • Zimeri, J. E.; Kokini, J. L. The Effect of Moisture Content on the Crystallinity and Glass Transition Temperature of Inulin. Carbohydr. Polym. 2002, 48(3), 299–304. DOI: 10.1016/S0144-8617(01)00260-0.
  • ROOS, Y. H. Effect of Moisture on the Thermal Behavior of Strawberries Studied Using Differential Scanning Calorimetry. J. Food Sci. 1987, 52(1), 146–149. DOI: 10.1111/j.1365-2621.1987.tb13992.x.
  • Goula, A. M.; Adamopoulos, K. G. Effect of Maltodextrin Addition During Spray Drying of Tomato Pulp in Dehumidified Air: I. Drying Kinetics and Product Recovery. Dry. Technol. 2008, 26(6), 714–725. DOI: 10.1080/07373930802046369.
  • Muthukumarappan, K.; Swamy, G. J. Glass Transition Thermodynamics and Kinetics. In Glass Transition and Phase Transitions in Food and Biological Materials, Ahmed, J., Rahman, M.S. and Roos, Y.H., Eds.; Chichester, UK: John Wiley & Sons Ltd, 2017; pp. 31–47.
  • Sundaram, J.; Mani, S.; Das, H. Glass Transition and Sticky Point Temperatures of Food Powders and Its Relationship with Moisture Content and Water Activity. An ASAE/CSAE Meet. Present. 2013, 0300(04). DOI: 10.13031/2013.16915.
  • Mauer, L. J.; Smith, D. E.; Labuza, T. P. Effect of Water Content, Temperature and Storage on the Glass Transition, Moisture Sorption Characteristics and Stickiness of β-Casein. Int. J. Food. Prop. 2000, 3(2), 233–248. DOI: 10.1080/10942910009524630.
  • Moraru, C. I.; Lee, T. C.; Karwe, M. V.; Kokini, J. L. Plasticizing and Antiplasticizing Effects of Water and Polyols on a Meat-Starch Extruded Matrix. J. Food Sci. 2002, 67(9), 3396–3401. DOI: 10.1111/j.1365-2621.2002.tb09596.x.
  • Yang, B.; Huang, W. M.; Li, C.; Chor, J. H. Effects of Moisture on the Glass Transition Temperature of Polyurethane Shape Memory Polymer Filled with Nano-Carbon Powder. Eur. Polym. J. 2005, 41(5), 1123–1128. DOI: 10.1016/j.eurpolymj.2004.11.029.
  • Szcześniak, L.; Rachocki, A.; Tritt-Goc, J. Glass Transition Temperature and Thermal Decomposition of Cellulose Powder. Cellulose. 2008, 15(3), 445–451. DOI: 10.1007/s10570-007-9192-2.
  • Furuta, Y.; Obata, Y.; Kanayama, K. Thermal-Softening Properties of Water-Swollen Wood IV. The Effects of Chemical Constituents of the Cell Wall on the Thermal-Softening Properties of Wood. Mokuzai Gakkaish. 1997, 43(4), 725–730. DOI: 10.1023/A:1004838831791.
  • Kong, L.; Zhao, Z.; He, Z.; Yi, S. Effects of Steaming Treatment on Crystallinity and Glass Transition Temperature of Eucalyptuses Grandis × E. Urophylla. Results. Phys. 2017, 7, 914–919. DOI: 10.1016/j.rinp.2017.02.017.
  • Basu, S.; Shivhare, U. S.; Muley, S. Moisture Adsorption Isotherms and Glass Transition Temperature of Pectin. J. Food Sci. Technol. 2013, 50(3), 585–589. DOI: 10.1007/s13197-011-0327-y.
  • Joardder, M. U. H.; Kumar, C.; Karim, M. A. Food Structure: Its Formation and Relationships with Other Properties. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1190–1205. DOI: 10.1080/10408398.2014.971354.
  • Kun, D.; Pukánszky, B. Polymer/Lignin Blends: Interactions, Properties, Applications. European Polymer J. 2017, 93, 618–641. DOI: 10.1016/j.eurpolymj.2017.04.035.
  • Dimarzio, E. A.; Gibbs, J. H. Molecular Interpretation of Glass Temperature Depression by Plasticizers. J. Polym. Sci. Part A Gen. Pap. 1963, 1(4), 1417–1428. DOI: 10.1002/pol.1963.100010428.
  • Jansen, J. C. Glass Transition Temperature (Tg). Encycl. Membr. 2015, 2–4. DOI: 10.1007/978-3-642-40872-4.
  • Brent, J. L.; Mulvaney, S. J.; Cohen, C.; Bartsch, J. A. Viscoelastic Properties of Extruded Cereal Melts. J. Cereal Sci. 1997, 26(3), 313–328. DOI: 10.1006/jcrs.1997.0141.
  • Taylor, P.; Slade, L.; Levine, H.; Reid, D. S.; Slade, L.; Levine, H. “Beyond Water Activity: Recent Advances Based on an Alternative Approach to the Assessment of Food Quality and safety,” No. July. 1991, 2012, 37–41.
  • Roos, Y. Characterization of Food Polymers Using State Diagrams. J. Food Eng. 1995, 24(3), 339–360. DOI: 10.1016/0260-8774(95)90050-L.
  • Al-Haik, M. S.; Hussaini, M. Y.; Garmestani, H. Prediction of Nonlinear Viscoelastic Behavior of Polymeric Composites Using an Artificial Neural Network. Int. J. Plast. 2006, 22(7), 1367–1392. DOI: 10.1016/j.ijplas.2005.09.002.
  • ROOS, Y.; KAREL, M. Water and Molecular Weight Effects on Glass Transitions in Amorphous Carbohydrates and Carbohydrate Solutions. J. Food Sci. 1991, 56(6), 1676–1681. DOI: 10.1111/j.1365-2621.1991.tb08669.x.
  • Roos, Y.; Karel, M. Phase Transitions of Mixtures of Amorphous Polysaccharides and Sugars. Biotechnol. Prog. 1991, 7(1), 49–53. DOI: 10.1021/bp00007a008.
  • Blanchard, L. -P.; Hesse, J.; Malhotra, S. L. Effect of Molecular Weight on Glass Transition by Differential Scanning Calorimetry. Can. J. Chem. 1974, 52(18), 3170–3175. DOI: 10.1139/v74-465.
  • Montserrat, S.; Colomer, P. The Effect of the Molecular Weight on the Glass Transition Temperature in Amorphous Poly(ethylene Terephthalate). Polym. Bull. 1984, 12(2), 173–180. DOI: 10.1007/BF00263341.
  • Joardder, M. U. H.; Karim, A.; Kumar, C.; Brown, R. J. SpringerBriefs in Food, Health, and Nutrition, 2015.
  • Ross, K. A.; Campanella, O. H.; Okos, M. R. The Effect of Porosity on Glass Transition Measurement. Int. J. Food. Prop. 2002, 5(3), 611–628. DOI: 10.1081/JFP-120015496.
  • Kasapis, S. Relation Between the Structure of Matrices and Their Mechanical Relaxation Mechanisms During the Glass Transition of Biomaterials: A Review. Food Hydrocoll. 2012, 26(2), 464–472. DOI: 10.1016/j.foodhyd.2010.09.019.
  • Roos, Y. H.; Gatti, M.; Bottari, B.; Neviani, E.; Tabanelli, G.; Gardini, F. Importance of Glass Transition and Water Activity to Spray Drying and Stability of Dairy Powders. J. Food Prot. 2009, 72(10), 2162–2169. DOI: 10.1051/lait.
  • Kasapis, S.; Sablani, S. S.; Rahman, M. S.; Al-Marhoobi, I. M.; Al-Amri, I. S. Porosity and the Effect of Structural Changes on the Mechanical Glass Transition Temperature. J. Agric. Food. Chem. 2007, 55(6), 2459–2466. DOI: 10.1021/jf063473j.
  • Carbone, P.; Rapallo, A.; Ragazzi, M.; Tritto, I.; Ferro, D. R. Glass Transition Temperature and Chain Flexibility of Ethylene-Norbornene Copolymers from Molecular Dynamics Simulations. Macromol. Theory Simulations. 2006, 15(6), 457–468. DOI: 10.1002/mats.200600015.
  • Privalko, V. P.; Lipatov, Y. S. Glass Transition and Chain Flexibility of Linear Polymers. J. Macromol. Sci.Part B. 1974, 9(3), 551–564. DOI: 10.1080/00222347408204554.
  • Balani, K.; Verma, V.; Agarwal, A.; Narayan, R. Physical, Thermal, and Mechanical Properties of Polymers. Biosurfaces. 2015, 329–344. DOI: 10.1002/9781118950623.app1.
  • Langer, E.; Bortel, K.; Lenartowicz-Klik, M.; Waskiewicz, S. Plasticizers Derived from Post-Consumer PET: Research Trends and Potential Applications; Elsevier, 2019
  • Langer, E.; Bortel, K.; Waskiewicz, S.; Lenartowicz-Klik, M. Assessment of Traditional Plasticizers. Plasticizers Derived from Post-Consumer PET. 2020, 1–11.
  • Luo, X.; Xie, S.; Liu, J.; Hu, H.; Jiang, J.; Huang, W.; Gao, H.; Zhou, D.; Lü, Z.; Yan, D. The Relationship Between the Degree of Branching and Glass Transition Temperature of Branched Polyethylene: Experiment and Simulation. Polym. Chem. 2014, 5(4), 1305–1312. DOI: 10.1039/c3py00896g.
  • Cowie, J. M. G.; Henshall, S. A. E. The Influence of Chain Length and Branching on the Glass Transition Temperature of Some Polyglucosans. Eur. Polym. J. 1976, 12(4), 215–218. DOI: 10.1016/0014-3057(76)90056-2.
  • Gontard, N.; Ring, S. Edible Wheat Gluten Film: Influence of Water Content on Glass Transition Temperature. J. Agric. Food. Chem. 1996, 44(11), 3474–3478. DOI: 10.1021/jf960230q.
  • Souri, D. Study of the Heating Rate Effect on the Glass Transition Properties of (60 - X)V2O5-xSb2o3-40TeO2 Oxide Glasses Using Differential Scanning Calorimetry (DSC). Meas. J. Int. Meas. Confed. 2011, 44(10), 2049–2053. DOI: 10.1016/j.measurement.2011.08.005.
  • Grest, G. S.; Cohen, M. H. Liquid-Glass Transition: Dependence of the Glass Transition on Heating and Cooling Rates. Phys. Rev. B. 1980, 21(9), 4113–4117. DOI: 10.1103/PhysRevB.21.4113.
  • Joardder, M. U. H.; Karim, M. A. Development of a Porosity Prediction Model Based on Shrinkage Velocity and Glass Transition Temperature. Dry. Technol. 2019, 37(15), 1988–2004. DOI: 10.1080/07373937.2018.1555540.
  • Moynihan, C. T.; Easteal, A. J.; Wilder, J.; Tucker, J. Dependence of the Glass Transition Temperature on Heating and Cooling Rate. J. Phys. Chem. 1974, 78(26), 2673–2677. DOI: 10.1021/j100619a008.
  • Chrostek, T., “The Influence of the Heating and Cooling Rates on the Temperature of the Phase Transitions,” pp. 87–98, [Online]. Available: https://depot.ceon.pl/bitstream/handle/123456789/10665/6_Chrostek.pdf?sequence=1.
  • Abbas, K. A.; Lasekan, O.; Khalil, S. K. The Significance of Glass Transition Temperature in Processing of Selected Fried Food Products: A Review. Mod. Appl. Sci. 2010, 4(5), 3–21. DOI: 10.5539/mas.v4n5p3.
  • Rahman, M. S. State Diagram of Foods: Its Potential Use in Food Processing and Product Stability. Trends Food Sci. Technol. 2006, 17(3), 129–141. DOI: 10.1016/j.tifs.2005.09.009.
  • Roos, Y. H. Glass Transition Temperature and Its Relevance in Food Processing. Annu. Rev. Food Sci. Technol. 2010, 1(1), 469–496. DOI: 10.1146/annurev.food.102308.124139.
  • Carbas, R. J. C.; Marques, E. A. S.; Da Silva, L. F. M.; Lopes, A. M. Effect of Cure Temperature on the Glass Transition Temperature and Mechanical Properties of Epoxy Adhesives. J. Adhes. 2014, 90(September), 104–119. DOI:10.1080/00218464.2013.779559. 2014.
  • Michel, M.; Ferrier, E. Effect of Curing Temperature Conditions on Glass Transition Temperature Values of Epoxy Polymer Used for Wet Lay-Up Applications. Constr. Build. Mater. 2020, 231, 117206. DOI: 10.1016/j.conbuildmat.2019.117206.
  • Debenedetti, P. G.; Stillinger, F. H. Supercooled Liquids and the Glass Transition Insight. J. Eur. Ceram. Soc. 2001, 410(8), 1463–1471. DOI: 10.1016/j.jeurceramsoc.2005.02.009.
  • Ross, K. A.; Susan, D.; Cenkowski, S. A Polymer Science Approach to Physico-Chemical Characterization and Processing of Pulse Seeds. Polym. Sci. 2013. DOI: 10.5772/46145.
  • Norton, C. Texture and Hydration of Expanded Rice, University of Nottingham, UK, 1998.
  • Paterson, M. S. Effect of Pressure on Young’s Modulus and the Glass Transition in Rubbers. J. Appl. Phys. 1964, 35(1), 176–179. DOI: 10.1063/1.1713063.
  • Torres, J. M.; Wang, C.; Coughlin, E. B.; Bishop, J. P.; Register, R. A.; Riggleman, R. A.; Stafford, C. M.; Vogt, B. D. Influence of Chain Stiffness on Thermal and Mechanical Properties of Polymer Thin Films. Macromolecules. 2011, 44(22), 9040–9045. DOI: 10.1021/ma201482b.
  • Masud, M. H.; Joardder, M. U. H.; Karim, M. A. Effect of Hysteresis Phenomena of Cellular Plant- Based Food Materials on Convection Drying Kinetics. Dry. Technol. 2018, 0(0), 1–8. DOI: 10.1080/07373937.2018.1498508.
  • Ahmed, J.; Ramaswamy, H. S. Applications of magnetic field in food preservation. In Handbook of Food Preservation; CRC Press: Boca Raton, 2020; pp. 873–884.
  • Schapery, R. A. Nonlinear Viscoelastic and Viscoplastic Constitutive Equations Based on Thermodynamics. Mech. Time-Dependent Mater. 1997, 1(2), 209–240. DOI: 10.1023/A:1009767812821.
  • Kawai, M.; Masuko, Y. Macromechanical Modeling and Analysis of the Viscoplastic Behavior of Unidirectional Fiber-Reinforced Composites. J. Compos. Mater. 2003, 37(21), 1885–1902. DOI: 10.1177/002199803035185.
  • Khan, A. S.; Lopez-Pamies, O. Time and Temperature Dependent Response and Relaxation of a Soft Polymer. Int. J. Plast. 2002, 18(10), 1359–1372. DOI: 10.1016/S0749-6419(02)00003-7.
  • Rahman, M. M.; Joardder, M. U. H.; Karim, A. Non-Destructive Investigation of Cellular Level Moisture Distribution and Morphological Changes During Drying of a Plant-Based Food Material. Biosyst. Eng. 2018, 169, 126–138. DOI: 10.1016/j.biosystemseng.2018.02.007.
  • Roos, Y. H. Thermal Analysis, State Transitions and Food Quality. J. Therm. Anal. Calorim. 2003, 71(1), 197–203. DOI: 10.1023/A:1022234805054.
  • Joardder, M. U. H.; Kumar, C.; Karim, M. A. Prediction of Porosity of Food Materials During Drying: Current Challenges and Directions. Crit. Rev. Food Sci. Nutr. 2018, 58(17), 2896–2907. DOI: 10.1080/10408398.2017.1345852.
  • Zhang, Y. L.; Rao, G. H.; Sun, J. R.; Liang, J. K. Phase Transitions in (Nd, Sm)1/2Sr1/2MnO3. J. Phys D: Appl Phys. 1998, 31(4), 368–370. DOI: 10.1088/0022-3727/31/4/005.
  • Górska, A.; Szulc, K.; Ostrowska-Ligęza, E.; Bryś, J.; Wirkowska-Wojdyła, M. Effect of Composition and Drying Method on Glass Transition Temperature, Water Sorption Characteristics and Surface Morphology of Newly Designed β-Lactoglobulin/retinyl Palmitate/Disaccharides Systems. J. Therm. Anal. Calorim. 2017, 130(1), 177–185. DOI: 10.1007/s10973-017-6392-3.
  • Joardder, M. U. H.; Brown, R. J.; Kumar, C.; Karim, M. A. Effect of Cell Wall Properties on Porosity and Shrinkage of Dried Apple. Int. J. Food. Prop. 2015, 18(10), 2327–2337. DOI: 10.1080/10942912.2014.980945.
  • Mahiuddin, M.; Khan, I. H.; Kumar, C.; Rahman, M. M.; Karim, M. A. Shrinkage of Food Materials During Drying: Current Status and Challenges. Compr. Rev. Food Sci. Food Saf. 2018, 0, 1–14. DOI: 10.1111/1541-4337.12375.
  • Karathanos, V. T.; Kanellopoulos, N. K.; Belessiotis, V. G. Development of Porous Structure During Air Drying of Agricultural Plant Products. J. Food Eng. 1996, 29(2), 167–183. DOI: 10.1016/0260-8774(95)00058-5.
  • Sappati, P. K.; Nayak, B.; van Walsum, G. P. Effect of Glass Transition on the Shrinkage of Sugar Kelp (Saccharina Latissima) During Hot Air Convective Drying. J. Food Eng. 2017, 210, 50–61. DOI: 10.1016/j.jfoodeng.2017.04.018.
  • Bhandari, B. R.; Howes, T. Implication of Glass Transition for the Drying and Stability of Dried Foods. J. Food Eng. 1999, 40(1), 71–79. DOI: 10.1016/S0260-8774(99)00039-4.
  • Mayor, L.; Sereno, A. M. Modelling Shrinkage During Convective Drying of Food Materials: A Review. J. Food Eng. 2004, 61(3), 373–386. DOI: 10.1016/S0260-8774(03)00144-4.
  • Levi, G.; Karel, M. Volumetric Shrinkage (Collapse) in Freeze-Dried Carbohydrates Above Their Glass Transition Temperature. Food. Res. Int. 1995, 28(2), 145–151. DOI: 10.1016/0963-9969(95)90798-F.
  • Romdhane, I. H.; Danner, R. P.; Duda, J. L. Influence of the Glass Transition on Solute Diffusion in Polymers by Inverse Gas Chromatography. Ind. Eng. Chem. Res. 1995, 34(8), 2833–2840. DOI: 10.1021/ie00047a037.
  • Karel, M.; Anglea, S.; Buera, P.; Karmas, R.; Levi, G.; Roos, Y. Stability-Related Transitions of Amorphous Foods. Thermochim. Acta. 1994, 246(2), 249–269. DOI: 10.1016/0040-6031(94)80094-4.
  • Zhang, H.; Sun, D. D.; Peng, Y.; Huang, J. H.; Luo, M. B. Diffusivity and Glass Transition of Polymer Chains in Polymer Nanocomposites. Phys. Chem. Chem. Phys. 2019, 21(41), 23209–23216. DOI: 10.1039/c9cp04195h.
  • Mamaliga, I.; Negoescu, C. Some Aspects of Two Stage Diffusion in Polymer Films and Membranes. Environ. Eng. Manage. J. 2012, 11(11), 2091–2099. DOI: 10.30638/eemj.2012.261.
  • Matteucci, S.; Yampolskii, Y.; Freeman, B. D.; Pinnau, I. Transport of Gases and Vapors in Glassy and Rubbery Polymers. In Materials Sci. of Membranes for Gas and Vapor Separation; John Wiley & Sons, Ltd: England, 2006; pp. 1–47.
  • Elisa, E.; Bruno, R.; Monteleone, M.; Fuoco, A.; Soria, J. F.; Pardo, E.; Armentano, D.; Jansen, J. C. Glassy PEEK-WC Vs. Rubbery Pebax® 1657 Polymers: Effect on the Gas Transport in CuNi-MOF Based Mixed Matrix Membranes. Appl. Sci. 2020, 10(4), 2020. DOI: 10.3390/app10041310.
  • Stannett, V. The Transport of Gases in Synthetic Polymeric Membranes - an Historic Perspective. J. Membr. Sci. 1978, 3(2), 97–115. DOI: 10.1016/S0376-7388(00)83016-1.
  • Sand, C. K. Raising the Bar: High-Barrier Polymers. Food Technol. 2018, 72(10), 83–87.
  • Peleg, M.; Chinachoti, P. On Modeling Changes in Food and Biosolids at and Around Their Glass Transition Temperature Range. Crit. Rev. Food Sci. Nutr. 1996, 36(1–2), 49–67. DOI: 10.1080/10408399609527718.
  • Roos, Y. H.; Karel, M.; Kokini, J. L. Glass Transitions in Low Moisture and Frozen Foods: Effects on Shelf Life and Quality. Food Technol. 1996, (November), 50, 95–108.
  • Chambers, E. Analysis of Sensory Properties in Foods: A Special Issue. Foods. 2019, 8(8), 7–9. DOI: 10.3390/foods8080291.
  • Lee, Y.; Lee, S. -Y.; Schmidt, S. J. Probing the Sensory Properties of Food Materials with Nuclear Magnetic Resonance Spectroscopy and Imaging. Mod. Magn. Reson. 2008, 1889–1894. DOI: 10.1007/1-4020-3910-7_215.
  • Lievonen, S. M.; Roos, Y. H. Nonenzymatic Browning in Amorphous Food Models: Effects of Glass Transition and Water. J. Food Sci. 2002, 67(6), 2100–2106. DOI: 10.1111/j.1365-2621.2002.tb09508.x.
  • Joardder, M. U. H.; Kumar, C.; Karim, M. A. Multiphase Transfer Model for Intermittent Microwave-Convective Drying of Food: Considering Shrinkage and Pore Evolution. Int. J. Multiph. Flow. 2017, 95, 101–119. DOI: 10.1016/j.ijmultiphaseflow.2017.03.018.
  • Katz, E. E.; Labuza, T. P. Effect of Water Activity on the Sensory Crispness and Mechanical Deformation of Snack Food Products. J. Food Qual. 1981, 46(3), 403–409. DOI: 10.1111/j.1365-2621.1981.tb04871.x.
  • Meste, M. L.; Champion, D.; Roudaut, G.; Blond, G.; Simatos, D. Glass Transition and Food Technology: A Critical Appraisal. J. Food Sci. 2002, 67(7), 2444–2458. DOI: 10.1111/j.1365-2621.2002.tb08758.x.
  • Rahman, M. S. Food Stability Beyond Water Activity and Glass Transtion: Macro-Micro Region Concept in the State Diagram. Int. J. Food. Prop. 2009, 12(4), 726–740. DOI: 10.1080/10942910802628107.
  • Slade, L.; Levine, H. Water and the Glass Transition - Dependence of the Glass Transition on Composition and Chemical Structure: Special Implications for Flour Functionality in Cookie Baking. J. Food Eng. 1994, 22(1–4), 143–188. DOI: 10.1016/0260-8774(94)90029-9.