487
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Simultaneous Microbial Fermentation and Enzymolysis: A Biotechnology Strategy to Improve the Nutritional and Functional Quality of Soybean Meal

, , & ORCID Icon

References

  • Vagadia, B. H.; Vanga, S. K.; Raghavan, V. Inactivation Methods of Soybean Trypsin Inhibitor – a Review. Trends Food Sci. Tech. 2017, 64, 115–125. DOI: 10.1016/j.tifs.2017.02.003.
  • Lee, S. A.; Park, C. S.; Kim, B. G. Novel Two-Slope Equations to Predict Amino Acid Concentrations Using Crude Protein Concentration in Soybean Meal. Agriculture. 2021, 11(4), 280. DOI: 10.3390/agriculture11040280.
  • Karlsson, J. O.; Parodi, A.; van Zanten, H. H. E.; Hansson, P. -A.; Röös, E. Halting European Union Soybean Feed Imports Favours Ruminants Over Pigs and Poultry. Nature Food. 2021, 2(1), 38–46. DOI: 10.1038/s43016-020-00203-7.
  • Toh, D. W. K.; Srv, A.; Henry, C. J. Unknown Impacts of Plant-Based Meat Alternatives on Long-Term Health. Nature Food. 2022, 3(2), 90–91. DOI: 10.1038/s43016-022-00463-5.
  • Yang, Y.; Yao, Y.; Qin, Y.; Qiu, J.; Li, J.; Li, J.; Gu, X. Investigation and Analysis of Main Afn in Soybean Meal and Fermented Soybean Meal. Scientia Agricultura Sinica. 2016, 49(3), 573–580. //CSCD:5644749.
  • Lajolo, F. M.; Genovese, M. I. Nutritional Significance of Lectins and Enzyme Inhibitors from Legumes. J. Agr. Food. Chem. 2002, 50(22), 6592–6598. DOI: 10.1021/jf020191k.
  • Wei, F.; Gao, F.; Li, S.; Sheng, W.; Chen, R.; Fu, R.; Huang, Y.; Zheng, X. Effects of Extrusion and Fermentation Treatment Methods On nutritional Value of Soybean Meal. J. Henan Agric. Sci. 2014, 43(4), 123–127. //CSCD:5124918.
  • Quan, Y. A. N.; Hongjing, W.; Yufei, H. U. A. Denaturation of Lipoxygenase in Defatted Soybean Meal by Dry Heating. China Oils Fats. 2006, 31(4), 13–16. //CSCD:2457586.
  • Karr-Lilienthal, L. K.; Grieshop, C. M.; Spears, J. K.; Fahey, G. C. Amino Acid, Carbohydrate, and Fat Composition of Soybean Meals Prepared at 55 Commercial U.S. Soybean Processing Plants. J. Agric. Food. Chem. 2005, 53(6), 2146–2150. DOI: 10.1021/jf048385i.
  • Rubio, L. A.; Pedrosa, M. M.; Perez, A.; Cuadrado, C.; Burbano, C.; Muzquiz, M. Heal Digestibility of Defatted Soybean, Lupin and Chickpea Seed Meals in Cannulated Iberian Pigs: Ii. Fatty Acids and Carbohydrates. J. Sci. Food Agr. 2005, 85(8), 1322–1328. DOI: 10.1002/jsfa.1964.
  • Tudor, K. W.; Jones, M. A.; Hughes, S. R.; Holt, J. P.; Wiegand, B. R. Effect of Fermentation with Saccharomyces Cerevisiae Strain Pj69-4 on the Phytic Acid, Raffinose, and Stachyose Contents of Soybean Meal. Prof. Animal Sci. 2013, 29(5), 529–534. DOI: 10.15232/S1080-7446(15)30274-6.
  • Knudsen, D.; Røn, Ø.; Baardsen, G.; Smedsgaard, J.; Koppe, W. Soyasaponins Resist Extrusion Cooking and are Not Degraded During Gut Passage in Atlantic Salmon (Salmo Salar L.). J. Agr. Food. Chem. 2006, 54(17), 6428–6435. DOI: 10.1021/jf0604992.
  • Arbab Sakandar, H.; Chen, Y.; Peng, C.; Chen, X.; Imran, M.; Zhang, H. Impact of Fermentation on Antinutritional Factors and Protein Degradation of Legume Seeds: A Review. Food Rev. Int. 2021, 39(3), 1–23. DOI: 10.1080/87559129.2021.1931300.
  • He, Y.; Liang, J.; Dong, X.; Liu, H.; Yang, Q.; Zhang, S.; Chi, S.; Tan, B. Soybean Β-Conglycinin and Glycinin Reduced Growth Performance and the Intestinal Immune Defense and Altered Microbiome in Juvenile Pearl Gentian Groupers Epinephelus Fuscoguttatus♀ × Epinephelus Lanceolatus♂. Anim. Nutr. 2022, 9, 193–203. DOI: 10.1016/j.aninu.2021.11.001.
  • Zhang, Y. -L.; Duan, X. -D.; Feng, L.; Jiang, W. -D.; Wu, P.; Liu, Y.; Kuang, S. -Y.; Tang, L.; Zhou, X. -Q. Soybean Glycinin Disrupted Intestinal Structural Integrity Related to Aggravation of Apoptosis and Downregulated Transcription of Tight Junction Proteins in the Intestine of Juvenile Grass Carp (Ctenopharyngodon Idella). Aquaculture. 2021, 531, 735909. DOI: 10.1016/j.aquaculture.2020.735909.
  • Wang, T.; Qin, G. -X.; Sun, Z. -W.; Zhao, Y. Advances of Research on Glycinin and Β-Conglycinin: A Review of Two Major Soybean Allergenic Proteins. Crit. Rev. Food Sci. 2014, 54(7), 850–862. DOI: 10.1080/10408398.2011.613534.
  • Sun, P.; Li, D.; Dong, B.; Qiao, S.; Ma, X.; Chen, X. Vitamin C: An Immunomodulator That Attenuates Anaphylactic Reactions to Soybean Glycinin Hypersensitivity in a Swine Model. Food Chem. 2009, 113(4), 914–918. DOI: 10.1016/j.foodchem.2008.08.018.
  • Yin, H.; Jia, F.; Huang, J.; Zhang, Y.; Zheng, X.; Zhang, X. Effect of Extrusion on the Structure and Antigenicity of Soybean Β-Conglycinin. Grain & Oil Science and Technology. 2019, 2(3), 67–72. DOI: 10.1016/j.gaost.2019.09.003.
  • Kuenz, S.; Thurner, S.; Hoffmann, D.; Kraft, K.; Wiltafsky-Martin, M.; Damme, K.; Windisch, W.; Brugger, D. Effects of Gradual Differences in Trypsin Inhibitor Activity on the Estimation of Digestible Amino Acids in Soybean Expellers for Broiler Chickens. Poult. Sci. 2022, 101(4), 101740. DOI: 10.1016/j.psj.2022.101740.
  • Chanphai, P.; Tajmir-Riahi, H. A. Trypsin and Trypsin Inhibitor Bind Milk Beta-Lactoglobulin: Protein–Protein Interactions and Morphology. Int. J. Biol. Macromol. 2017, 96, 754–758. DOI: 10.1016/j.ijbiomac.2016.12.075.
  • Campos-Vega, R.; Loarca-Piña, G.; Oomah, B. D. Minor Components of Pulses and Their Potential Impact on Human Health. Food. Res. Int. 2010, 43(2), 461–482. DOI: 10.1016/j.foodres.2009.09.004.
  • Chang, Y. L.; Liu, T. C.; Tsai, M. L. Selective Isolation of Trypsin Inhibitor and Lectin from Soybean Whey by Chitosan/Tripolyphosphate/Genipin Co-Crosslinked Beads. Int. J. Mol. Sci. 2014, 15(6), 9979–9990. DOI: 10.3390/ijms15069979.
  • Abdel-Latif, H. M. R.; Soliman, A. A.; Sewilam, H.; Almeer, R.; Van Doan, H.; Alagawany, M.; Dawood, M. A. O. The Influence of Raffinose on the Growth Performance, Oxidative Status, and Immunity in Nile Tilapia (Oreochromis Niloticus). Aquacult. Rep. 2020, 18(100457), 100457. DOI: 10.1016/j.aqrep.2020.100457.
  • Zeng, Z.; Zhang, Y.; He, J.; Yu, J.; Mao, X.; Zheng, P.; Luo, Y.; Luo, J.; Huang, Z.; Yu, B., et al. Effects of Soybean Raffinose on Growth Performance, Digestibility, Humoral Immunity and Intestinal Morphology of Growing Pigs. Anim. Nutr. 2021, 7(2), 393–399. DOI: 10.1016/j.aninu.2020.06.013.
  • Gasiński, A.; Kawa-Rygielska, J.; Mikulski, D.; Kłosowski, G. Changes in the Raffinose Family Oligosaccharides Content in the Lentil and Common Bean Seeds During Malting and Mashing Processes. Sci. Rep. 2022, 12(1), 17911. DOI: 10.1038/s41598-022-22943-1.
  • Anisha, G. S. Microbial Α-Galactosidases: Efficient Biocatalysts for Bioprocess Technology. Bioresource. Technol. 2022, 344, 126293. DOI: 10.1016/j.biortech.2021.126293.
  • Machaiah, J. P.; Pednekar, M. D. Carbohydrate Composition of Low Dose Radiation-Processed Legumes and Reduction in Flatulence Factors. Food Chem. 2002, 79(3), 293–301. DOI: 10.1016/S0308-8146(02)00142-5.
  • Jiang, W.; Zhang, Y.; Yuan, M.; Liu, Y.; Deng, J.; Tan, B. Effects of Different Types of Non-Starch Polysaccharides on Growth, Digestive Enzyme Activity, Intestinal Barrier Function and Antioxidant Activity of Tilapia (Oreochromis Niloticus). Aquacult. Rep. 2022, 25, 101198. DOI: 10.1016/j.aqrep.2022.101198.
  • Staessen, T. W. O.; Verdegem, M. C. J.; Weththasinghe, P.; Schrama, J. W. The Effect of Dietary Non-Starch Polysaccharide Level and Bile Acid Supplementation on Fat Digestibility and the Bile Acid Balance in Rainbow Trout (Oncorhynchus Mykiss). Aquaculture. 2020, 523, 735174. DOI: 10.1016/j.aquaculture.2020.735174.
  • Pei, Y.; Wan, J.; You, M.; McClements, D. J.; Li, Y.; Li, B. Impact of Whey Protein Complexation with Phytic Acid on Its Emulsification and Stabilization Properties. Food Hydrocolloid. 2019, 87, 90–96. DOI: 10.1016/j.foodhyd.2018.07.034.
  • Denstadli, V.; Skrede, A.; Krogdahl, Å.; Sahlstrøm, S.; Storebakken, T. Feed Intake, Growth, Feed Conversion, Digestibility, Enzyme Activities and Intestinal Structure in Atlantic Salmon (Salmo Salar L.) Fed Graded Levels of Phytic Acid. Aquaculture. 2006, 256(1), 365–376. DOI: 10.1016/j.aquaculture.2006.02.021.
  • Von Danwitz, A.; Schulz, C. Effects of Dietary Rapeseed Glucosinolates, Sinapic Acid and Phytic Acid on Feed Intake, Growth Performance and Fish Health in Turbot (Psetta Maxima L.). Aquaculture. 2020, 516, 734624. DOI: 10.1016/j.aquaculture.2019.734624.
  • Kaspchak, E.; Mafra, L. I.; Mafra, M. R. Effect of Heating and Ionic Strength on the Interaction of Bovine Serum Albumin and the Antinutrients Tannic and Phytic Acids, and Its Influence on in vitro Protein Digestibility. Food Chem. 2018, 252, 1–8. DOI: 10.1016/j.foodchem.2018.01.089.
  • Xie, J. Y.; Li, M.; Ye, W. D.; Shan, J. W.; Zhao, X. Y.; Duan, Y.; Liu, Y. H.; Unger, B. H.; Cheng, Y. Y.; Zhang, W. T., et al. Sinomenine Hydrochloride Ameliorates Fish Foodborne Enteritis via α7nAchR-Mediated Anti-Inflammatory Effect Whilst Altering Microbiota Composition. Frontiers Immunol. 2021, 12, 12. DOI: 10.3389/fimmu.2021.766845.
  • Zhang, W.; Tan, B.; Deng, J.; Dong, X.; Yang, Q.; Chi, S.; Liu, H.; Zhang, S.; Xie, S.; Zhang, H. Mechanisms by Which Fermented Soybean Meal and Soybean Meal Induced Enteritis in Marine Fish Juvenile Pearl Gentian Grouper. Frontiers Physiol. 2021, 12, 12. DOI: 10.3389/fphys.2021.646853.
  • Wu, N.; Wang, B.; Cui, Z. W.; Zhang, X. Y.; Cheng, Y. Y.; Xu, X.; Li, X. M.; Wang, Z. X.; Chen, D. D.; Zhang, Y. A. Integrative Transcriptomic and Micrornaomic Profiling Reveals Immune Mechanism for the Resilience to Soybean Meal Stress in Fish Gut and Liver. Frontiers Physiol. 2018, 9, 9. DOI: 10.3389/fphys.2018.01154.
  • Valenzuela, L.; Pacheco, S.; Rincon, G.; Pavez, L.; Lam, N.; Hernandez, A. J.; Dantagnan, P.; Gonzalez, F.; Jilberto, F.; Ravanal, M. C., et al. Intestinal Transcriptome Analysis Reveals Enrichment of Genes Associated with Immune and Lipid Mechanisms, Favoring Soybean Meal Tolerance in High-Growth Zebrafish (Danio Rerio). Genes. 2021, 12(5), 700. DOI: 10.3390/genes12050700.
  • Wang, B.; Zhang, Q.; Zhang, N.; Bak, K. H.; Soladoye, O. P.; Aluko, R. E.; Fu, Y.; Zhang, Y. Insights into Formation, Detection and Removal of the Beany Flavor in Soybean Protein. Trends Food Sci. Tech. 2021, 112(336–347). DOI: 10.1016/j.tifs.2021.04.018.
  • Kader, M. A.; Bulbul, M.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Nguyen, B. T.; Komilus, C. F. Effect of Complete Replacement of Fishmeal by Dehulled Soybean Meal with Crude Attractants Supplementation in Diets for Red Sea Bream, Pagrus Major. Aquaculture. 2012, 350-353(109), 109–116. DOI: 10.1016/j.aquaculture.2012.04.009.
  • Yan, X.; He, H.; Tan, B.; Du, T.; Chi, S.; Yang, Q.; Yang, Y.; Dong, X. Effects of Dehulled Soybean Meal Replacing Fish Meal on Growth Performance, intestinal Digestive Enzyme Activities and Live Immune Indexes of Sillago Sihama Forskal. Chinese J. Animal Nutrition. 2019, 31(9), 4118–4130. //CSCD:6575186.
  • Vidal, N. P.; Roman, L.; Swaraj, V. J. S.; Ragavan, K. V.; Simsek, S.; Rahimi, J.; Kroetsch, B.; Martinez, M. M. Enhancing the Nutritional Value of Cold-Pressed Oilseed Cakes Through Extrusion Cooking. Innov. Food Sci. Emerg. 2022, 77, 102956. DOI: 10.1016/j.ifset.2022.102956.
  • Offiah, V.; Kontogiorgos, V.; Falade, K. O. Extrusion Processing of Raw Food Materials and By-Products: A Review. Crit. Rev. Food Sci. 2019, 59(18), 2979–2998. DOI: 10.1080/10408398.2018.1480007.
  • Wang, Y.; Sun, H.; Han, B.; Li, H. Y.; Liu, X. L. Improvement of Nutritional Value, Molecular Weight Patterns (Soluble Peptides), Free Amino Acid Patterns, Total Phenolics and Antioxidant Activity of Fermented Extrusion Pretreatment Rapeseed Meal with Bacillus Subtilis Yy-1 and Saccharomyces Cerevisiae Yy-2. LWT. 2022, 160, 113280. DOI: 10.1016/j.lwt.2022.113280.
  • Zhang, J.; Liu, L.; Liu, H.; Yoon, A.; Rizvi, S. S. H.; Wang, Q. Changes in Conformation and Quality of Vegetable Protein During Texturization Process by Extrusion. Crit. Rev. Food Sci. 2019, 59(20), 3267–3280. DOI: 10.1080/10408398.2018.1487383.
  • Eze, O. F.; Chatzifragkou, A.; Charalampopoulos, D. Properties of Protein Isolates Extracted by Ultrasonication from Soybean Residue (Okara). Food Chem. 2022, 368(130837), 130837. DOI: 10.1016/j.foodchem.2021.130837.
  • Gerliani, N.; Hammami, R.; Aïder, M. A Comparative Study of the Functional Properties and Antioxidant Activity of Soybean Meal Extracts Obtained by Conventional Extraction and Electro-Activated Solutions. Food Chem. 2020, 307, 125547. DOI: 10.1016/j.foodchem.2019.125547.
  • Roslan, M. A. M.; Sobri, Z. M.; Zuan, A. T. K.; Cheak, S. C.; Rahman, N. A. A. Bioprospecting Microwave-Alkaline Hydrolysate Cocktail of Defatted Soybean Meal and Jackfruit Peel Biomass as Carrier Additive of Molasses-Alginate-Bead Biofertilizer. Sci. Rep. 2022, 12(1), 254. DOI: 10.1038/s41598-021-02170-w.
  • Das, D.; Panesar, P. S.; Saini, C. S. Ph Shifting Treatment of Ultrasonically Extracted Soybean Meal Protein Isolate: Effect on Functional, Structural, Morphological and Thermal Properties. Process Biochem. 2022, 120, 227–238. DOI: 10.1016/j.procbio.2022.06.015.
  • Geng, M.; Liu, J.; Hu, H.; Qin, L.; Taha, A.; Zhang, Z. A Comprehensive Study on Structures and Characterizations of 7s Protein Treated by High Intensity Ultrasound at Different Ph and Ionic Strengths. Food Chem. 2022, 373, 131378. DOI: 10.1016/j.foodchem.2021.131378.
  • Zhang, Y.; Yang, R.; Zhang, W.; Hu, Z.; Zhao, W. Structural Characterization and Physicochemical Properties of Protein Extracted from Soybean Meal Assisted by Steam Flash-Explosion with Dilute Acid Soaking. Food Chem. 2017, 219, 48–53. DOI: 10.1016/j.foodchem.2016.09.079.
  • Huang, L.; Xu, Y.; Zhou, Y. Improvement of Nutritional Quality of Soybean Meal by Fe(ii)-Assisted Acetic Acid Treatment. Food Chem. 2019, 283, 475–480. DOI: 10.1016/j.foodchem.2019.01.085.
  • Huang, L.; Ding, X.; Dai, C.; Ma, H. Changes in the Structure and Dissociation of Soybean Protein Isolate Induced by Ultrasound-Assisted Acid Pretreatment. Food Chem. 2017, 232, 727–732. DOI: 10.1016/j.foodchem.2017.04.077.
  • Zhao, Q.; Xie, T.; Hong, X.; Zhou, Y.; Fan, L.; Liu, Y.; Li, J. Modification of Functional Properties of Perilla Protein Isolate by High-Intensity Ultrasonic Treatment and the Stability of O/W Emulsion. Food Chem. 2022, 368, 130848. DOI: 10.1016/j.foodchem.2021.130848.
  • Wang, Y.; Wang, Z.; Handa, C. L.; Xu, J. Effects of Ultrasound Pre-Treatment on the Structure of Β-Conglycinin and Glycinin and the Antioxidant Activity of Their Hydrolysates. Food Chem. 2017, 218(165), 165–172. DOI: 10.1016/j.foodchem.2016.09.069.
  • Su, Y.; Dong, Y.; Niu, F.; Wang, C.; Liu, Y.; Yang, Y. Study on the Gel Properties and Secondary Structure of Soybean Protein Isolate/Egg White Composite Gels. Eur. Food Res. Technol. 2015, 240(2), 367–378. DOI: 10.1007/s00217-014-2336-3.
  • MacDonald, R. S.; Pryzbyszewski, J.; Hsieh, F. -H. Soy Protein Isolate Extruded with High Moisture Retains High Nutritional Quality. J. Agr. Food. Chem. 2009, 57(9), 3550–3555. DOI: 10.1021/jf803435x.
  • Privatti, R. T.; Capellini, M. C.; Thomazini, M.; Favaro-Trindade, C. S.; Rodrigues, C. E. C. Profile and Content of Isoflavones on Flaked and Extruded Soybeans and Okara Submitted to Different Drying Methods. Food Chem. 2022, 380, 132168. DOI: 10.1016/j.foodchem.2022.132168.
  • Das, A. K.; Anik, T. R.; Rahman, M.; Keya, S.; Islam, M.; Rahman, M.; Sultana, S.; Ghosh, P.; Khan, S.; Ahamed, T., et al. Ethanol Treatment Enhances Physiological and Biochemical Responses to Mitigate Saline Toxicity in Soybean. Plants. 2022, 11(3), 11. DOI: 10.3390/plants11030272.
  • Zhang, J.; Zhong, L.; Peng, M.; Chu, W.; Liu, Z.; Dai, Z.; Hu, Y. Replacement of Fish Meal with Soy Protein Concentrate in Diet of Juvenile Rice Field Eel Monopterus Albus. Aquacult. Rep. 2019, 15, 100235. DOI: 10.1016/j.aqrep.2019.100235.
  • Rossi, W.; Newcomb, M.; Gatlin, D. M. Assessing the Nutritional Value of an Enzymatically Processed Soybean Meal in Early Juvenile Red Drum, Sciaenops Ocellatus L. Aquaculture. 2017, 467, 94–101. DOI: 10.1016/j.aquaculture.2016.01.024.
  • Ding, X. M.; Li, D. D.; Li, Z. R.; Wang, J. P.; Zeng, Q. F.; Bai, S. P.; Su, Z. W.; Zhang, K. Y. Effects of Dietary Crude Protein Levels and Exogenous Protease on Performance, Nutrient Digestibility, Trypsin Activity and Intestinal Morphology in Broilers. Livest. Sci. 2016, 193, 26–31. DOI: 10.1016/j.livsci.2016.09.002.
  • Yu, Z.; Su, Y.; Zhang, Y.; Zhu, P.; Mei, Z.; Zhou, X.; Yu, H. Potential Use of Ultrasound to Promote Fermentation, Maturation, and Properties of Fermented Foods: A Review. Food Chem. 2021, 357, 129805. DOI: 10.1016/j.foodchem.2021.129805.
  • Justus, A.; Pereira, D. G.; Ida, E. I.; Kurozawa, L. E. Combined Uses of an Endo- and Exopeptidase in Okara Improve the Hydrolysates via Formation of Aglycone Isoflavones and Antioxidant Capacity. LWT. 2019, 115, 108467. DOI: 10.1016/j.lwt.2019.108467.
  • Chi, C. H.; Cho, S. J. Improvement of Bioactivity of Soybean Meal by Solid-State Fermentation with Bacillus Amyloliquefaciens versus Lactobacillus Spp. And Saccharomyces Cerevisiae. LWT-Food Sci. Technol. 2016, 68, 619–625. DOI: 10.1016/j.lwt.2015.12.002.
  • Jazi, V.; Ashayerizadeh, A.; Toghyani, M.; Shabani, A.; Tellez, G. Fermented Soybean Meal Exhibits Probiotic Properties When Included in Japanese Quail Diet in Replacement of Soybean Meal. Poult. Sci. 2018, 97(6), 2113–2122. DOI: 10.3382/ps/pey071.
  • Cui, J.; Xia, P.; Zhang, L.; Hu, Y.; Xie, Q.; Xiang, H. A Novel Fermented Soybean, Inoculated with Selected Bacillus, Lactobacillus and Hansenula Strains, Showed Strong Antioxidant and Anti-Fatigue Potential Activity. Food Chem. 2020, 333, 127527. DOI: 10.1016/j.foodchem.2020.127527.
  • Yao, Y.; Li, H.; Li, J.; Zhu, B.; Gao, T. Anaerobic Solid-State Fermentation of Soybean Meal with Bacillus Sp. To Improve Nutritional Quality. Front Nutr. 2021, 8, 706977. DOI: 10.3389/fnut.2021.706977.
  • Ghanem, K. Z.; Mahran, M. Z.; Ramadan, M. M.; Ghanem, H. Z.; Fadel, M.; Mahmoud, M. H. A Comparative Study on Flavour Components and Therapeutic Properties of Unfermented and Fermented Defatted Soybean Meal Extract. Sci. Rep. 2020, 10(1), 5998. DOI: 10.1038/s41598-020-62907-x.
  • Mei, W.; Quanxi, X.; Nannan, H.; Chunhong, L.; Wei, G. Effects of Solid-State Fermentation of Three Probiotic Fermentation Starters on the Nutritional Quality of Soybean Meal. China Brewing. 2020, 39(2), 115–119. DOI: 10.11882/j.issn.0254-5071.2020.02.021.
  • Yukun, Z.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Dossou, S.; Wang, W.; Zhang, X.; Shadrack, R.; Mzengereza, K.; Zhu, K., et al. Optimization of Soybean Meal Fermentation for Aqua-Feed with Bacillus Subtilis Natto Using the Response Surface Methodology. Fermentation. 2021, 7(4), 306. DOI: 10.3390/fermentation7040306.
  • Xie, F.; Feng, F.; Liu, D.; Quan, S.; Liu, L.; Zhang, X.; Chen, G. Bacillus Amyloliquefaciens 35 M Can Exclusively Produce and Secrete Proteases When Cultured in Soybean-Meal-Based Medium. Colloid. Surf. B. 2022, 209, 112188. DOI: 10.1016/j.colsurfb.2021.112188.
  • Yucheng, W.; Kangkang, X.; Feng, L.; Yining, W.; Ningning, O.; Haile, M. Increasing Peptide Yield of Soybean Meal Solid-State Fermentation of Ultrasound-Treated Bacillus Amyloliquefaciens. Innov. Food Sci. Emerg. 2021, 72, 72. DOI: 10.1016/j.ifset.2021.102704.
  • Yang, J.; Wu, X. -B.; Chen, H. -L.; Sun-Waterhouse, D.; Zhong, H. -B.; Cui, C. A Value-Added Approach to Improve the Nutritional Quality of Soybean Meal Byproduct: Enhancing Its Antioxidant Activity Through Fermentation by Bacillus Amyloliquefaciens Swjs22. Food Chem. 2019, 272, 396–403. DOI: 10.1016/j.foodchem.2018.08.037.
  • Niu, D.; Zuo, Z.; Shi, G. Y.; Wang, Z. X. High Yield Recombinant Thermostable α-Amylase Production Using an Improved Bacillus licheniformis System. Microb. Cell Fact. 2009, 8(1), 58. DOI: 10.1186/1475-2859-8-58.
  • Suprayogi, W. P. S.; Ratriyanto, A.; Akhirini, N.; Hadi, R. F.; Setyono, W.; Irawan, A. Changes in Nutritional and Antinutritional Aspects of Soybean Meals by Mechanical and Solid-State Fermentation Treatments with Bacillus Subtilis and Aspergillus Oryzae. Bioresour. Technol. Rep. 2022, 17, 100925. DOI: 10.1016/j.biteb.2021.100925.
  • Xu, C.; Li, J.; Yuan, Q.; Liu, N.; Zhang, X.; Wang, P.; Gao, Y. Effects of Different Fermentation Assisted Enzyme Treatments on the Composition, Microstructure and Physicochemical Properties of Wheat Straw Used as a Substitute for Peat in Nursery Substrates. Bioresource. Technol. 2021, 341, 125815. DOI: 10.1016/j.biortech.2021.125815.
  • Refstie, S.; Sahlstrom, S.; Brathen, E.; Baeverfjord, G.; Krogedal, P. Lactic Acid Fermentation Eliminates Indigestible Carbohydrates and Antinutritional Factors in Soybean Meal for Atlantic Salmon (Salmo Salar). Aquaculture. 2005, 246(1–4), 331–345. DOI: 10.1016/j.aquaculture.2005.01.001.
  • Li, C.; Tian, Y.; Wang, L.; Zhang, B.; Ma, Q. Effects of Replacing Fishmeal by Raw or Lactobacillus Acidophilus-Fermented Soybean Meal on Growth, Intestinal Digestive and Immune-Related Enzyme Activities, Morphology, and Microbiota in Turbot (Scophthalmus Maximus L.). Aquac. Nutr. 2022, 2022, 1–13. DOI: 10.1155/2022/2643235.
  • Niu, K. M.; Kothari, D.; Cho, S. B.; Han, S. G.; Song, I. G.; Kim, S. C.; Kim, S. K. Exploring the Probiotic and Compound Feed Fermentative Applications of Lactobacillus Plantarum Sk1305 Isolated from Korean Green Chili Pickled Pepper. Probiotics Antimicro. 2019, 11(3), 801–812. DOI: 10.1007/s12602-018-9447-2.
  • Hassaan, M. S.; Soltan, M. A.; Abdel-Moez, A. M. Nutritive Value of Soybean Meal After Solid State Fermentation with Saccharomyces Cerevisiae for Nile Tilapia, Oreochromis Niloticus. Anim. Feed Sci. Tech. 2015, 201, 89–98. DOI: 10.1016/j.anifeedsci.2015.01.007.
  • Lei, F.; Chen, Y.; Zhang, L.; He, D. Production of Aminopeptidase from Soybean Meal with Nutrients Supplementation by Bacillus Licheniformis Swjs33: Feasibility and Metabolic Process. LWT. 2021, 152, 112392. DOI: 10.1016/j.lwt.2021.112392.
  • Olmos, A. R. D.; Garro, M. S. Metabolic Profile of Lactobacillus Paracasei Subsp. Paracasei Crl 207 in Solid State Fermentation Using Commercial Soybean Meal. Food Biosci. 2020, 35, 35. DOI: 10.1016/j.fbio.2020.100584.
  • Yin, M.; ChunBo, L.; Guohui, L. I.; Yunying, Z. H. A. O.; Yu, D. E. N. G. Optimized Fermentation Process of Soybean Meal by Bacteria with Enzymes. Food Ferment. Ind. 2019, 45(14), 108–114. DOI: 10.13995/j.cnki.11-1802/ts.019892.
  • Olukomaiya, O. O.; Pan, L.; Zhang, D.; Mereddy, R.; Sultanbawa, Y.; Li, X. Performance and Ileal Amino Acid Digestibility in Broilers Fed Diets Containing Solid-State Fermented and Enzyme-Supplemented Canola Meals. Anim. Feed Sci. Tech. 2021, 275, 114876. DOI: 10.1016/j.anifeedsci.2021.114876.
  • Heng, X.; Chen, H.; Lu, C.; Feng, T.; Li, K.; Gao, E. Study on Synergistic Fermentation of Bean Dregs and Soybean Meal by Multiple Strains and Proteases. LWT. 2022, 154, 112626. DOI: 10.1016/j.lwt.2021.112626.
  • Salminen, S.; Collado, M. C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E. M. M.; Sanders, M. E.; Shamir, R.; Swann, J. R.; Szajewska, H., et al. The International Scientific Association of Probiotics and Prebiotics (Isapp) Consensus Statement on the Definition and Scope of Postbiotics. Nature Reviews Gastroenterology & Hepatology. 2021, 18(9), 649–667. DOI: 10.1038/s41575-021-00440-6.
  • Incili, G. K.; Karatepe, P.; Akgol, M.; Kaya, B.; Kanmaz, H.; Hayaloglu, A. A. Characterization of Pediococcus Acidilactici Postbiotic and Impact of Postbiotic-Fortified Chitosan Coating on the Microbial and Chemical Quality of Chicken Breast Fillets. Int. J. Biol. Macromol. 2021, 184, 429–437. DOI: 10.1016/j.ijbiomac.2021.06.106.
  • Toushik, S. H.; Park, J. H.; Kim, K.; Ashrafudoulla, M.; Ulrich, M. S. I.; Mizan, M. F. R.; Roy, P. K.; Shim, W. B.; Kim, Y. M.; Park, S. H., et al. Antibiofilm Efficacy of Leuconostoc Mesenteroides J.27-Derived Postbiotic and Food-Grade Essential Oils Against Vibrio Parahaemolyticus, Pseudomonas Aeruginosa, and Escherichia Coli Alone and in Combination, and Their Application as a Green Preservative in the Seafood Industry. Food Res. 2022, 156. DOI: 10.1016/j.foodres.2022.111163.
  • Chan, M. Z. A.; Liu, S. Q. Fortifying Foods with Synbiotic and Postbiotic Preparations of the Probiotic Yeast, Saccharomyces Boulardii. Curr. Opin. Food Sci. 2022, 43, 216–224. DOI: 10.1016/j.cofs.2021.12.009.
  • Kaufman, J. D.; Seidler, Y.; Bailey, H. R.; Whitacre, L.; Bargo, F.; Lüersen, K.; Rimbach, G.; Pighetti, G. M.; Ipharraguerre, I. R.; Ríus, A. G. A Postbiotic from Aspergillus Oryzae Attenuates the Impact of Heat Stress in Ectothermic and Endothermic Organisms. Sci. Rep. 2021, 11(1), 6407. DOI: 10.1038/s41598-021-85707-3.
  • Liu, H.; Qiu, Y.; Wei, B.; Yan, X.; Yu, W.; Chen, Q. Recent Research in Fermented Soybean Meal. Chinese J. of Animal Nutrition. 2012, 24(1), 35–40. //CSCD:4434457.
  • Song, Y. S.; Frias, J.; Martinez-Villaluenga, C.; Vidal-Valdeverde, C.; de Mejia, E. G. Immunoreactivity Reduction of Soybean Meal by Fermentation, Effect on Amino Acid Composition and Antigenicity of Commercial Soy Products. Food Chem. 2008, 108(2), 571–581. DOI: 10.1016/j.foodchem.2007.11.013.
  • Chen, P.; Sun, J.; Liang, Z.; Xu, H.; Du, P.; Li, A.; Meng, Y.; Reshetnik, E. I.; Liu, L.; Li, C. The Bioavailability of Soy Isoflavones in vitro and Their Effects on Gut Microbiota in the Simulator of the Human Intestinal Microbial Ecosystem. Food. Res. Int. 2022, 152, 110868. DOI: 10.1016/j.foodres.2021.110868.
  • Vishal, R.; Sonawane, S.; Munje, S. Food Fortification of Soy Protein Isolate for Human Health. Res. J. Chem. Environ. 2018, 22, 108–115.
  • Wang, N.; Le, G.; Shi, Y.; Zeng, Y. Production of Bioactive Peptides from Soybean Meal by Solid State Fermentation with Lactic Acid Bacteria and Protease. Adv. J. Food Sci. Technol. 2014, 6(9), 1080–1085. DOI: 10.19026/ajfst.6.163.
  • Zhang, Y. T.; Lu, D. D.; Chen, J. Y.; Yu, B.; Liang, J. B.; Mi, J. D.; Candyrine, S. C. L.; Liao, X. D. Effects of Fermented Soybean Meal on Carbon and Nitrogen Metabolisms in Large Intestine of Piglets. Animal. 2018, 12(10), 2056–2064. DOI: 10.1017/s1751731118000058.
  • Fan, Z.; Chen, T.; Cai, G.; Huang, X.; Zhong, S.; Li, X.; Zhang, E. Effect of Aspergillus Niger Fermentation on the Metabolites in Corn Stalks. Fermentation. 2023, 9(1), 50. DOI: 10.3390/fermentation9010050.
  • Zhu, D.; Guan, D.; Fan, B.; Sun, Y.; Wang, F. Untargeted Mass Spectrometry-Based Metabolomics Approach Unveils Molecular Changes in Heat-Damaged and Normal Soybean. LWT. 2022, 171, 114136. DOI: 10.1016/j.lwt.2022.114136.
  • Singh, P.; Krishnaswamy, K. Sustainable Zero-Waste Processing System for Soybeans and Soy By-Product Valorization. Trends Food Sci. Tech. 2022, 128, 331–344. DOI: 10.1016/j.tifs.2022.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.