5,142
Views
8
CrossRef citations to date
0
Altmetric
Review Article

A Review on Seaweeds and Seaweed-Derived Polysaccharides: Nutrition, Chemistry, Bioactivities, and Applications

, , , , &

References

  • Mohammadigheisar, M.; Shouldice, V. L.; Sands, J. S.; Lepp, D.; Diarra, M. S.; Kiarie, E. G. Growth performance, breast yield, gastrointestinal ecology and plasma biochemical profile in broiler chickens fed multiple doses of a blend of red, brown and green seaweeds. British Poultry Science, 2020, 61, 5, 590–598. https://doi.org/10.1080/00071668.2020.1774512
  • FAO The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, 2022.
  • Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J. M. Marine Bioactive Compounds and Their Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14(4), 446–465. DOI: 10.1111/1541-4337.12136.
  • FAO. The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All; FAO: Rome, 2016.
  • Wade, R.; Augyte, S.; Harden, M.; Nuzhdin, S.; Yarish, C.; Alberto, F. Macroalgal Germplasm Banking for Conservation, Food Security, and Industry. PLoS Biol. 2020, 18(2), 1–10. DOI: 10.1371/journal.pbio.3000641.
  • Seaweed : ecology, nutrient composition, and medicinal uses V. Pomin, I. H., Ed. Nova Science: 2012.
  • Naylor, R. L.; Hardy, R. W.; Buschmann, A. H.; Bush, S. R.; Cao, L.; Klinger, D. H.; Little, D. C.; Lubchenco, J.; Shumway, S. E.; Troell, M. A 20-Year Retrospective Review of Global Aquaculture. Nature. 2021, 591(7851), 551–563. DOI: 10.1038/s41586-021-03308-6.
  • Boyd, C. E.; McNevin, A. A. Aquaculture : Resource Use, and the Environment; John Wiley & Sons Inc.: USA, 2015.
  • Azanza, R. V.; Ask, E. Reproductive Biology and Eco-Physiology of Farmed Kappaphycus and Eucheuma. Tropical Seaweed Farming Trends, Problems and Opportunities: Focus on Kappaphycus and Eucheuma of Commerce. 2017, 45–53.
  • Hermans, Steven. Seaweed State of the Industry. Phyconomy. 2023. https://phyconomy.net/articles/2022-seaweed-review/
  • Dillehay, T. D.; Ramirez, C.; Pino, M.; Collins, M. B.; Rossen, J.; Pino-Navarro, J. D. Monte Verde: Seaweed, Food, Medicine, and the Peopling of South America. Science. 2008, 320(5877), 784–786. DOI: 10.1126/science.1156533.
  • Porse, H.; Rudolph, B. The Seaweed Hydrocolloid Industry: 2016 Updates, Requirements, and Outlook. J. Appl. Phycol. 2017, 29(5), 1–14. DOI: 10.1007/s10811-017-1144-0.
  • Barbier, M.; Araújo, R.; Rebours, C.; Jacquemin, B.; Holdt, S. L.; Charrier, B. Development and Objectives of the PHYCOMORPH European Guidelines for the Sustainable Aquaculture of Seaweeds (PEGASUS). Botanica Marina. 2020, 63(1), 5–16. DOI: 10.1515/bot-2019-0051.
  • Peñalver, R.; Lorenzo, J. M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar. Drugs. 2020, 18(6), 301. DOI: 10.3390/md18060301.
  • Rocha, C. P.; Pacheco, D.; Cotas, J.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Seaweeds as Valuable Sources of Essential Fatty Acids for Human Nutrition. Int. J. Environ. Res. Public Health. 2021, 18(9), 4968. DOI: 10.3390/ijerph18094968.
  • Subbiah, V.; Xie, C.; Dunshea, F. R.; Barrow, C. J.; Suleria, H. A. R. The Quest for Phenolic Compounds from Seaweed: Nutrition, Biological Activities and Applications. Food Rev. Int. 2022, 1–28. DOI: 10.1080/87559129.2022.2094406.
  • Zhao, W.; Subbiah, V.; Xie, C.; Yang, Z.; Shi, L.; Barrow, C.; Dunshea, F.; Suleria, H. A. R. Bioaccessibility and Bioavailability of Phenolic Compounds in Seaweed. Food Rev. Int. 2022, 2022, 1–32. DOI: 10.1080/87559129.2022.2094404.
  • Marinho-Soriano, E.; Fonseca, P. C.; Carneiro, M. A. A.; Moreira, W. S. C. Seasonal Variation in the Chemical Composition of Two Tropical Seaweeds. Bioresour. Technol. 2006, 97(18), 2402–2406. DOI: 10.1016/j.biortech.2005.10.014.
  • Olsson, J.; Toth, G. B.; Albers, E. Biochemical Composition of Red, Green and Brown Seaweeds on the Swedish West Coast. J. Appl. Phycol. 2020, 32(5), 3305–3317. DOI: 10.1007/s10811-020-02145-w.
  • Baweja, P.; Kumar, S.; Sahoo, D.; Levine, I. Chapter 3 - Biology of Seaweeds. In Seaweed in Health and Disease Prevention; Fleurence, J. and Levine, I., Eds.; Academic Press: San Diego, 2016; pp. 41–106.
  • Roleda, M. Y.; Marfaing, H.; Desnica, N.; Jónsdóttir, R.; Skjermo, J.; Rebours, C.; Nitschke, U. Variations in Polyphenol and Heavy Metal Contents of Wild-Harvested and Cultivated Seaweed Bulk Biomass: Health Risk Assessment and Implication for Food Applications. Food Control. 2019, 95, 121–134. DOI: 10.1016/j.foodcont.2018.07.031.
  • Gosch, B. J.; Magnusson, M.; Paul, N. A.; Nys, R. Total Lipid and Fatty Acid Composition of Seaweeds for the Selection of Species for Oil-Based Biofuel and Bioproducts. GCB Bioenergy. 2012, 4(6), 919–930. DOI: 10.1111/j.1757-1707.2012.01175.x.
  • Farhan Nazarudin, M.; Syazwan Shahidan, M.; Noor Mazli, N. A. I.; Tan Hui, T.; Yam Sim, K.; Md Yasin, I. S.; Azizul, I.; Mohammed, A. -P. Assessment of Malaysian Brown Seaweed Padina Gymnospora Antioxidant Properties and Antimicrobial Activity in Different Solvent Extractions. Fish. Sci. 2022, 88(4), 493–507. DOI: 10.1007/s12562-022-01606-0.
  • Shobier, A. H.; Ismail, M. M.; Hassan, S. W. M. Variation in Anti-Inflammatory, Anti-Arthritic, and Antimicrobial Activities of Different Extracts of Common Egyptian Seaweeds with an Emphasis on Their Phytochemical and Heavy Metal Contents. Biol. Trace Elem. Res. 2023, 201(4), 1–17. DOI: 10.1007/s12011-022-03297-1.
  • Yang, C. -F.; Lai, S. -S.; Chen, Y. -H.; Liu, D.; Liu, B.; Ai, C.; Wan, X. -Z.; Gao, L. -Y.; Chen, X. -H.; Zhao, C. Anti-Diabetic Effect of Oligosaccharides from Seaweed Sargassum Confusum via JNK-IRS1/PI3K Signalling Pathways and Regulation of Gut Microbiota. Food Chem. Toxicol. 2019, 131, 131. DOI: 10.1016/j.fct.2019.110562.
  • Jia, R. -B.; Wu, J.; Li, Z. -R.; Ou, Z. -R.; Zhu, Q.; Sun, B.; Lin, L.; Zhao, M. Comparison of Physicochemical Properties and Antidiabetic Effects of Polysaccharides Extracted from Three Seaweed Species. Int. J. Biol. Macromol. 2020, 149, 81–92. DOI: 10.1016/j.ijbiomac.2020.01.111.
  • Ademola Monsur, H.; Irwandi, J.; Simsek, S.; Azura, A.; Zahangir, A. Chemical Structure of Sulfated Polysaccharides from Brown Seaweed (Turbinaria turbinata). Int. J. Food Prop. 2017, 20(7), 1457–1469. DOI: 10.1080/10942912.2016.1211144.
  • Zhengqi, L.; Chunhong, Y.; Xinping, L.; Chunqing, A.; Xiuping, D.; Li, S.; Songtao, W.; Shuang, S.; Beiwei, Z. Responses of the Gut Microbiota and Metabolite Profiles to Sulfated Polysaccharides from Sea Cucumber in Humanized Microbiota Mice. Food Funct. 2022, 13(7), 4171–4183. DOI: 10.1039/D1FO04443E.
  • Panpan, Z.; Jinhui, J.; Pingrui, J.; Weiyun, Z.; Xiangfei, L.; Shuang, S.; Chunqing, A. Polysaccharides from Edible Brown Seaweed Undaria Pinnatifida are Effective Against High-Fat Diet-Induced Obesity in Mice Through the Modulation of Intestinal Microecology. Food Funct. 2022, 13(5), 2581–2593. DOI: 10.1039/D1FO04012J.
  • Chen, S.; Sathuvan, M.; Zhang, X.; Zhang, W.; Tang, S.; Liu, Y.; Cheong, K. -L. Characterization of Polysaccharides from Different Species of Brown Seaweed Using Saccharide Mapping and Chromatographic Analysis. BMC Chem. 2021, 15(1). DOI: 10.1186/s13065-020-00727-w.
  • Pogozhykh, D.; Posokhov, Y.; Nakonechna, V.; Kalashnyk-Vakulenko, A.; Sharashydze, A.; Myasoedov, V.; Gubina-Vakulyck, G.; Chumachenko, T.; Knigavko, O.; Polikarpova, H., et al. Experimental Evaluation of Food-Grade Semi-Refined Carrageenan Toxicity. Int. J. Mol. Sci. 2021, 22(20), 20. DOI: 10.3390/ijms222011178.
  • FAO Blue Transformation - Roadmap 2022–2030. Rome: FAO, 2022. https://doi.org/10.4060/cc0459en
  • UN Sustainable Development Goals https://www.un.org/sustainabledevelopment/.
  • Zhang, Y.; Xu, M.; Þorkelsson, G.; Aðalbjörnsson, B. V. Comparative Monosaccharide Profiling for Taxon Differentiation: An Example of Icelandic Edible Seaweeds. Biochem. Syst. Ecol. 2022, 104, 104. DOI: 10.1016/j.bse.2022.104485.
  • Gonçalves, A. G.; Ducatti, D. R. B.; Duarte, M. E. R.; Noseda, M. D. Sulfated and Pyruvylated Disaccharide Alditols Obtained from a Red Seaweed Galactan: ESIMS and NMR Approaches. Carbohydr. Res. 2002, 337(24), 2443–2453. DOI: 10.1016/S0008-6215(02)00318-X.
  • Becker, B.; Lommerse, J. P. M.; Melkonian, M.; Kamerling, J. P.; Vliegenthart, J. F. G. Structure of an Acidic Trisaccharide Component from a Cell Wall Polysaccharide Preparation of the Green Alga Tetraselmis Striata Butcher. Carbohydr. Res. 1995, 267(2), 313–321. DOI: 10.1016/0008-6215(94)00300-5.
  • Zhou, J.; Yang, L.; Hu, W. Stereoselective Synthesis of a Sulfated Tetrasaccharide Corresponding to a Rare Sequence in the Galactofucan Isolated from Sargassum Polycystum. J. Org. Chem. 2014, 79(10), 4718–4726. DOI: 10.1021/jo500503r.
  • Panikkar, R.; Brasch, D. J. Biosynthetic Implications of NMR Analyses of Alginate Homo- and Heteropolymers from New Zealand Brown Seaweeds. Carbohydr. Res. 1997, 300(3), 229–238. DOI: 10.1016/S0008-6215(97)00053-0.
  • Laos, K.; Brownsey, G. J.; Ring, S. G. Interactions Between Furcellaran and the Globular Proteins Bovine Serum Albumin and β-Lactoglobulin. Carbohydr. Polym. 2007, 67(1), 116–123. DOI: 10.1016/j.carbpol.2006.04.021.
  • Nkurunziza, David , Sivagnanam, Saravana Periaswamy , Park, Jin-Seok , Cho, Yeon-Jin , Chun, Byung Soo. Effect of wall materials on the spray drying encapsulation of brown seaweed bioactive compounds obtained by subcritical water extraction. Algal Research . 2022, 58, 102381 https://doi.org/10.1016/j.algal.2021.102381
  • Grasser, K. D.; Ritt, C.; Krieg, M.; Fernandez, S.; Alonso, J. C.; Grimm, R. Recombinant Product of the Chryptomonas Phi Plastid Gene hlpA is an Architectural HU-Like Protein That Promotes the Assembly of Complex Nucleoprotein Structures. Eur.J. Biochem. 1997, 249(1), 70–76. DOI: 10.1111/j.1432-1033.1997.00070.x.
  • Meriem, A.; Zainab El, A. -T.; Halima, R.; Imen, F.; Slim, A.; Mohamed Didi Ould, E. -H.; Zakaria, B.; Pascal, D.; Philippe, M.; Didier Le, C., et al. A Novel Sulfated Glycoprotein Elicitor Extracted from the Moroccan Green Seaweed Codium Decorticatum Induces Natural Defenses in Tomato. Appl. Sci. 2022, 12(7), 36–43. DOI: 10.3390/app12073643.
  • Kushnerova, N. F.; Fomenko, S. E.; Sprygin, V. G.; Drugova, E. S.; Momot, T. V.; Lesnikova, L. N.; Merzlyakov, V. Y. Effect of the Lipid Complex from Green Seaweed Ulva Lactuca Linnaeus, 1753 on the Biochemical Parameters of Blood Plasma and the Liver in Experimental Dyslipidemia. Russ. J. Mar. Biol. 2022, 48(2), 113–121. DOI: 10.1134/S1063074022020079.
  • Nultsch, W. Separation of Chromoproteins by Gel Filtration. Biochim. Biophys. Acta. 1962, 59(1), 213–215. DOI: 10.1016/0006-3002(62)90713-8.
  • Navarrete, A.; González, A.; Gómez, M.; Contreras, R. A.; Díaz, P.; Lobos, G.; Brown, M. T.; Sáez, C. A.; Moenne, A. Copper Excess Detoxification is Mediated by a Coordinated and Complementary Induction of Glutathione, Phytochelatins and Metallothioneins in the Green Seaweed Ulva Compressa. Plant Physiol. Biochem. 2019, 135, 423–431. DOI: 10.1016/j.plaphy.2018.11.019.
  • Zhi-Mei, Z. Effects of Seaweed Polypeptide on Endurance Level of Athlete. Food Res. Dev. 2016, 37(21), 169–172.
  • Yesiltas, B.; García-Moreno, P. J.; Gregersen, S.; Olsen, T. H.; Jones, N. C.; Hoffmann, S. V.; Marcatili, P.; Overgaard, M. T.; Hansen, E. B.; Jacobsen, C. Antioxidant Peptides Derived from Potato, Seaweed, Microbial and Spinach Proteins: Oxidative Stability of 5% Fish Oil-In-Water Emulsions. Food Chem. 2022, 385, 385. DOI: 10.1016/j.foodchem.2022.132699.
  • Leonardo, B.; Giulia, S.; Simone, M.; Filippo, F.; Giuliana, P. A Commercial Macroalgae Extract in a Plant-Protein Rich Diet Diminished Saturated Fatty Acids of Oncorhynchus Mykiss Walbaum Fillets. Ital. J. Anim. Sci. 2020, 19(1), 373–382. DOI: 10.1080/1828051X.2020.1745097.
  • Wang, R.; Paul, V. J.; Luesch, H. Seaweed Extracts and Unsaturated Fatty Acid Constituents from the Green Alga Ulva Lactuca as Activators of the Cytoprotective Nrf2–ARE Pathway. Free Radical Biol. Med. 2013, 57, 141–153. DOI: 10.1016/j.freeradbiomed.2012.12.019.
  • Javee, A.; Karuppan, R.; Subramani, N. Bioactive Glycolipid Biosurfactant from Seaweed Sargassum Myriocystum Associated Bacteria Streptomyces Sp. SNJASM6. Biocatal. Agric. Biotechnol. 2020, 23, 23. DOI: 10.1016/j.bcab.2020.101505.
  • Barot, M.; Nirmal Kumar, J. I.; Kumar, R. N. An Evaluation of the Nutritional Composition of Seaweeds as Potential Source of Food and Feed. Natl. Acad. Sci. Lett. 2019, 42(6), 459–464. DOI: 10.1007/s40009-019-0783-x.
  • Duarte, C. M.; Bruhn, A.; Krause-Jensen, D. A Seaweed Aquaculture Imperative to Meet Global Sustainability Targets. Nat. Sustain. 2022, 5(3), 185–193. DOI: 10.1038/s41893-021-00773-9.
  • Legacy, S. FoodData Central – Seaweed, Agar, Dried, April 1 ed.; U.S. Department of Agriculture, 2019.
  • Preez, R. D.; Panchal, S. K.; Brown, L.; Majzoub, M. E.; Thomas, T. Caulerpa Lentillifera (Sea Grapes) Improves Cardiovascular and Metabolic Health of Rats with Diet-Induced Metabolic Syndrome. Metabolites. 2020, 10(12), 1–18. DOI: 10.3390/metabo10120500.
  • Syakilla, N.; George, R.; Chye, F. Y.; Pindi, W.; Mantihal, S.; Wahab, N. A.; Fadzwi, F. M.; Gu, P. H.; Matanjun, P. A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa Lentillifera. Foods. 2022, 11(18), 2832. DOI: 10.3390/foods11182832.
  • Van Tang, N.; Jinn-Pyng, U.; Guo-Jane, T. Proximate Composition, Total Phenolic Content, and Antioxidant Activity of Seagrape (Caulerpa lentillifera). J. Food Sci. 2011, 76(7), C950–958. DOI: 10.1111/j.1750-3841.2011.02289.x.
  • Long, H.; Gu, X.; Zhu, Z.; Wang, C.; Xia, X.; Zhou, N.; Liu, X.; Zhao, M. Effects of Bottom Sediment on the Accumulation of Nutrients in the Edible Green Seaweed Caulerpa Lentillifera (Sea Grapes). J. Appl. Phycol. 2020, 32(1), 705–716. DOI: 10.1007/s10811-019-01949-9.
  • Qudus, B.; Aroyehun, A.; Abdul Razak, S.; Palaniveloo, K.; Nagappan, T.; Suraiza Nabila Rahmah, N.; Wee Jin, G.; Chellappan, D. K.; Chellian, J.; Kunnath, A. P. Bioprospecting Cultivated Tropical Green Algae, Caulerpa Racemosa (Forsskal) J. Agardh: A Perspective on Nutritional Properties, Antioxidative Capacity and Anti-Diabetic Potential. Foods. 2020, 9(9), 1313. DOI: 10.3390/foods9091313.
  • Huili, H.; Manqin, F.; Ru, Y.; Baolin, H.; Meiying, L.; Qiabiao, L.; Yimian, C.; Xiaoyong, Z.; Riming, H. Chemical Composition and Immunostimulatory Properties of Green Alga Caulerpa Racemosavar Peltata. Food Agric. Immunol. 2019, 30(1), 937–954. DOI: 10.1080/09540105.2019.1646216.
  • Pangestuti, R.; Haq, M.; Rahmadi, P.; Chun, B. -S. Nutritional Value and Biofunctionalities of Two Edible Green Seaweeds (Ulva Lactuca and Caulerpa racemosa) from Indonesia by Subcritical Water Hydrolysis. Mar. Drugs. 2021, 19(10), 578. DOI: 10.3390/md19100578.
  • Ortiz, J.; Uquiche, E.; Robert, P.; Romero, N.; Quitral, V.; Llanten, C. Functional and Nutritional Value of the Chilean Seaweeds Codium Fragile, Gracilaria Chilensis and Macrocystis Pyrifera. Eur. J. Lipid Sci. Technol. 2009, 111(4), 320–327. DOI: 10.1002/ejlt.200800140.
  • Ciancia, M.; Quintana, I.; Vizcarguenaga, M. I.; Kasulin, L.; Dios, A. D.; Estevez, J. M.; Cerezo, A. S. Polysaccharides from the Green Seaweeds Codium Fragile and C. Vermilara with Controversial Effects on Hemostasis. Int. J. Biol. Macromol. 2007, 41(5), 641–649. DOI: 10.1016/j.ijbiomac.2007.08.007.
  • Skrzypczyk, V. M.; Hermon, K. M.; Norambuena, F.; Turchini, G. M.; Keast, R.; Bellgrove, A. Is Australian Seaweed Worth Eating? Nutritional and Sensorial Properties of Wild-Harvested Australian versus Commercially Available Seaweeds. J. Appl. Phycol. 2019, 31(1), 709–724. DOI: 10.1007/s10811-018-1530-2.
  • Mandalka, A.; Toyota Fujii, P.; Harb, U.; Cavalcanti, M. I. L. G.; Eisner, M.; Schweiggert-Weisz, T. B.; Chow, F. Nutritional Composition of Beach-Cast Marine Algae from the Brazilian Coast: Added Value for Algal Biomass Considered as Waste. Foods. 2022, 11(9), 1201. DOI: 10.3390/foods11091201.
  • Robledo, D.; Freile Pelegrín, Y. Chemical and Mineral Composition of Six Potentially Edible Seaweed Species of Yucatán. Botanica Marina. 1997, 40(1–6), 301–306. DOI: 10.1515/botm.1997.40.1-6.301.
  • Paiva, L.; Lima, E.; Neto, A. I.; Marcone, M.; Baptista, J. Nutritional and Functional Bioactivity Value of Selected Azorean Macroalgae: Ulva compressa, Ulva Rigida, Gelidium microdon, and Pterocladiella Capillacea. J. Food Sci. 2017, 82(7), 1757–1764. DOI: 10.1111/1750-3841.13778.
  • Wahlström, N.; Nylander, F.; Malmhäll-Bah, E.; Sjövold, K.; Edlund, U.; Westman, G.; Albers, E. Composition and Structure of Cell Wall Ulvans Recovered from Ulva Spp. Along the Swedish West Coast. Carbohydr. Polym. 2020, 233, 115852. DOI: 10.1016/j.carbpol.2020.115852.
  • Rohani-Ghadikolaei, K.; Abdulalian, E.; Ng, W. K. Evaluation of the Proximate, Fatty Acid and Mineral Composition of Representative Green, Brown and Red Seaweeds from the Persian Gulf of Iran as Potential Food and Feed Resources. J. Food Sci. Technol. 2012, 49(6), 774–780. DOI: 10.1007/s13197-010-0220-0.
  • Jannat-Alipour, H.; Rezaei, M.; Shabanpour, B.; Tabarsa, M. Edible Green Seaweed, Ulva Intestinalis as an Ingredient in Surimi-Based Product: Chemical Composition and Physicochemical Properties. J. Appl. Phycol. 2019, 31(4), 2529–2539. DOI: 10.1007/s10811-019-1744-y.
  • Rasyid, A. Evaluation of Nutritional Composition of the Dried Seaweed Ulva Lactuca from Pameungpeuk Waters, Indonesia. Trop. Life Sci. Res. 2017, 28(2), 119–125. DOI: 10.21315/tlsr2017.28.2.9.
  • Yaich, H.; Garna, H.; Bchir, B.; Besbes, S.; Paquot, M.; Richel, A.; Blecker, C.; Attia, H. Chemical Composition and Functional Properties of Dietary Fibre Extracted by Englyst and Prosky Methods from the Alga Ulva Lactuca Collected in Tunisia. Algal Res. 2015, 9, 65–73. DOI: 10.1016/j.algal.2015.02.017.
  • Blanco-Pascual, N.; Montero, M. P.; Gómez-Guillén, M. C. Antioxidant Film Development from Unrefined Extracts of Brown Seaweeds Laminaria Digitata and Ascophyllum Nodosum. Food Hydrocoll. 2014, 37, 100–110. DOI: 10.1016/j.foodhyd.2013.10.021.
  • Samarasinghe, M. B.; Sehested, J.; Weisbjerg, M. R.; Vestergaard, M.; Hernández-Castellano, L. E. Milk Supplemented with Dried Seaweed Affects the Systemic Innate Immune Response in Preweaning Dairy Calves. J. Dairy Sci. 2021, 104(3), 3575–3584. DOI: 10.3168/jds.2020-19528.
  • Al Monla, R. M.; Dassouki, Z. T.; Gali-Muhtasib, H.; Mawlawi, H. R. Chemical Analysis and Biological Potentials of Extracts from Colpomenia Sinuosa. Pharmacogn. Res. 2021, 13(3), 272–277a.
  • Hurd, C. L.; Wright, J. T.; Layton, C.; Strain, E. M. A.; Britton, D.; Visch, W.; Barrett, N.; Bennett, S.; Chang, K. J. L.; Edgar, G., et al. From Tasmania to the World: Long and Strong Traditions in Seaweed Use, Research, and Development. Botanica Marina 2023, 66(1). doi:10.1515/bot-2022-0061
  • Zhang, R.; Yuen, A. K. L.; de Nys, R.; Masters, A. F.; Maschmeyer, T. Step by Step Extraction of Bio-Actives from the Brown Seaweeds, Carpophyllum Flexuosum, Carpophyllum Plumosum, Ecklonia Radiata and Undaria Pinnatifida. Algal Res. 2020, 52, 102092. DOI: 10.1016/j.algal.2020.102092.
  • Smith, J. L.; Summers, G.; Wong, R. Nutrient and Heavy Metal Content of Edible Seaweeds in New Zealand. N. Z. J. Crop Hortic. Sci. 2010, 38(1), 19–28. DOI: 10.1080/01140671003619290.
  • Paiva, L.; Lima, E.; Neto, J.; Baptista, A. I. Seasonal Variability of the Biochemical Composition and Antioxidant Properties of Fucus Spiralis at Two Azorean Islands. Mar. Drugs. 2018, 16(8), 248. DOI: 10.3390/md16080248.
  • Agregán, R.; Munekata, P. E.; Domínguez, R.; Carballo, J.; Franco, D.; Lorenzo, J. M. Proximate Composition, Phenolic Content and in vitro Antioxidant Activity of Aqueous Extracts of the Seaweeds Ascophyllum nodosum, Bifurcaria Bifurcata and Fucus Vesiculosus. Effect of Addition of the Extracts on the Oxidative Stability of Canola Oil Under Accelerated Storage Conditions. Food Res. Int. 2017, 99(Pt 3), 986–994. DOI: 10.1016/j.foodres.2016.11.009.
  • Da Costa, E.; Domingues, P.; Melo, T.; Coelho, E.; Domingues, M. R.; Pereira, R.; Abreu, M. H.; Calado, R. Lipidomic Signatures Reveal Seasonal Shifts on the Relative Abundance of High-Valued Lipids from the Brown Algae Fucus Vesiculosus. Mar. Drugs. 2019, 17(6), 335. DOI: 10.3390/md17060335.
  • Strain, C. R.; Collins, K. C.; Naughton, V.; McSorley, E. M.; Stanton, C.; Smyth, T. J.; Soler-Vila, A.; Rea, M. C.; Ross, P. R.; Cherry, P., et al. Effects of a Polysaccharide-Rich Extract Derived from Irish-Sourced Laminaria Digitata on the Composition and Metabolic Activity of the Human Gut Microbiota Using an in vitro Colonic Model. Eur. J. Nutr. 2020, 59, 309–325. DOI: 10.1007/s00394-019-01909-6.
  • Alvarado-Morales, M.; Gunnarsson, I. B.; Fotidis, I. A.; Vasilakou, E.; Lyberatos, G.; Angelidaki, I. Laminaria Digitata as a Potential Carbon Source for Succinic Acid and Bioenergy Production in a Biorefinery Perspective. Algal Res. 2015, 9, 126–132. DOI: 10.1016/j.algal.2015.03.008.
  • Kostas, E. T.; Cook, D. J.; White, D. A. Bioethanol Production from UK Seaweeds: Investigating Variable Pre-Treatment and Enzyme Hydrolysis Parameters. Bioenergy Res. 2020, 13(1), 271–285. DOI: 10.1007/s12155-019-10054-1.
  • Schiener, P.; Zhao, S.; Theodoridou, K.; Carey, M.; Mooney-McAuley, K.; Greenwell, C. The Nutritional Aspects of Biorefined Saccharina latissima, Ascophyllum Nodosum and Palmaria Palmata. Biomass Conversion and Biorefinery: Processing of Biogenic Material for Energy and Chemistry. 2017, 7(2), 221–235. DOI: 10.1007/s13399-016-0227-5.
  • Samarasinghe, M. B.; van der Heide, M. E.; Weisbjerg, M. R.; Sehested, J.; Sloth, J. J.; Bruhn, A.; Vestergaard, M.; Nørgaard, J. V.; Hernández-Castellano, L. E. A Descriptive Chemical Analysis of Seaweeds, Ulva Sp., Saccharina Latissima and Ascophyllum Nodosum Harvested from Danish and Icelandic Waters. Anim. Feed Sci. Technol. 2021, 278, 115005. DOI: 10.1016/j.anifeedsci.2021.115005.
  • D’armas, H.; D’armas, M.; Echavarría, A.; Jaramillo, C.; Valverde, P. Proximate Composition of Several Macroalgae from the Coast of Salinas Bay, Ecuador. Rev. Biol. Trop. 2019, 67(1), 61–68. DOI: 10.15517/rbt.v67i1.33380.
  • Behnaz Razi Parjikolaei, A. B.; Loft Eybye, K.; Mørk Larsen, M.; Bo Rasmussen, M.; Villy Christensen, K.; Fretté, X. C.; Fretté, X. C. Valuable Biomolecules from Nine North Atlantic Red Macroalgae: Amino Acids, Fatty Acids, Carotenoids, Minerals and Metals. Nat. Resour. 2016, 7(4), 157–183. DOI: 10.4236/nr.2016.74016.
  • Dellatorre, F. G.; Avaro, M. G.; Commendatore, M. G.; Arce, L.; Díaz de Vivar, M. E. The Macroalgal Ensemble of Golfo Nuevo (Patagonia, Argentina) as a Potential Source of Valuable Fatty Acids for Nutritional and Nutraceutical Purposes. Algal Res. 2020, 45, 101726. DOI: 10.1016/j.algal.2019.101726.
  • Guerreiro, I. S.; Magalhães, R.; Coutinho, F.; Couto, A.; Sousa, S.; Delerue-Matos, C.; Domingues, V. F.; Oliva-Teles, A.; Peres, H. Evaluation of the Seaweeds Chondrus Crispus and Ulva Lactuca as Functional Ingredients in Gilthead Seabream (Sparus aurata). J. Appl. Phycol. 2019, 31(3), 2115–2124. DOI: 10.1007/s10811-018-1708-7.
  • Naseri, A.; Holdt, S. L.; Jacobsen, C. Biochemical and Nutritional Composition of Industrial Red Seaweed Used in Carrageenan Production. J. Aquat. Food Prod. Technol. 2019, 28(9), 967–973. DOI: 10.1080/10498850.2019.1664693.
  • Grünewald, N.; Alban, S. Optimized and Standardized Isolation and Structural Characterization of Anti-Inflammatory Sulfated Polysaccharides from the Red Alga Delesseria Sanguinea (Hudson) Lamouroux (Ceramiales, Delesseriaceae). Biomacromolecules. 2009, 10(11), 2998–3008. DOI: 10.1021/bm900501g.
  • Thum, G.; Cappai, M. G.; Bochert, R.; Schubert, H.; Wolf, P. Nutrient Profile of Baltic Coastal Red Algae (Delesseria sanguinea), Baltic Blue Mussel (Mytilus Spp.) and King Ragworm (Alitta virens) as Potential Feed Material in the Diet of Rainbow Trout (Oncorhynchus Mykiss Walbaum, 1792): A Preliminary Assessment. Agriculture. 2022, 12(2), 196. DOI: 10.3390/agriculture12020196.
  • Kulikova, Y.; Sukhikh, S.; Kalashnikova, O.; Chupakhin, E.; Gorbunova, O.; Ivanova, S.; Chubarenko, B.; Babich, J. Assessment of the Resource Potential of Baltic Sea Macroalgae. Appl. Sci. 2022, 12(7), 7. DOI: 10.3390/app12073599.
  • Chan, P. T.; Matanjun, P. Chemical Composition and Physicochemical Properties of Tropical Red Seaweed, Gracilaria Changii. Food Chem. 2017, 221, 302–310. DOI: 10.1016/j.foodchem.2016.10.066.
  • Wan-Loy, C.; Mohamed, N.; Siew-Moi, P. Fatty Acid Composition of Some Malaysian Seaweeds. Malaysian J. Sci. 2003, 22(2), 21–27.
  • Rosemary, T.; Arulkumar, A.; Paramasivam, S.; Mondragon-Portocarrero, A.; Miranda, J. M. Biochemical, Micronutrient and Physicochemical Properties of the Dried Red Seaweeds Gracilaria Edulis and Gracilaria Corticata. Molecules. 2019, 24(12), 2225. DOI: 10.3390/molecules24122225.
  • Kumar, M.; Kumari, P.; Gupta, V.; Reddy, C. R. K.; Jha, B. Biochemical Responses of Red Alga Gracilaria Corticata (Gracilariales, Rhodophyta) to Salinity Induced Oxidative Stress. J. Exp. Mar. Biol. Ecol. 2010, 391(1), 27–34. DOI: 10.1016/j.jembe.2010.06.001.
  • Gressler, V.; Yokoya, N. S.; Fujii, M. T.; Colepicolo, P.; Filho, J. M.; Torres, R. P.; Pinto, E. Lipid, Fatty Acid, Protein, Amino Acid and Ash Contents in Four Brazilian Red Algae Species. Food Chem. 2010, 120(2), 585–590. DOI: 10.1016/j.foodchem.2009.10.028.
  • Osman, N. A. R.; Alhassan, M. M.; Abas, B. K. The Content of Some Selected Metabolites of Hypnea Valentiae (Turner) Montagne from the Red Sea Coast of Sudan. J. Coast. Life Med. 2016, 4(6), 458–464. DOI: 10.12980/jclm.4.2016J6-49.
  • Mutripah, S.; Meinita, M. D. N.; Kang, J. -Y.; Jeong, G. -T.; Susanto, A. B.; Prabowo, R. E.; Hong, Y. -K. Bioethanol Production from the Hydrolysate of Palmaria Palmata Using Sulfuric Acid and Fermentation with Brewer’s Yeast. J. Appl. Phycol. 2014, 26(1), 687–693. DOI: 10.1007/s10811-013-0068-6.
  • Wahlström, N.; Harrysson, H.; Undeland, I.; Edlund, U. A Strategy for the Sequential Recovery of Biomacromolecules from Red Macroalgae Porphyra Umbilicalis Kützing. Ind. Eng. Chem. Res. 2018, 57(1), 42–53. DOI: 10.1021/acs.iecr.7b03768.
  • Harrysson, H.; Hayes, M.; Eimer, F.; Carlsson, N. G.; Toth, G. B.; Undeland, I. Production of Protein Extracts from Swedish Red, Green, and Brown Seaweeds, Porphyra Umbilicalis Kutzing, Ulva Lactuca Linnaeus, and Saccharina Latissima (Linnaeus) J. V. Lamouroux Using Three Different Methods. J. Appl. Phycol. 2018, 30(6), 3565–3580. DOI: 10.1007/s10811-018-1481-7.
  • Novoa-Garrido, M.; Marcos, C. N.; Travieso, M. D. C.; Alcaide, E. M.; Larsen, M.; Weisbjerg, M. R. Preserving Porphyra Umbilicalis and Saccharina Latissima as Silages for Ruminant Feeding. Animals. 2020, 10(11), 1–19. DOI: 10.3390/ani10111957.
  • Shin, D. -M.; An, S. -R.; In, S. -K.; Koo, J. -G. Seasonal Variation in the Dietary Fiber, Amino Acid and Fatty Acid Contents of Porphyra Yezoensis. Korean J. Fish Aquat. Sci. 2013, 46(4), 337–342. DOI: 10.5657/KFAS.2013.0337.
  • Kim, K. -W.; Hwang, J. -H.; Oh, M. -J.; Kim, M. -Y.; Choi, M. -R.; Park, W. -M. Studies on the Major Nutritional Components of Commercial Dried Lavers (Porphyra yezoensis) Cultivated in Korea. Korean J. Food Preserv. 2014, 21(5), 702–709. DOI: 10.11002/kjfp.2014.21.5.702.
  • Beacham, T. A.; Cole, I. S.; DeDross, L. S.; Airs, R. L.; Herrera, A.; Allen, M. J.; Raikova, S.; Chuck, C. J.; Macdonald, J.; Landels, L., et al. Analysis of Seaweeds from South West England as a Biorefinery Feedstock. Appl. Sci. 2019, 9(20), 20. DOI: 10.3390/app9204456.
  • Yanshin, N.; Tarakhovskaya, V.; Lemesheva, E.; Kushnareva, A.; Birkemeyer, C. Chemical Composition and Potential Practical Application of 15 Red Algal Species from the White Sea Coast (The Arctic Ocean). Molecules. 2021, 26(9), 2489. DOI: 10.3390/molecules26092489.
  • JoVe Core Biology. What are Carbohydrates? ; MyJoVE Corp, 2016. https://www.jove.com/science-education/jovecore
  • Stiger-Pouvreau, V.; Bourgougnon, N.; Deslandes, E. Chapter 8 - Carbohydrates from Seaweeds. Seaweed in Health and Disease Prevention. 2016, 223–274.
  • Calvo, G. H.; Sáenz, D. A.; Céspedes, M. A.; Mamone, L. A.; Casas, A. G.; Di Venosa, G. M.; Cosenza, V. A.; Navarro, D. A.; Stortz, C. A. Disaccharides Obtained from Carrageenans as Potential Antitumor Agents. Sci. Rep. 2019, 9(1). DOI: 10.1038/s41598-019-43238-y.
  • Birdie Scott, P.; Chee Kiong, S.; Fook Yee, C. Optimization of an Innovative Hydrothermal Processing on Prebiotic Properties of Eucheuma denticulatum, a Tropical Red Seaweed. Appl. Sci. 2023, 13(3), 1517. DOI: 10.3390/app13031517.
  • Rioux, L. -E.; Turgeon, S. L. Chapter 7 - Seaweed Carbohydrates. In Seaweed Sustainability; Tiwari, B.K. and Troy, D.J., Eds.; Academic Press: San Diego, 2015; pp. 141–192.
  • Tanna, B.; Mishra, A. Nutraceutical Potential of Seaweed Polysaccharides: Structure, Bioactivity, Safety, and Toxicity. Compr. Rev. Food Sci. Food Saf. 2019, 18(3), 817–831. DOI: 10.1111/1541-4337.12441.
  • Boubakri, H. Chapter 5 - Induced Resistance to Biotic Stress in Plants by Natural Compounds: Possible Mechanisms. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants; Hossain, M.A., Liu, F., Burritt, D.J., Fujita, M. and Huang, B., Eds.; Academic Press, 2020; pp. 79–99. https://doi.org/10.1016/B978-0-12-817892-8.00005-2
  • Protein structure. Nova Science Publishers, 2011.
  • Healy, L. E.; Zhu, X.; Pojic, M.; Poojary, M. M.; Curtin, J.; Tiwari, U.; Sullivan, C.; Tiwari, B. K. Impact of Dry, Particle-Size Fractionation on Protein and Amino Acid Content of Three Seaweed Species. Int. J. Food Prop. 2022, 25(1), 2073–2088. DOI: 10.1080/10942912.2022.2120001.
  • Machado, M.; Machado, S.; Pimentel, F. B.; Freitas, V.; Alves, R. C.; Beatriz, M.; Oliveira, P. P. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods. 2020, 9(10), 1. AP. DOI: 10.3390/foods9101382.
  • Rawiwan, P.; Peng, Y.; Paramayuda, I. G. P. B.; Quek, S. Y. Red Seaweed: A Promising Alternative Protein Source for Global Food Sustainability. Trends Food Sci. Technol. 2022, 123, 37–56. DOI: 10.1016/j.tifs.2022.03.003.
  • MacArtain, P.; Gill, C. I. R.; Brooks, M.; Campbell, R.; Rowland, I. R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 65(12), 535. DOI: 10.1111/j.1753-4887.2007.tb00278.x.
  • Schmid, M.; Kraft, L. G. K.; Loos, L. M. V. D.; Kraft, G. T.; Virtue, P.; Nichols, P. D.; Hurd, C. L. Southern Australian Seaweeds: A Promising Resource for Omega-3 Fatty Acids. Food Chem. 2018, 265, 70–77. DOI: 10.1016/j.foodchem.2018.05.060.
  • Wander, R. C.; Hall, J. A.; Gradin, J. L.; Du, S. H.; Jewell, D. E. The Ratio of Dietary (N-6) to (N-3) Fatty Acids Influences Immune System Function, Eicosanoid Metabolism, Lipid Peroxidation and Vitamin E Status in Aged Dogs1–4. J. Nutr. 1997, 127(6), 1198–1205. DOI: 10.1093/jn/127.6.1198.
  • Pacheco, M. P.; Sobczak, L. L. R. N. C.; DeAngelo, L. P. Vitamins and minerals. In Salem Press Encyclopedia of Science. Salem Press, 5, 2022.
  • Susanti, D.; Ruslan, F. S.; Shukor, M. I.; Nor, N. M.; Aminudin, N. I.; Taher, M.; Khotib, J. Optimisation of Vitamin B12 Extraction from Green Edible Seaweed (Ulva lactuca) by Applying the Central Composite Design. Molecules. 2022, 27(14), 27. DOI: 10.3390/molecules27144459.
  • Hughes, L. J.; Black, L. J.; Sherriff, J. L.; Dunlop, E.; Strobel, N.; Lucas, R. M.; Bornman, J. F. Vitamin D Content of Australian Native Food Plants and Australian-Grown Edible Seaweed. Nutrients. 2018, 10(7), 7. DOI: 10.3390/nu10070876.
  • Rahmasuci, F.; Rita, I. PENGARUH SUBSTITUSI TEPUNG KEDELAI, TEPUNG BEKATUL DAN TEPUNG RUMPUT LAUT (Gracilaria Sp) TERHADAP DAYA TERIMA, ZAT BESI DAN VITAMIN B12 BROWNIES. Media Gizi Indonesia. 2018, 13(1), 12–19. DOI: 10.20473/mgi.v13i1.12-19.
  • Bartle, W. R.; Madorin, P.; Ferland, G. Seaweed, Vitamin K, and Warfarin. Am. J. Health-System Pharm. 2001, 58(23), 2300. DOI: 10.1093/ajhp/58.23.2300.
  • Luhila, Õ.; Paalme, T.; Tanilas, K.; Sarand, I. Omega-3 Fatty Acid and B12 Vitamin Content in Baltic Algae. Algal Res. 2022, 67, 102860. DOI: 10.1016/j.algal.2022.102860.
  • Uchida, M.; Kurushima, H.; Ishihara, K.; Murata, Y.; Touhata, K.; Ishida, N.; Niwa, K.; Araki, T. Characterization of Fermented Seaweed Sauce Prepared from Nori (Pyropia Yezoensis). J. Biosci. Bioeng. 2017, 123(3), 327–332. DOI: 10.1016/j.jbiosc.2016.10.003.
  • Mišurcová, L.; Machů, L.; Orsavová, J. Chapter 29 - Seaweed Minerals as Nutraceuticals. Adv. Food Nutr. Res. 2011, 64, 371–390.
  • Castro, J. P. L. D.; Costa, L. E. C.; Pinheiro, M. P.; Francisco, T. D. S.; Vasconcelos, P. H. M. D.; Funari, L. M.; Daudt, R. M.; Santos, G. R. C. D.; Cardozo, N. S. M.; Freitas, A. L. P. Polysaccharides of Red Alga Gracilaria Intermedia: Structure, Antioxidant Activity and Rheological Behavior. Polímeros. 2018, 28(2), 178–186. DOI: 10.1590/0104-1428.013116.
  • Bayomy, H. M. Effects of Culinary Treatments on the Physicochemical Properties of Ulva Lactuca Collected from Tabuk Coast of Red Sea in Saudi Arabia. Saudi J. Biol. Sci. 2022, 29(4), 2355–2362. DOI: 10.1016/j.sjbs.2021.12.006.
  • Cutler, J. A. Thiazide-Associated Glucose Abnormalities: Prognosis, Etiology, and Prevention: Is Potassium Balance the Key? Hypertension. 2006, 48(2), 198–200. DOI: 10.1161/01.HYP.0000231339.51310.b3.
  • Andersen, S.; Noahsen, P.; Rex, K. F.; Florian-Sorensen, H. C.; Mulvad, G. Iodine in Edible Seaweed, Its Absorption, Dietary Use, and Relation to Iodine Nutrition in Arctic People. J. Med. Food. 2019, 22(4), 421–426. DOI: 10.1089/jmf.2018.0187.
  • Phyconomy seaweed Airtable. 2022.
  • Matsumura, Y. Nutrition Trends in Japan. Asia Pac. J. Clin. Nutr. 2001, 10(1), S40–47. DOI: 10.1046/j.1440-6047.2001.00215.x.
  • Vijayalingam Thavasi, A.; Rajesh Nakulan, V.; Ilavarasan, S.; Vairamuthu, S.; Venkataramanan, R. Effect of Dietary Supplementation of Seaweed (Ulva lactuca) and Azolla on Growth Performance, Haematological and Serum Biochemical Parameters of Aseel Chicken. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9(1), 1–9. DOI: 10.1186/s43088-020-00087-3.
  • Nhlane, L. T.; Mnisi, C. M.; Mlambo, V.; Madibana, M. J. Nutrient Digestibility, Growth Performance, and Blood Indices of Boschveld Chickens Fed Seaweed-Containing Diets. Animals. 2020, 10(8), 1296. DOI: 10.3390/ani10081296.
  • Ruiz, Á. R.; Gadicke, P.; Andrades, S. M.; Cubillos, R. Supplementing Nursery Pig Feed with Seaweed Extracts Increases Final Body Weight of Pigs. Austral J. Vet. Sci. 2018, 50(2), 83–87. DOI: 10.4067/S0719-81322018000200083.
  • Dhargalkar, V. K.; Pereira, N. Seaweed: Promising Plant of the Millennium. Sci Cult. 2005, 71, 60–66.
  • Sébastien, R.; Jacynthe, M.; Jeffrey, P. N.; Bachar, B.; Mohamed, H. A Commercial Seaweed Extract Structured Microbial Communities Associated with Tomato and Pepper Roots and Significantly Increased Crop Yield. Microb. Biotechnol. 2019, 12(6), 1346–1358. DOI: 10.1111/1751-7915.13473.
  • Rengasamy, K. R. R.; Kulkarni, M. G.; Stirk, W. A.; Van Staden, J. Eckol - a New Plant Growth Stimulant from the Brown Seaweed Ecklonia Maxima. J. Appl. Phycol. 2015, 27(1), 581–587. DOI: 10.1007/s10811-014-0337-z.
  • Rathinapriya, P.; Pandian, S.; Rameshkumar, R.; Balasangeetha, M.; Rakkammal, K.; Ramesh, M.; Satish, L. Effects of Liquid Seaweed Extracts in Improving the Agronomic Performance of Foxtail Millet. J. Plant Nutr. 2020, 43(19), 2857–2875. DOI: 10.1080/01904167.2020.1799002.
  • Meng, C.; Gu, X.; Liang, H.; Wu, M.; Wu, Q.; Yang, L.; Li, Y.; Shen, P. Optimized Preparation and High-Efficient Application of Seaweed Fertilizer on Peanut. J. Agric. Food Res. 2022, 7, 7. DOI: 10.1016/j.jafr.2022.100275.
  • Tursun, A. O. Effect of Foliar Application of Seaweed (Organic Fertilizer) on Yield, Essential Oil and Chemical Composition of Coriander. PLoS One. 2022, 17(6), 1–14. DOI: 10.1371/journal.pone.0269067.
  • Murakami, S.; Hirazawa, C.; Ohya, T.; Yoshikawa, R.; Mizutani, T.; Ma, N.; Moriyama, M.; Ito, T.; Matsuzaki, C. The Edible Brown Seaweed Sargassum Horneri (Turner) C. Agardh Ameliorates High-Fat Diet-Induced Obesity, Diabetes, and Hepatic Steatosis in Mice. Nutrients. 2021, 13(2), 2021. DOI: 10.3390/nu13020551.
  • Teas, J.; Vena, S.; Cone, D. L.; Irhimeh, M. The Consumption of Seaweed as a Protective Factor in the Etiology of Breast Cancer: Proof of Principle. J. Appl. Phycol. 2013, 25(3), 771–779. DOI: 10.1007/s10811-012-9931-0.
  • Viswanathan, S.; Palaniyandi, T.; Kannaki, P.; Shanmugam, R.; Baskar, G.; Rahaman, A. M.; Paul, L. T. D.; Rajendran, B. K.; Sivaji, A. Biogenic Synthesis of Gold Nanoparticles Using Red Seaweed Champia Parvula and Its Anti-Oxidant and Anticarcinogenic Activity on Lung Cancer. Part. Sci. Technol. 2023, 41(2), 241–249. DOI: 10.1080/02726351.2022.2074926.
  • Feng, G.; Cong, H.; Yufei, C.; Haruki, M.; Kaijun, N.; Ryoichi, N. Dietary Seaweed Intake and Depressive Symptoms in Japanese Adults: A Prospective Cohort Study. Nutr. J. 2019, 18(1), 1–8. DOI: 10.1186/s12937-019-0486-7.
  • Shimazu, T.; Borjigin, L.; Katoh, K.; Roh, S. G.; Kitazawa, H.; Abe, K.; Suda, Y.; Saito, H.; Kunii, H.; Nihei, K., et al. Addition of Wakame Seaweed (Undaria pinnatifida) Stalk to Animal Feed Enhances Immune Response and Improves Intestinal Microflora in Pigs. Anim. Sci. J. 2019, 90(9), 1248–1260.
  • Akinyemi, F.; Adewole, D. Effects of Brown Seaweed Products on Growth Performance, Plasma Biochemistry, Immune Response, and Antioxidant Capacity of Broiler Chickens Challenged with Heat Stress. Poultr. Sci. 2022, 101(12), 102215. DOI: 10.1016/j.psj.2022.102215.
  • Anderson, P.; Malik, R.; Ojha, L.; Adjei-Mensah, B.; Naliyapara, H. B. Investigations on Modulating Effect of Three Tropical Red Seaweed By-Products on Growth Performance, Immune Response, Antioxidant Status and Endocrine Variables in Crossbred Calves. J. Appl. Phycol. 2023, 35(1), 445. DOI: 10.1007/s10811-022-02871-3.
  • Ozaktan, H.; Doymaz, A. Mineral Composition and Technological and Morphological Performance of Beans as Influenced by Organic Seaweed-Extracted Fertilizers Applied in Different Growth Stages. J. Food Compost. Anal. 2022, 114, 114. DOI: 10.1016/j.jfca.2022.104741.
  • Zheng, Y.; Jin, R.; Zhang, X.; Wang, Q.; Wu, J. The Considerable Environmental Benefits of Seaweed Aquaculture in China. Stoch. Environ. Res. Risk Assess. 2019, 33(4–6), 1203–1221. DOI: 10.1007/s00477-019-01685-z.
  • Burkepile, D. E.; Adam, T. C.; Allgeier, J. E.; Shantz, A. A. Functional Diversity in Herbivorous Fishes on Caribbean Reefs: The Role of Macroalgal Traits in Driving Interspecific Differences in Feeding Behavior. Food Webs. 2022, 33, 33. DOI: 10.1016/j.fooweb.2022.e00255.
  • Collins, N.; Kumar Mediboyina, M.; Cerca, M.; Vance, C.; Murphy, F. Economic and Environmental Sustainability Analysis of Seaweed Farming: Monetizing Carbon Offsets of a Brown Algae Cultivation System in Ireland. Bioresour. Technol. 2022, 346, 346. DOI: 10.1016/j.biortech.2021.126637.
  • van den Burg, S. W. K.; Termeer, E. E. W.; Skirtun, M.; Poelman, M.; Veraart, J. A.; Selnes, T. Exploring Mechanisms to Pay for Ecosystem Services Provided by Mussels, Oysters and Seaweeds. Ecosyst. Serv. 2022, 54, 54. DOI: 10.1016/j.ecoser.2022.101407.
  • Hu, S.; Zou, D.; He, Q.; Shi, X.; Liu, L. Evaluation for Values of Ecosystem Service Functions of Cultivated Seaweeds in Guangdong Province, China. Algal Res. 2022, 63, 63. DOI: 10.1016/j.algal.2022.102657.
  • Mathison, G. W.; Okine, E. K.; McAllister, T. A.; Dong, Y.; Galbraith, J.; Dmytruk, O. I. N. Reducing Methane Emissions from Ruminant Animals. J. Appl. Animal Res. 1998, 14(1), 1–28. DOI: 10.1080/09712119.1998.9706212.
  • Tenzin, T.; Rey Anthony, S.; Moonhyuk, K.; Seon-Won, K. Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals. J. Microbiol. Biotechnol. 2022, 32(3), 269. DOI: 10.4014/jmb.2202.02019.
  • Shahjahan Ali, S.; Shakil, A.; Hasan Zohirul, I.; Rezaul, A.; Hasin Ishraq, R. Possible Use of Seaweed (Gracilaria Tenuistipitata Var. Liui) to the Reduction of Enteric Methane Emissions from Dairy Cattle. Vet. Res. Notes. 2022, 2(11), 78–85. DOI: 10.5455/vrn.2022.b18.
  • Kinley, R. D.; Martinez-Fernandez, G.; Matthews, M. K.; de Nys, R.; Magnusson, M.; Tomkins, N. W. Mitigating the Carbon Footprint and Improving Productivity of Ruminant Livestock Agriculture Using a Red Seaweed. J. Cleaner Prod. 2020, 259, 259. DOI: 10.1016/j.jclepro.2020.120836.
  • Allen, E.; Wall, D. M.; Herrmann, C.; Xia, A.; Murphy, J. D. What is the Gross Energy Yield of Third Generation Gaseous Biofuel Sourced from Seaweed? Energy. 2015, 81, 352–360. DOI: 10.1016/j.energy.2014.12.048.
  • Soleymani, M.; Rosentrater, K. A. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed). Bioengineering. 2017, 4(4), 92. DOI: 10.3390/bioengineering4040092.
  • Lin, R.; Deng, C.; Ding, L.; Bose, A.; Murphy, J. D. Improving Gaseous Biofuel Production from Seaweed Saccharina latissima: The Effect of Hydrothermal Pretreatment on Energy Efficiency. Energy Conversion Manage. 2019, 196, 1385–1394. DOI: 10.1016/j.enconman.2019.06.044.
  • Introducing the World’s First Commercial-Scale Seaweed Farm Located Between Offshore Wind Turbines. Gulf Oil & Gas 2023.
  • Banach, J. L.; van den Burg, S. W. K.; van der Fels-Klerx, H. J. Food Safety During Seaweed Cultivation at Offshore Wind Farms: An Exploratory Study in the North Sea. Mar. Policy. 2020, 120, 120. DOI: 10.1016/j.marpol.2020.104082.
  • Nan, S.; Beibei, T.; Bolun, S.; Jinjie, Z.; Chao, L.; Wenge, Y. Evaluation of Protein Digestibility and Iodine Bioavailability in Raw and Cooked Sargassum Fusiforme (Harvey) Setchell Using In Vitro Methods. Br. Food J. 2022, 124(9), 2722–2739. DOI: 10.1108/BFJ-02-2021-0191.
  • Vasconcelos, M. M. M.; Marson, G. V.; Rioux, L. -E.; Tamigneaux, E.; Turgeon, S. L.; Beaulieu, L. In vitro Bioaccessibility of Proteins and Bioactive Compounds of Wild and Cultivated Seaweeds from the Gulf of Saint Lawrence. Mar. Drugs. 2023, 21(2), 102. DOI: 10.3390/md21020102.
  • Demarco, M.; Oliveira de Moraes, J.; Matos, Â. P.; Derner, R. B.; de Farias Neves, F.; Tribuzi, G. Digestibility, Bioaccessibility and Bioactivity of Compounds from Algae. Trends Food Sci. Technol. 2022, 121, 114–128. DOI: 10.1016/j.tifs.2022.02.004.
  • da Silva Junior, E. C.; Babaahmadifooladi, M.; Folens, K.; dos Reis, A. R.; Guilherme, L. R. G.; Van de Wiele, T.; Jacxsens, L.; Du Laing, G. Content, Speciation and in vitro Bioaccessibility of Trace Elements in Seaweeds and Derived Food Products. J. Food Compost. Anal. 2023, 118, 105162. DOI: 10.1016/j.jfca.2023.105162.
  • Panebianco, F.; Nava, V.; Giarratana, F.; Gervasi, T.; Cicero, N. Assessment of Heavy- and Semi-Metals Contamination in Edible Seaweed and Dried Fish Sold in Ethnic Food Stores on the Italian Market. J. Food Compost. Anal. 2021, 104, 104150. DOI: 10.1016/j.jfca.2021.104150.
  • Shahri, E.; Sayadi, M. H.; Yousefi, E.; Savabieasfehani, M. Metal Contamination of Oman Sea Seaweed and Its Associated Public Health Risks. Biol. Trace Elem. Res. 2022, 200(6), 2989–2998. DOI: 10.1007/s12011-021-02865-1.
  • Saravana, P. S.; Cho, Y. -N.; Patil, M. P.; Cho, Y. -J.; Kim, G. -D.; Park, Y. B.; Woo, H. -C.; Chun, B. -S. Hydrothermal Degradation of Seaweed Polysaccharide: Characterization and Biological Activities. Food Chem. 2018, 268, 179–187. DOI: 10.1016/j.foodchem.2018.06.077.
  • Ghaliaoui, N.; Mokrane, H.; Hazzit, M.; Hadjadj, M.; Otmani, F. S.; Touati, S.; Seridi, H. Impact of Freezing and Drying Preprocessing on Pigments Extraction from the Brown Seaweed Phyllaria Reniformis Collected in Algerian Coast. Carpathian J. Food Sci. Technol. 2020, 12(3), 81–94.
  • Li, Y.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wang, P.; Imre, B.; Wong, A. C. Y.; Hsieh, Y. S. Y.; Wang, D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar. Drugs. 2021, 19(11), 19. DOI: 10.3390/md19110620.
  • Kumar, S.; Sahoo, D. A Comprehensive Analysis of Alginate Content and Biochemical Composition of Leftover Pulp from Brown Seaweed Sargassum Wightii. Algal Res. 2017, 23, 233–239. DOI: 10.1016/j.algal.2017.02.003.
  • Shao, Z.; Duan, D. The Cell Wall Polysaccharides Biosynthesis in Seaweeds: A Molecular Perspective. Front. Plant Sci. 2022, 13, 902823. DOI: 10.3389/fpls.2022.902823.
  • Lu, J.; Yang, H.; Hao, J.; Wu, C.; Liu, L.; Xu, N.; Linhardt, R. J.; Zhang, Z. Impact of Hydrolysis Conditions on the Detection of Mannuronic to Guluronic Acid Ratio in Alginate and Its Derivatives. Carbohydr. Polym. 2015, 122, 180–188. DOI: 10.1016/j.carbpol.2015.01.008.
  • Pengyan, Z.; Chang, L.; Zhanru, S.; Fuli, L.; Jianting, Y.; Delin, D. Genome-Wide Transcriptome Profiling and Characterization of Mannuronan C5-Epimerases in Saccharina Japonica. Algal Res. 2021, 60, 60. DOI: 10.1016/j.algal.2021.102491.
  • Ramos, P. E.; Silva, P.; Alario, M. M.; Pastrana, L. M.; Teixeira, J. A.; Cerqueira, M. A.; Vicente, A. A. Effect of Alginate Molecular Weight and M/G Ratio in Beads Properties Foreseeing the Protection of Probiotics. Food Hydrocoll. 2018, 77, 8–16. DOI: 10.1016/j.foodhyd.2017.08.031.
  • Haug, A.; Larsen, B. Biosynthesis of Alginate. Epimerisation of D-Mannuronic to L-Guluronic Acid Residues in the Polymer Chain. BBA - General Subjects. 1969, 192(3), 557–559. DOI: 10.1016/0304-4165(69)90414-0.
  • Hagen Rødde, R. S.; Østgaard, K.; Larsen, B. A. Mannuronan C-5 Epimerase Activity in Protoplasts of Laminaria Digitata. Hydrobiologia: The International Journal of Aquatic Sciences. 1993, 260(1), 577–581. DOI: 10.1007/BF00049073.
  • You-Jin, J., Fucoidans. MDPI AG. 2021.
  • Cunha, L.; Grenha, A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar. Drugs. 2016, 14(3), 3. DOI: 10.3390/md14030042.
  • Zhang, X.; Thomsen, M. Techno-Economic and Environmental Assessment of Novel Biorefinery Designs for Sequential Extraction of High-Value Biomolecules from Brown Macroalgae Laminaria digitata, Fucus Vesiculosus, and Saccharina Latissima, Fucus Vesiculosus, and Saccharina Latissima. Algal Res. 2021, 60, 60. DOI: 10.1016/j.algal.2021.102499.
  • Holtkamp, A. D.; Kelly, S.; Ulber, R.; Lang, S. Fucoidans and Fucoidanases—Focus on Techniques for Molecular Structure Elucidation and Modification of Marine Polysaccharides. Appl. Microbiol. Biotechnol. 2009, 82(1), 1–11. DOI: 10.1007/s00253-008-1790-x.
  • Chizhov, A. O.; Dell, A.; Morris, H. R.; Haslam, S. M.; McDowell, R. A.; Shashkov, A. S.; Nifant’ev, N. E.; Khatuntseva, E. A.; Usov, A. I. A Study of Fucoidan from the Brown Seaweed Chorda Filum. Carbohydr. Res. 1999, 320(1), 108–119. DOI: 10.1016/S0008-6215(99)00148-2.
  • Bilan, M. I.; Ustyuzhanina, N. E.; Shashkov, A. S.; Thanh, T. T. T.; Bui, M. L.; Tran, T. T. V.; Bui, V. N.; Nifantiev, N. E.; Usov, A. I. A Sulfated Galactofucan from the Brown Alga Hormophysa Cuneiformis (Fucales, Sargassaceae). Carbohydr. Res. 2018, 469, 48–54. DOI: 10.1016/j.carres.2018.09.001.
  • Michel, G.; Tonon, T.; Scornet, D.; Cock, J. M.; Kloareg, B. The Cell Wall Polysaccharide Metabolism of the Brown Alga Ectocarpus siliculosus. Insights into the Evolution of Extracellular Matrix Polysaccharides in Eukaryotes. Insights into the Evolution of Extracellular Matrix Polysacchahdes in Eukaryotes. New Phytol. 2010, 188(1), 82–97. DOI: 10.1111/j.1469-8137.2010.03374.x.
  • Shekhar, U. K.; Brijesh, K. T.; O’Donnell, C. P. Extraction, Structure and Biofunctional Activities of Laminarin from Brown Algae. Int. J. Food Sci. Technol. 2015, 50(1), 24–31. DOI: 10.1111/ijfs.12692.
  • Rioux, L. E.; Turgeon, S. L.; Beaulieu, M. Characterization of Polysaccharides Extracted from Brown Seaweeds. Carbohydr. Polym. 2007, 69(3), 530. DOI: 10.1016/j.carbpol.2007.01.009.
  • Rajauria, G.; Ravindran, R.; Garcia-Vaquero, M.; Rai, D. K.; Sweeney, T.; O’Doherty, J. Molecular Characteristics and Antioxidant Activity of Laminarin Extracted from the Seaweed Species Laminaria hyperborea, Using Hydrothermal-Assisted Extraction and a Multi-Step Purification Procedure. Food Hydrocoll. 2021, 112, 112. DOI: 10.1016/j.foodhyd.2020.106332.
  • Ruperez, P.; Ahrazem, O.; Leal, J. A. Potential Antioxidant Capacity of Sulfated Polysaccharides from the Edible Marine Brown Seaweed Fucus Vesiculosus. J. Agric. Food Chem. 2002, 50(4), 840–845. DOI: 10.1021/jf010908o.
  • Marina, C.; Paula Virginia, F.; Frederik, L. Diversity of Sulfated Polysaccharides from Cell Walls of Coenocytic Green Algae and Their Structural Relationships in View of Green Algal Evolution. Front. Plant Sci. 2020, 11, 11. DOI: 10.3389/fpls.2020.554585.
  • Sunisa, K.; Yongyuth, T.; Natthrit, R.; Chinnapatch, T.; Otto, M.; Piewngam, P. Characterization and Immunomodulatory Activity of Sulfated Galactan from the Red Seaweed Gracilaria Fisheri. Int. J. Biol. Macromol. 2021, 189, 705–714. DOI: 10.1016/j.ijbiomac.2021.08.182.
  • Otero, P.; Carpena, M.; Garcia-Oliveira, P.; Echave, J.; Soria-Lopez, A.; Garcia-Perez, P.; Fraga-Corral, M.; Cao, H.; Nie, S.; Xiao, J., et al. Seaweed Polysaccharides: Emerging Extraction Technologies, Chemical Modifications and Bioactive Properties. Crit. Rev. Food Sci. Nutr. 2021, 13, 1–29. DOI: 10.1080/10408398.2021.1969534.
  • Kraan, S. Algal Polysaccharides, Novel Applications and Outlook. In Carbohydrates — Comprehensive Studies on Glycobiology and Glycotechnology. Intech Open, 2012. ISBN: 978-953-51-0864-1 DOI: 10.5772/51572
  • Martin-Del-Campo, A.; Fermin-Jimenez, J. A.; Fernandez-Escamilla, V. V.; Escalante-Garcia, Z. Y.; Macias-Rodriguez, M. E.; Estrada-Giron, Y. Improved Extraction of Carrageenan from Red Seaweed (Chondracanthus Canaliculatus) Using Ultrasound-Assisted Methods and Evaluation of the Yield, Physicochemical Properties and Functional Groups. Food Sci. Biotechnol. 2021, 30(7), 901–910. DOI: 10.1007/s10068-021-00935-7.
  • Bahari, A.; Moelants, K.; Huc-Mathis, D.; Wallecan, J.; Mangiante, G.; Mazoyer, J.; Hendrickx, M.; Grauwet, T. Compositional and Rheological Analysis of Carrageenan from the Gametophyte Phase of the Red Seaweed Chondrus Crispus Neutrally Extracted at Varying Temperatures and Time. Food Hydrocoll. 2022, 133, 133. DOI: 10.1016/j.foodhyd.2022.107995.
  • Shi, F.; Chang, Y.; Shen, J.; Chen, G.; Xue, C. A Comparative Investigation of Anionic Polysaccharides (Sulfated Fucan, ι-Carrageenan, κ-Carrageenan, and Alginate) on the Fabrication, Stability, Rheology, and Digestion of Multilayer Emulsion. Food Hydrocoll. 2023, 134, 134. DOI: 10.1016/j.foodhyd.2022.108081.
  • Barral-Martínez, M.; Flórez-Fernández, N.; Domínguez, H.; Torres, M. D. Tailoring Hybrid Carrageenans from Mastocarpus Stellatus Red Seaweed Using Microwave Hydrodiffusion and Gravity. Carbohydr. Polym. 2020, 248, 116830. DOI: 10.1016/j.carbpol.2020.116830.
  • Bahari, A.; Moelants, K.; Wallecan, J.; Mangiante, G.; Mazoyer, J.; Hendrickx, M.; Grauwet, T. Understanding the Effect of Time, Temperature and Salts on Carrageenan Extraction from Chondrus Crispus. Algal Res. 2021, 58, 102371. DOI: 10.1016/j.algal.2021.102371.
  • Azevedo, G.; Torres, M. D.; Sousa-Pinto, I.; Hilliou, L. Effect of Pre-Extraction Alkali Treatment on the Chemical Structure and Gelling Properties of Extracted Hybrid Carrageenan from Chondrus Crispus and Ahnfeltiopsis Devoniensis. Food Hydrocoll. 2015, 50, 150–158. DOI: 10.1016/j.foodhyd.2015.03.029.
  • Genicot-Joncour, S.; Poinas, A.; Richard, O.; Potin, P.; Rudolph, B.; Kloareg, B.; Helbert, W. The Cyclization of the 3,6-Anhydro-Galactose Ring of ι-Carrageenan is Catalyzed by Two D-Galactose-2,6-Sulfurylases in the Red Alga Chondrus Crispus. Plant Physiol. 2009, 151(3), 1609–1616. DOI: 10.1104/pp.109.144329.
  • Collén, J.; Porcel, B.; Carré, W.; Ball, S. G.; Chaparro, C.; Tonon, T.; Barbeyron, T.; Michel, G.; Noel, B.; Valentin, K., et al. Genome Structure and Metabolic Features in the Red Seaweed Chondrus Crispus Shed Light on Evolution of the Archaeplastida. Proc. Natl. Acad. Sci. U. S. A. 2013, 110(13), 5247–5252.
  • Nishinari, K.; Yapeng, F. Relation Between Structure and Rheological/Thermal Properties of Agar. A Mini-Review on the Effect of Alkali Treatment and the Role of Agaropectin. Food Struct. 2017, 13, 24–34. DOI: 10.1016/j.foostr.2016.10.003.
  • Zhang, Y.; Duan, D.; Fu, X.; Gao, X.; Xu, J. Preparation and Characterization of Agar, Agarose, and Agaropectin from the Red Alga Ahnfeltia Plicata. J. Oceanol. Limnol. 2019, 37(3), 815–824. DOI: 10.1007/s00343-019-8129-6.
  • Collen, P. N.; Camitz, A.; Hancock, R. D.; Viola, R.; Pedersen, M. Effect of Nutrient Deprivation and Resupply on Metabolites and Enzymes Related to Carbon Allocation in Gracilaria Tenuistipitata (Rhodophyta). J. Phycol. 2004, 40(2), 305–314. DOI: 10.1111/j.1529-8817.2004.02174.x.
  • Wei-Kang, L.; Yi-Yi, L.; Thean-Chor Leow, A.; Parameswari, N.; Ong Abdullah, J.; Chai-Ling, H. Biosynthesis of Agar in Red Seaweeds: A Review. Carbohydr. Polym. 2017, 164, 23–30. DOI: 10.1016/j.carbpol.2017.01.078.
  • Farias, E. H.; Pomin, V. H.; Valente, A. P.; Nader, H. B.; Rocha, H. A.; Mourao, P. A. A Preponderantly 4-Sulfated, 3-Linked Galactan from the Green Alga Codium Isthmocladum. Glycobiology. 2008, 18(3), 250–259. DOI: 10.1093/glycob/cwm139.
  • Gomaa, M.; Al-Badaani, A. A.; Hifney, A. F.; Adam, M. S. Utilization of Cellulose and Ulvan from the Green Seaweed Ulva Lactuca in the Development of Composite Edible Films with Natural Antioxidant Properties. J. Appl. Phycol. 2022, 34(5), 1–12. DOI: 10.1007/s10811-022-02786-z.
  • Glasson, C. R. K.; Luiten, C. A.; Carnachan, S. M.; Daines, A. M.; Kidgell, J. T.; Hinkley, S. F. R.; Praeger, C.; Martinez, M. A.; Sargison, L.; Magnusson, M., et al. Structural Characterization of Ulvans Extracted from Blade Ulva Ohnoi and Filamentous (Ulva Tepida and Ulva Prolifera) Species of Cultivated Ulva. Int. J. Biol. Macromol. 2022, 194, 571–579. DOI: 10.1016/j.ijbiomac.2021.11.100.
  • Lahaye, M.; Ray, B. Cell-Wall Polysaccharides from the Marine Green Alga Ulva “rigida” (Ulvales, Chlorophyta) — NMR Analysis of Ulvan Oligosaccharides. Carbohydr. Res. 1996, 283, 161–173. DOI: 10.1016/0008-6215(95)00407-6.
  • Huang, W.; Tan, H.; Nie, S. Beneficial Effects of Seaweed-Derived Dietary Fiber: Highlights of the Sulfated Polysaccharides. Food Chem. 2022, 373, 131608. DOI: 10.1016/j.foodchem.2021.131608.
  • Jing, Z.; Qian, L.; Xiaochen, J.; Xiaojing, L.; Ping, D.; Jing, L.; Makoto, K.; Xingguo, L. Effect of Sulfated Polysaccharides on the Digestion of DNA by Pepsin Under Simulated Gastric Juice In Vitro. Food Funct. 2020, 11(2), 1790–1797. DOI: 10.1039/C9FO02578B.
  • Zhao, A.; Chen, Y.; Li, Y.; Lin, D.; Yang, Z.; Wang, Q.; Chen, H.; Xu, Q.; Chen, J.; Zhu, P., et al. Sulfated Polysaccharides from Enteromorpha Prolifera Attenuate Lipid Metabolism Disorders in Mice with Obesity Induced by a High-Fat Diet via a Pathway Dependent on AMP-Activated Protein Kinase. J. Nutr. 2022, 152(4), 939–949. DOI: 10.1093/jn/nxab432.
  • Wang, L.; Yang, H. -W.; Ahn, G.; Fu, X.; Xu, J.; Gao, X.; Jeon, Y. -J. In vitro and in vivo Anti-Inflammatory Effects of Sulfated Polysaccharides Isolated from the Edible Brown Seaweed, Sargassum Fulvellum. Mar. Drugs. 2021, 19(5), 277. DOI: 10.3390/md19050277.
  • Palani, K.; Balasubramanian, B.; Malaisamy, A.; Maluventhen, V.; Arumugam, V. A.; Al-Dhabi, N. A.; Valan Arasu, M.; Pushparaj, K.; Liu, W. -C.; Arumugam, M. Sulfated Polysaccharides Derived from Hypnea Valentiae and Their Potential of Antioxidant, Antimicrobial, and Anticoagulant Activities with in silico Docking and Their Potential of Antioxidant, Antimicrobial, and Anticoagulant Activities with in silico Docking. Evid. Based Complementary Altern. Med. 2022, 1–15. DOI: 10.1155/2022/3715806.
  • Qiu, S. -M.; Aweya, J. J.; Liu, X.; Liu, Y.; Tang, S.; Zhang, W.; Cheong, K. -L. Bioactive Polysaccharides from Red Seaweed as Potent Food Supplements: A Systematic Review of Their Extraction, Purification, and Biological Activities. Carbohydr. Polym. 2022, 275, 118696. DOI: 10.1016/j.carbpol.2021.118696.
  • Lauren, A. R.; Barbara, J. M.; Fitton, J. H.; Pia, W. Improved Plasma Lipids, Anti-Inflammatory Activity, and Microbiome Shifts in Overweight Participants: Two Clinical Studies on Oral Supplementation with Algal Sulfated Polysaccharide. Mar. Drugs. 2022, 20(8), 500. DOI: 10.3390/md20080500.
  • Moto, M.; Murota, A.; Takamizawa, N.; Nakamura, A.; Tanaka, K.; Katsuray, K. In vitro and in vivo Anti-Diabetic Effects of Acidic Polysaccharides Extracted from Seaweeds. Ann. Nutr. Metab. 2019, 75(3), 81.
  • Sun, Q.; Cheng, L.; Zeng, X.; Zhang, X.; Wu, Z.; Weng, P. The Modulatory Effect of Plant Polysaccharides on Gut Flora and the Implication for Neurodegenerative Diseases from the Perspective of the Microbiota-Gut-Brain Axis. Int. J. Biol. Macromol. 2020, 164, 1484–1492. DOI: 10.1016/j.ijbiomac.2020.07.208.
  • Wang, P.; Jiang, X.; Jiang, Y.; Hu, X.; Mou, H.; Li, M.; Guan, H. In vitro Antioxidative Activities of Three Marine Oligosaccharides. Nat. Prod. Res. 2007, 21(7), 646–654. DOI: 10.1080/14786410701371215.
  • Zhu, Y.; Wu, L.; Chen, Y.; Ni, H.; Xiao, A.; Cai, H. Characterization of an Extracellular Biofunctional Alginate Lyase from Marine Microbulbifer Sp. ALW1 and Antioxidant Activity of Enzymatic Hydrolysates. Microbiol. Res. 2016, 182, 49–58. DOI: 10.1016/j.micres.2015.09.004.
  • Rodrigues-Souza, I.; Pessatti, J. B. K.; da Silva, L. R.; de Lima Bellan, D.; de Souza, I. R.; Cestari, M. M.; de Assis, H. C. S.; Rocha, H. A. O.; Simas, F. F.; da Silva Trindade, E., et al. Protective Potential of Sulfated Polysaccharides from Tropical Seaweeds Against Alkylating- and Oxidizing-Induced Genotoxicity. Int. J. Biol. Macromol. 2022, 211, 524–534. DOI: 10.1016/j.ijbiomac.2022.05.077.
  • Arunkumar, K.; Rathinam, R.; Sameer Kumar, V. B.; Ashna, J.; Shilpa, T.; Carvalho, I. S. Antioxidant and Cytotoxic Activities of Sulfated Polysaccharides from Five Different Edible Seaweeds. J. Food Meas. Charact. 2021, 15(1), 567–576. DOI: 10.1007/s11694-020-00661-4.
  • Tian, H.; Liu, H.; Song, W.; Zhu, L.; Zhang, T.; Li, R.; Yin, X. Structure, Antioxidant and Immunostimulatory Activities of the Polysaccharides from Sargassum Carpophyllum. Algal Res. 2020, 49, 101853. DOI: 10.1016/j.algal.2020.101853.
  • Alencar, P. O. C.; Lima, G. C.; Barros, F. C. N.; Costa, L. E. C.; Ribeiro, C. V. P. E.; Sousa, W. M.; Sombra, V. G.; Abreu, C. M. W. S.; Abreu, E. S.; Pontes, E. O. B., et al. A Novel Antioxidant Sulfated Polysaccharide from the Algae Gracilaria caudata: In vitro and in vivo Activities. Food Hydrocoll. 2019, 90, 28–34. DOI: 10.1016/j.foodhyd.2018.12.007.
  • Wang, L.; Jayawardena, T. U.; Yang, H. -W.; Lee, H. G.; Kang, M. -C.; Sanjeewa, K. K. A.; Oh, J. Y.; Jeon, Y. -J. Isolation, Characterization, and Antioxidant Activity Evaluation of a Fucoidan from an Enzymatic Digest of the Edible Seaweed, Hizikia Fusiforme. Antioxidants. 2020, 9(5), 363. DOI: 10.3390/antiox9050363.
  • Mohan, M. S. G.; Achary, A.; Mani, V.; Cicinskas, E.; Kalitnik, A. A.; Khotimchenko, M. Purification and Characterization of Fucose-Containing Sulphated Polysaccharides from Sargassum Tenerrimum and Their Biological Activity. J. Appl. Phycol. 2019, 31(5), 3101–3113. DOI: 10.1007/s10811-019-01797-7.
  • Lee, G.; Harada, M.; Midorikawa, Y.; Yamamoto, M.; Nakamura, A.; Takahashi, H.; Kuda, T. Effects of Alginate and Laminaran on the Microbiota and Antioxidant Properties of Human Faecal Cultures. Food Biosci. 2022, 47, 101763. DOI: 10.1016/j.fbio.2022.101763.
  • Novickij, V.; Rembiałkowska, N.; Baczyńska, D.; Błasiak, J.; Kasperkiewicz-Wasilewska, P.; Rzechonek, A.; Kulbacka, P. Pulsed Electric Fields with Calcium Ions Stimulate Oxidative Alternations and Lipid Peroxidation in Human Non-Small Cell Lung Cancer. Biochim. Biophys. Acta - Biomembr. 2022, 1864(12), 12. DOI: 10.1016/j.bbamem.2022.184055.
  • Jun, J. -Y.; Jung, M. -J.; Jeong, I. -H.; Yamazaki, K.; Kawai, Y.; Kim, B. -M. Antimicrobial and Antibiofilm Activities of Sulfated Polysaccharides from Marine Algae Against Dental Plaque Bacteria. Mar. Drugs. 2018, 16(9), 301. DOI: 10.3390/md16090301.
  • Fayoumy, R. A. E.; El-Sheekh, M. M.; Ahmed, S. E. A. Potential of Ulvan Polysaccharide from Ulva Lactuca as Antifungal Against Some Foodborne Fungi Isolated from Spoiled Tomato Sauce Cans. J. Aquat. Food Prod. Technol. 2022, 31(7), 658–671. DOI: 10.1080/10498850.2022.2093149.
  • Wei, Q.; Fu, G.; Wang, K.; Yang, Q.; Zhao, J.; Wang, Y.; Ji, K.; Song, S. Advances in Research on Antiviral Activities of Sulfated Polysaccharides from Seaweeds. Pharmaceuticals. 2022, 15(5), 581. DOI: 10.3390/ph15050581.
  • Arafa, E. G.; Sabaa, M. W.; Mohamed, R. R.; Kamel, E. M.; Elzanaty, A. M.; Mahmoud, A. M.; Abdel-Gawad, O. F. Eco-Friendly and Biodegradable Sodium Alginate/Quaternized Chitosan Hydrogel for Controlled Release of Urea and Its Antimicrobial Activity. Carbohydr. Polym. 2022, 291, 119555. DOI: 10.1016/j.carbpol.2022.119555.
  • Kumar, R.; Najda, A.; Duhan, J. S.; Kumar, B.; Chawla, P.; Klepacka, J.; Malawski, S.; Kumar Sadh, P.; Poonia, A. K. Assessment of Antifungal Efficacy and Release Behavior of Fungicide-Loaded Chitosan-Carrageenan Nanoparticles Against Phytopathogenic Fungi. Polymers. 2022, 14(1), 41. DOI: 10.3390/polym14010041.
  • Özkahraman, B.; Özbaş, Z.; Yaşayan, G.; Alarçin, E.; Akgüner, Z. P.; Bal-Öztürk, A.; Yarımcan, F. Development of Mucoadhesive Modified Kappa-Carrageenan/pectin Patches for Controlled Delivery of Drug in the Buccal Cavity. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110(4), 787–798. DOI: 10.1002/jbm.b.34958.
  • Díaz-Resendiz, K. J. G.; Toledo-Ibarra, G. A.; Ruiz-Manzano, R.; Giron Perez, D. A.; Covantes-Rosales, C. E.; Benitez-Trinidad, A. B.; Ramirez-Ibarra, K. M.; Hermosillo Escobedo, A. T.; González-Navarro, I.; Ventura-Ramón, G. H., et al. Ex vivo Treatment with Fucoidan of Mononuclear Cells from SARS-CoV-2 Infected Patients. Int. J. Environ. Health Res. 2022, 32(12), 2634–2652.
  • Díaz-Resendiz, K. J. G.; Covantes-Rosales, C. E.; Benítez-Trinidad, A. B.; Navidad-Murrieta, M. S.; Razura-Carmona, F. F.; Carrillo-Cruz, C. D.; Frias-Delgadillo, E. J.; Pérez-Díaz, D. A.; Díaz-Benavides, M. V.; Zambrano-Soria, M., et al. Effect of Fucoidan on the Mitochondrial Membrane Potential (Δψm) of Leukocytes from Patients with Active COVID-19 and Subjects That Recovered from SARS-CoV-2 Infection. Mar. Drugs. 2022, 20(2), 99.
  • Talissa Barroco, H.; Fungyi, C. Anti-HIV Activity of Methanolic and Aqueous Extracts of Fifteen Materials of Beach-Cast Macroalgae: Valorization of Underused Waste Biomass. Appl. Phycol. 2022, 3(1), 236–246. DOI: 10.1080/26388081.2021.1986677.
  • Venkatasubramanian, G.; Anbalagan, M. M.; Sanniyasi, E.; Raj, P. P.; Gopal, R. K. In vitro Anti-HIV-1 Activity of the Bioactive Compound Extracted and Purified from Two Different Marine Macroalgae (Seaweeds) (Dictyota Bartayesiana J.V.lamouroux and Turbinaria Decurrens Bory). Sci. Rep. 2019, 9(1). DOI: 10.1038/s41598-019-47917-8.
  • Pradhan, B.; Patra, S.; Nayak, R.; Behera, C.; Dash, S. R.; Nayak, S.; Sahu, B. B.; Bhutia, S. K.; Jena, M. Multifunctional Role of Fucoidan, Sulfated Polysaccharides in Human Health and Disease: A Journey Under the Sea in Pursuit of Potent Therapeutic Agents. Int. J. Biol. Macromol. 2020, 164, 4263–4278. DOI: 10.1016/j.ijbiomac.2020.09.019.
  • Shi, Q.; Wang, A.; Lu, Z.; Qin, C.; Hu, J.; Yin, J. Overview on the Antiviral Activities and Mechanisms of Marine Polysaccharides from Seaweeds. Carbohydr. Res. 2017, 453-454, 1–9. DOI: 10.1016/j.carres.2017.10.020.
  • Geetha Bai, R.; Tuvikene, R. Potential Antiviral Properties of Industrially Important Marine Algal Polysaccharides and Their Significance in Fighting a Future Viral Pandemic. Viruses. 2021, 13(9), 1817. DOI: 10.3390/v13091817.
  • Wang, S.; Wang, W.; Hou, L.; Qin, L.; He, M.; Li, W.; Mao, W. A Sulfated Glucuronorhamnan from the Green Seaweed Monostroma nitidum: Characteristics of Its Structure and Antiviral Activity. Carbohydr. Polym. 2020, 227, 115280. DOI: 10.1016/j.carbpol.2019.115280.
  • Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; Rittà, M.; Donalisio, M.; Mariatti, F.; You, S.; Lembo, D.; Cravotto, G. Effect of Different Non-Conventional Extraction Methods on the Antibacterial and Antiviral Activity of Fucoidans Extracted from Nizamuddinia Zanardinii. Int. J. Biol. Macromol. 2019, 124, 131–137. DOI: 10.1016/j.ijbiomac.2018.11.201.
  • Lee, H.; Selvaraj, B.; Lee, J. W. Anticancer Effects of Seaweed-Derived Bioactive Compounds. Appl. Sci. 2021, 11(23), 11261. DOI: 10.3390/app112311261.
  • Sakthivel, R.; Devi, K. P. Chapter 5 - Antioxidant, Anti-Inflammatory and Anticancer Potential of Natural Bioactive Compounds from Seaweeds. Studi. Nat. Prod. Chem. 2019, 63, 113–160.
  • Bilal, M.; Iqbal, H. M. N. Marine Seaweed Polysaccharides-Based Engineered Cues for the Modern Biomedical Sector. Mar. Drugs. 2020, 18(1), 7. DOI: 10.3390/md18010007.
  • Alboofetileh, M.; Rezaei, M.; Tabarsa, M. Enzyme-Assisted Extraction of Nizamuddinia Zanardinii for the Recovery of Sulfated Polysaccharides with Anticancer and Immune-Enhancing Activities. J. Appl. Phycol. 2019, 31(2), 1391–1402. DOI: 10.1007/s10811-018-1651-7.
  • Chen, X.; Song, L.; Wang, H.; Liu, S.; Yu, H.; Wang, X.; Li, R.; Liu, T.; Li, P. Partial Characterization, the Immune Modulation and Anticancer Activities of Sulfated Polysaccharides from Filamentous Microalgae Tribonema Sp. Molecules. 2019, 24(2), 322. DOI: 10.3390/molecules24020322.
  • Digala, P.; Saravanan, M.; Dhanraj, M.; Pamarthi, J.; Muralidharan, S.; Narikimelli, A.; Dinakaran, K. P.; Arokiyaraj, S.; Vincent, S. Optimized Extraction of Sulfated Polysaccharide from Brown Seaweed Sargassum Polycystum and Its Evaluation for Anti-Cancer and Wound Healing Potential. South African J. of Bot. 2022, 151, 345–359. DOI: 10.1016/j.sajb.2022.03.015.
  • Thi Ngoc Anh, P.; Bao, L.; Seung Hwan, Y. Anticancer Activity of the Potential Pyropia Yezoensis Galactan Fractionated in Human Prostate Cancer Cells. Biotechnol. Bioprocess Eng. 2021, 26(1), 63–70. DOI: 10.1007/s12257-020-0157-8.
  • Rhee, K. H.; Lee, K. H. Protective Effects of Fucoidan Against γ-Radiation-Induced Damage of Blood Cells. Arch. Pharmacal Res. 2011, 34(4), 645–651. DOI: 10.1007/s12272-011-0415-6.
  • Zhu, X.; Zhu, R.; Jian, Z.; Yu, H. Laminarin Enhances the Activity of Natural Killer Cells in Immunosuppressed Mice. Cent Eur J Immunol. 2019, 44(4), 357–363. DOI: 10.5114/ceji.2019.92784.
  • An, E. -K.; Hwang, J.; Kim, S. -J.; Park, H. -B.; Zhang, W.; Ryu, J. -H.; You, S.; Jin, J. -O. Comparison of the Immune Activation Capacities of Fucoidan and Laminarin Extracted from Laminaria Japonica. Int. J. Biol. Macromol. 2022, 208, 230–242. DOI: 10.1016/j.ijbiomac.2022.03.122.
  • de Sousa, A. K.; Araujo, A. S. M. L.; da Silva, T. M. L.; de Sousa de Lima, F. M.; dos Santos Ferreira, J.; de Brito, T. V.; dos Reis Barbosa, A. L. Polysaccharides from Macro Algae: Anti-Inflammatory Actions Against Systemic Inflammatory Process and in the Gastrointestinal Tract. J. Appl. Phycol. 2023, 35(1), 381. DOI: 10.1007/s10811-022-02878-w.
  • Cui, M.; Wu, J.; Wang, S.; Shu, H.; Zhang, M.; Liu, K.; Liu, K. Characterization and Anti-Inflammatory Effects of Sulfated Polysaccharide from the Red Seaweed Gelidium Pacificum Okamura. Int. J. Biol. Macromol. 2019, 129, 377–385. DOI: 10.1016/j.ijbiomac.2019.02.043.
  • Li, T.; Li, Y.; Li, J. -W.; Qin, Y. -H.; Zhai, H.; Feng, B.; Li, H.; Zhang, N. -N.; Yang, C. -S. Expression of TRAF6 in Peripheral Blood B Cells of Patients with Myasthenia Gravis. BMC Neurol. 2022, 22(1), 302. DOI: 10.1186/s12883-022-02833-9.
  • Guangwei, Z.; Zhibin, C.; Qin, W.; Chunlin, L.; Penghang, L.; Ruofan, H.; Hui, C.; Hoffman, R. M.; Jianxin, Y. TRAF6 Regulates the Signaling Pathway Influencing Colorectal Cancer Function Through Ubiquitination Mechanisms. Cancer Sci. 2022, 113(4), 1393–1405. DOI: 10.1111/cas.15302.
  • Yao, X. -P.; Ye, J.; Feng, T.; Jiang, F. -C.; Zhou, P.; Wang, F.; Chen, J. -G.; Wu, P. -F. Adaptor Protein MyD88 Confers the Susceptibility to Stress via Amplifying Immune Danger Signals. Brain Behav. Immun. 2023, 108, 204–220. DOI: 10.1016/j.bbi.2022.12.007.
  • Li, J.; Wang, W.; Yuan, Y.; Cui, X.; Bian, H.; Wen, H.; Zhang, X.; Yu, H.; Wu, H. Pinellia Ternata Lectin Induces Inflammation Through TLR4 Receptor and Mediates PI3K/Akt/mTOR Axis to Regulate NF-Κb Signaling Pathway. Toxicology. 2023, 486, 153430. DOI: 10.1016/j.tox.2023.153430.
  • Osman, N. I.; Sidik, N. J.; Adam, N. A. M.; Rezali, N. I.; Awal, A. In vitro Xanthine Oxidase and Albumin Denaturation Inhibition Assay of Barringtonia Racemosa L. And Total Phenolic Content Analysis for Potential Anti-Infl Ammatory Use in Gouty Arthritis. J. Intercultural Ethnopharmacol. 2016, 5(4), 343–349. DOI: 10.5455/jice.20160731025522.
  • Silpak, B.; Rintu, D.; Ena Ray, B. Role of Free Radicals in Human Inflammatory Diseases. AIMS Biophysics. 2017, 4(4), 596–614. DOI: 10.3934/biophy.2017.4.596.
  • Obluchinskaya, E. D.; Pozharitskaya, O. N.; Shikov, A. N. In vitro Anti-Inflammatory Activities of Fucoidans from Five Species of Brown Seaweeds. Mar. Drugs. 2022, 20(10), 606. DOI: 10.3390/md20100606.
  • Qi, H.; Zhao, T.; Zhang, Q.; Li, Z.; Zhao, Z.; Xing, R. Antioxidant Activity of Different Molecular Weight Sulfated Polysaccharides from Ulva Pertusa Kjellm (Chlorophyta). J. Appl. Phycol. 2005, 17(6), 527–534. DOI: 10.1007/s10811-005-9003-9.
  • Qi, J.; Kim, S. M. Characterization and Immunomodulatory Activities of Polysaccharides Extracted from Green Alga Chlorella Ellipsoidea. Int. J. Biol. Macromol. 2017, 95, 106–114. DOI: 10.1016/j.ijbiomac.2016.11.039.
  • Gomez, L. P.; Alvarez, C.; Zhao, M.; Tiwari, U.; Curtin, J.; Garcia-Vaquero, M.; Tiwari, B. K. Innovative Processing Strategies and Technologies to Obtain Hydrocolloids from Macroalgae for Food Applications. Carbohydr. Polym. 2020, 248, 116784. DOI: 10.1016/j.carbpol.2020.116784.
  • Garcia-Vaquero, M.; Rajauria, G.; Tiwari, B. Chapter 7 - Conventional Extraction Techniques: Solvent Extraction. Sustainable Seaweed Technologies. 2020, 171–189.
  • Cikoš, A. -M.; Jokić, S.; Šubarić, D.; Jerković, I. Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae. Mar. Drugs. 2018, 16(10), 348. DOI: 10.3390/md16100348.
  • Makoto, S.; Shusaku, Y.; Yoshiko, S. -K. In vitro Bacteriostatic Effects of Dietary Polysaccharides. Food Sci. Technol. Res. 2001, 7(3), 262. DOI: 10.3136/fstr.7.262.
  • Bhadja, P.; Cai-Yan, T.; Jian-Ming, O.; Kai, Y. Repair Effect of Seaweed Polysaccharides with Different Contents of Sulfate Group and Molecular Weights on Damaged HK-2 Cells. Polymers. 2016, 8(5), 188. DOI: 10.3390/polym8050188.
  • Cheng, J. -J.; Chao, C. -H.; Chang, P. -C.; Lu, M. -K. Studies on Anti-Inflammatory Activity of Sulfated Polysaccharides from Cultivated Fungi Antrodia Cinnamomea. Food Hydrocoll. 2016, 53, 37–45. DOI: 10.1016/j.foodhyd.2014.09.035.
  • Yin, D.; Sun, X.; Li, N.; Guo, Y.; Tian, Y.; Wang, L. Structural Properties and Antioxidant Activity of Polysaccharides Extracted from Laminaria Japonica Using Various Methods. Process Biochem. 2021, 111, 201–209. DOI: 10.1016/j.procbio.2021.10.019.
  • Hu, X.; Jiang, X.; Gong, J.; Hwang, H.; Liu, Y.; Guan, H. Antibacterial Activity of Lyase-Depolymerized Products of Alginate. J. Appl. Phycol. 2005, 17(1), 57–60. DOI: 10.1007/s10811-005-5524-5.
  • Ale, M. T.; Maruyama, H.; Tamauchi, H.; Mikkelsen, J. D.; Meyer, A. S. Fucoidan from Sargassum Sp. and Fucus Vesiculosus Reduces Cell Viability of Lung Carcinoma and Melanoma Cells in vitro and Activates Natural Killer Cells in Mice in vivo. Int. J. Biol. Macromol. 2011, 49(3), 331–336. DOI: 10.1016/j.ijbiomac.2011.05.009.
  • Hifney, A. F.; Fawzy, M. A.; Abdel-Gawad, K. M.; Gomaa, M. Upgrading the Antioxidant Properties of Fucoidan and Alginate from Cystoseira Trinodis by Fungal Fermentation or Enzymatic Pretreatment of the Seaweed Biomass. Food Chem. 2018, 269, 387–395. DOI: 10.1016/j.foodchem.2018.07.026.