446
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nuclear Magnetic Resonance Applications in Fermented Foods and Plant-Based Beverages: Challenges and Opportunities

, &

References

  • Enes, C. C.; de Camargo, C. M.; Justino, M. I. C. Ultra-Processed Food Consumption and Obesity in Adolescents. Revista de Nutrição. 2019, 32, e180170. DOI: 10.1590/1678-9865201932e180170.
  • Juul, F.; Martinez-Steele, E.; Parekh, N.; Monteiro, C. A.; Chang, V. W. Ultra-Processed Food Consumption and Excess Weight Among US Adults. Br. J. Nutr. 2018, 120(1), 90–100. DOI: 10.1017/S0007114518001046.
  • Huybrechts, I.; Rauber, F.; Geneviève, N.; Casagrande, C.; Kliemann, N.; Wedekind, R.; Biessy, C.; Scalbert, A.; Touvier, M.; Aleksandrova, K., et al. Characterization of the Degree of Food Processing in the European Prospective Investigation into Cancer and Nutrition: Application of the Nova Classification and Validation Using Selected Biomarkers of Food Processing. Front. Nutr. 2022, 9, 1035580. DOI: 10.3389/fnut.2022.1035580.
  • Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A., et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet. 2019, 393 (10170), 447–492. DOI: 10.1016/S0140-6736(18)31788-4.
  • Jarmul, S.; Dangour, A. D.; Green, R.; Liew, Z.; Haines, A.; Scheelbeek, P. F. Climate Change Mitigation Through Dietary Change: A Systematic Review of Empirical and Modelling Studies on the Environmental Footprints and Health Effects of ‘Sustainable diets’. Environ. Res. Lett. 2020, 15(12), 123014. DOI: 10.1088/1748-9326/abc2f7.
  • Marco, M. L.; Heeney, D.; Binda, S.; Cifelli, C. J.; Cotter, P. D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A., et al. Health Benefits of Fermented Foods: Microbiota and Beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. DOI: 10.1016/j.copbio.2016.11.010.
  • Bintsis, T. Lactic Acid Bacteria as Starter Cultures: An Update in Their Metabolism and Genetics. AIMS Microbiol. 2018, 4(4), 665–684. DOI: 10.3934/microbiol.2018.4.665.
  • Bibra, M.; Krishnaraj, R. N.; Sani, R. K. Fermentation Strategies in the Food and Beverage Industry. In Biomolecular Engineering Solutions for Renewable Specialty Chemicals, Krishnaraj, R.N. and Sani, R.K; Eds.; John Wiley and Sons Ltd., 2021; pp. 141–164. DOI: 10.1002/9781119771951.ch5.
  • Jayachandran, M.; Xu, B. An Insight into the Health Benefits of Fermented Soy Products. Food Chem. 2019, 271, 362–371. DOI: 10.1016/j.foodchem.2018.07.158.
  • Qiao, Y.; Zhang, K.; Zhang, Z.; Zhang, C.; Sun, Y.; Feng, Z. Fermented Soybean Foods: A Review of Their Functional Components, Mechanism of Action and Factors Influencing Their Health Benefits. Food Res. Int. 2022, 158, 111575. DOI: 10.1016/j.foodres.2022.111575.
  • Vaikma, H.; Kaleda, A.; Rosend, J.; Rosenvald, S. Market Mapping of Plant-Based Milk Alternatives by Using Sensory (RATA) and GC Analysis. Fut. Foods. 2021, 4, 100049. DOI: 10.1016/j.fufo.2021.100049.
  • Munekata, P. E. S.; Domínguez, R.; Budaraju, S.; Roselló-Soto, E.; Barba, F. J.; Mallikarjunan, K.; Roohinejad, S.; Lorenzo, J. M. Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods. 2020, 9(3), 288. DOI: 10.3390/foods9030288.
  • Zujko, M. E.; Witkowska, A. M. Antioxidant Potential and Polyphenol Content of Beverages, Chocolates, Nuts, and Seeds. Int. J. Food Prop. 2014, 17(1), 86–92. DOI: 10.1080/10942912.2011.614984.
  • Böhme, K.; Calo-Mata, P.; Barros-Velázquez, J.; Ortea, I. Recent Applications of Omics-Based Technologies to Main Topics in Food Authentication. TrAC Trends Anal. Chem. 2019, 110, 221–232. DOI: 10.1016/j.trac.2018.11.005.
  • Mielko, K. A.; Pudełko-Malik, N.; Tarczewska, A.; Młynarz, P. NMR Spectroscopy As a “Green Analytical method” in Metabolomics and Proteomics Studies. Sustain. Chem. Pharm. 2021, 22, 100474. DOI: 10.1016/j.scp.2021.100474.
  • Emwas, A.-H.; Roy, R.; McKay, R. T.; Tenori, L.; Saccenti, E.; Gowda, G. A. N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M., et al. NMR Spectroscopy for Metabolomics Research. Metabolites. 2019, 9 (7), 7. DOI: 10.3390/metabo9070123.
  • Sadeghi, A.; Ebrahimi, M.; Hajinia, F.; Kharazmi, M. S.; Jafari, S. M. FoodOmics as a Promising Strategy to Study the Effects of Sourdough on Human Health and Nutrition, as Well as Product Quality and Safety; Back to the Future. Trends Food Sci. Technol. 2023, 136, 24–47. DOI: 10.1016/j.tifs.2023.03.026.
  • Zhan, Q.; Thakur, K.; Zhang, W.-W.; Feng, J.-Y.; Zhang, J.-G.; Khan, M. R.; Wei, Z.-J. Metabolic Changes and Isoflavone Biotransformation in Natto for Improved Nutritional Distribution and Bioavailability. Food Biosci. 2024, 59, 103937. DOI: 10.1016/j.fbio.2024.103937.
  • Van Kerrebroeck, S.; Comasio, A.; Harth, H.; De Vuyst, L. Impact of Starter Culture, Ingredients, and Flour Type on Sourdough Bread Volatiles as Monitored by Selected Ion Flow Tube-Mass Spectrometry. Food. Res. Int. 2018, 106, 254–262. DOI: 10.1016/j.foodres.2017.12.068.
  • Huang, Y.-P.; Paviani, B.; Fukagawa, N. K.; Phillips, K. M.; Barile, D. Comprehensive Oligosaccharide Profiling of Commercial Almond Milk, Soy Milk, and Soy Flour. Food Chem. 2023, 409, 135267. DOI: 10.1016/j.foodchem.2022.135267.
  • Valerón, N. R.; Mak, T.; Jahn, L. J.; Arboleya, J. C.; Sörensen, P. M. Characterization of Kokumi γ-Glutamyl Peptides and Volatile Aroma Compounds in Alternative Grain Miso Fermentations. LWT - Food Sci. Technol. 2023, 188, 115356. DOI: 10.1016/j.lwt.2023.115356.
  • Nwodo, U. U.; Green, E.; Okoh, A. I. Bacterial Exopolysaccharides: Functionality and Prospects. Int. J. Mol. Sci. 2012, 13(11), 14002–14015. DOI: 10.3390/ijms131114002.
  • De Vuyst, L.; de Vin, F.; Vaningelgem, F.; Degeest, B. Recent Developments in the Biosynthesis and Applications of Heteropolysaccharides from Lactic Acid Bacteria. Int. Dairy. J. 2001, 11(9), 687–707. DOI: 10.1016/S0958-6946(01)00114-5.
  • Kaur, N.; Dey, P. Bacterial Exopolysaccharides as Emerging Bioactive Macromolecules: From Fundamentals to Applications. Res. Microbiol. 2023, 174(4), 104024. DOI: 10.1016/j.resmic.2022.104024.
  • Angelin, J.; Kavitha, M. Exopolysaccharides from Probiotic Bacteria and Their Health Potential. Int. J. Biol. Macromol. 2020, 162, 853–865. DOI: 10.1016/j.ijbiomac.2020.06.190.
  • Shukla, A.; Krina, M.; Jignesh, P.; Jaimin, P.; Meenu, S. Depicting the Exemplary Knowledge of Microbial Exopolysaccharides in a Nutshell. Eur. Polym. J. 2019, 119, 298–310. DOI: 10.1016/j.eurpolymj.2019.07.044.
  • Bengoa, A. A.; Iraporda, C.; Acurcio, L. B.; de Cicco Sandes, S. H.; Costa, K.; Moreira Guimarães, G.; Esteves Arantes, R. M.; Neumann, E.; Cantini Nunes, Á.; Nicoli, J. R., et al. Physicochemical, Immunomodulatory and Safety Aspects of Milks Fermented with Lactobacillus Paracasei Isolated from Kefir. Food Res. Int. 2019, 123, 48–55. DOI: 10.1016/j.foodres.2019.04.041.
  • Kim, D.-H.; Jeong, D.; Kang, I.-B.; Lim, H.-W.; Cho, Y.; Seo, K.-H. Modulation of the Intestinal Microbiota of Dogs by Kefir as a Functional Dairy Product. J. Dairy. Sci. 2019, 102(5), 3903–3911. DOI: 10.3168/jds.2018-15639.
  • Riaz Rajoka, M. S.; Mehwish, H. M.; Fang, H.; Padhiar, A. A.; Zeng, X.; Khurshid, M.; He, Z.; Zhao, L. Characterization and Anti-Tumor Activity of Exopolysaccharide Produced by Lactobacillus Kefiri Isolated from Chinese Kefir Grains. J. Funct. Foods. 2019, 63, 103588. DOI: 10.1016/j.jff.2019.103588.
  • Rahman, A.; Choudhary, M. I.; Wahab, A. Important 2D NMR Experiments. In Solving Problems with NMR Spectroscopy, 2nd ed.; Academic Press: United States, 2016; pp. 265–386. DOI: 10.1016/C2012-0-06253-9.
  • Xiao, L.; Xu, D.; Tang, N.; Rui, X.; Zhang, Q.; Chen, X.; Dong, M.; Li, W. Biosynthesis of Exopolysaccharide and Structural Characterization by Lacticaseibacillus paracasei ZY-1 Isolated from Tibetan Kefir. Food Chem. Mol. Sci. 2021, 3, 100054. DOI: 10.1016/j.fochms.2021.100054.
  • Guzel-Seydim,Z. B.; Gökırmaklı, C.; Greene, A. K. A Comparison of Milk Kefir and Water Kefir: Physical, Chemical, Microbiological and Functional Properties. Trends Food Sci. Technol. 2021, 113, 42–53. DOI: 10.1016/j.tifs.2021.04.041.
  • Fels, L.; Jakob, F.; Vogel, R. F.; Wefers, D. Structural Characterization of the Exopolysaccharides from Water Kefir. Carbohydr. Polym. 2018, 189, 296–303. DOI: 10.1016/j.carbpol.2018.02.037.
  • De Vuyst, L.; Van Kerrebroeck, S.; Harth, H.; Huys, G.; Daniel, H.-M.; Weckx, S. Microbial Ecology of Sourdough Fermentations: Diverse or Uniform? Food Microbiol. 2014, 37, 11–29. DOI: 10.1016/j.fm.2013.06.002.
  • Brown, A. J. X. On an Acetic Ferment Which Forms Cellulose. J. Chem. Soc. Trans. 1886, 49, 432–439. DOI: 10.1039/CT8864900432.
  • Blanco, A.; Monte, M. C.; Campano, C.; Balea, A.; Merayo, N.; Negro, C. Nanocellulose for Industrial Use: Cellulose Nanofibers (CNF), Cellulose Nanocrystals (CNC), and Bacterial Cellulose (BC). In Handbook of Nanomaterials for Industrial Applications. Micro and Nano Technologies, 1st ed.; Hussain, C.M., Ed.; Elsevier: The Netherlands, 2018; pp. 74–126.
  • Reif, B.; Ashbrook, S. E.; Emsley, L.; Hong, M. Solid-State NMR Spectroscopy. Nat. Revs. Methods Primers. 2021, 1(1), 2. DOI: 10.1038/s43586-020-00002-1.
  • Gupte, Y.; Kulkarni, A.; Raut, B.; Sarkar, P.; Choudhury, R.; Chawande, A.; Kumar, G. R. K.; Bhadra, B.; Satapathy, A.; Das, G., et al. Characterization of Nanocellulose Production by Strains of Komagataeibacter sp. Isolated from Organic Waste and Kombucha. Carbohyd. Polym. 2021, 266, 118176. DOI: 10.1016/j.carbpol.2021.118176.
  • Feng, Y.; Zhang, M.; Mujumdar, A. S.; Gao, Z. Recent Research Process of Fermented Plant Extract: A Review. Trends Food Sci. Technol. 2017, 65, 40–48. DOI: 10.1016/j.tifs.2017.04.006.
  • Dai, J.; Sha, R.; Wang, Z.; Cui, Y.; Fang, S.; Mao, J. Edible Plant Jiaosu: Manufacturing, Bioactive Compounds, Potential Health Benefits, and Safety Aspects. J. Sci. Food Agric. 2020, 100(15), 5313–5323. DOI: 10.1002/jsfa.10518.
  • de Sá, L. Z. M.; Castro, P. F.; Lino, F. M.; Bernardes, M. J.; Viegas, J. C.; Dinis, T. C.; Santana, M. J.; Romao, W.; Vaz, B. G.; Lião, L. M., et al. Antioxidant Potential and Vasodilatory Activity of Fermented Beverages of Jabuticaba Berry (Myrciaria Jaboticaba). J. Funct. Foods. 2014, 8, 169–179. DOI: 10.1016/j.jff.2014.03.009.
  • Feng, F.; Zhou, Q.; Yang, Y.; Zhao, F.; Du, R.; Han, Y.; Xiao, H.; Zhou, Z. Characterization of Highly Branched Dextran Produced by Leuconostoc citreum B-2 from Pineapple Fermented Product. Int. J. Biol. Macromol. 2018, 113, 45–50. DOI: 10.1016/j.ijbiomac.2018.02.119.
  • Ye, G.; Chen, Y.; Wang, C.; Yang, R.; Bin, X. Purification and Characterization of Exopolysaccharide Produced by Weissella Cibaria YB-1 from Pickle Chinese Cabbage. Int. J. Biol. Macromol. 2018, 120(A), 1315–1321. DOI: 10.1016/j.ijbiomac.2018.09.019.
  • Liu, J.; Wang, X.; Pu, H.; Liu, S.; Kan, J.; Jin, C. Recent Advances in Endophytic Exopolysaccharides: Production, Structural Characterization, Physiological Role and Biological Activity. Carbohyd. Polym. 2017, 157, 1113–1124. DOI: 10.1016/j.carbpol.2016.10.084.
  • Hu, X.; Pang, X.; Wang, P. G.; Chen, M. Isolation and Characterization of an Antioxidant Exopolysaccharide Produced by Bacillus sp. S-1 from Sichuan Pickles. Carbohyd. Polym. 2019, 204, 9–16. DOI: 10.1016/j.carbpol.2018.09.069.
  • Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Yang, X.; Ji, Y.; Guan, Y.; Feng, K. Microbial Dynamics and Volatilome Profiles During the Fermentation of Chinese Northeast Sauerkraut by Leuconostoc mesenteroides ORC 2 and Lactobacillus Plantarum HBUAS 51041 Under Different Salt Concentrations. Food Res. Int. 2020, 130, 108926. DOI: 10.1016/j.foodres.2019.108926.
  • Du, R.; Yu, L.; Yu, N.; Ping, W.; Song, G.; Ge, J. Characterization of Exopolysaccharide Produced by Levilactobacillus brevis HDE-9 and Evaluation of Its Potential Use in Dairy Products. Int. J. Biol. Macromol. 2022, 217, 303–311. DOI: 10.1016/j.ijbiomac.2022.07.057.
  • Xu, X.; Peng, Q.; Zhang, Y.; Tian, D.; Zhang, P.; Huang, Y.; Ma, L.; Qiao, Y.; Shi, B. A Novel Exopolysaccharide Produced by Lactobacillus Coryniformis NA-3 Exhibits Antioxidant and Biofilm-Inhibiting Properties in vitro. Food Nutr. Res. 2020, 64, 3744. DOI: 10.29219/fnr.v64.3744.
  • Yu, L.; Ye, G.; Qi, X.; Yang, Y.; Zhou, B.; Zhang, Y.; Du, R.; Ge, J.; Ping, W. Purification, Characterization and Probiotic Proliferation Effect of Exopolysaccharides Produced by Lactiplantibacillus plantarum HDC-01 Isolated from Sauerkraut. Front. Microbiol. 2023, 14, 1210302. DOI: 10.3389/fmicb.2023.1210302.
  • Curiel, J. A.; Coda, R.; Centomani, I.; Summo, C.; Gobbetti, M.; Rizzello, C. G. Exploitation of the Nutritional and Functional Characteristics of Traditional Italian Legumes: The Potential of Sourdough Fermentation. Int. J. Food Microbiol. 2015, 196, 51–61. DOI: 10.1016/j.ijfoodmicro.2014.11.032.
  • Manini, F.; Casiraghi, M. C.; Poutanen, K.; Brasca, M.; Erba, D.; Plumed-Ferrer, C. Characterization of Lactic Acid Bacteria Isolated from Wheat Bran Sourdough. LWT - Food Sci. Technol. 2016, 66, 275–283. DOI: 10.1016/j.lwt.2015.10.045.
  • Campo, E.; Del Arco, L.; Urtasun, L.; Oria, R.; Ferrer-Mairal, A. Impact of Sourdough on Sensory Properties and consumers’ Preference of Gluten-Free Breads Enriched with Teff Flour. J. Cereal Sci. 2016, 67, 75–82. DOI: 10.1016/j.jcs.2015.09.010.
  • Bounaix, M. S.; Gabriel, V.; Morel, S.; Robert, H.; Rabier, P.; Remaud-Simeon, M.; Gabriel, B.; Fontagné-Faucher, C. Biodiversity of Exopolysaccharides Produced from Sucrose by Sourdough Lactic Acid Bacteria. J. Agric. Food Chem. 2009, 57(22), 10889–10897. DOI: 10.1021/jf902068t.
  • Dertli, E.; Mayer, M. J.; Narbad, A. Impact of the Exopolysaccharide Layer on Biofilms, Adhesion and Resistance to Stress in Lactobacillus Johnsonii FI9785. BMC Microbiol. 2015, 15(1), 8. DOI: 10.1186/s12866-015-0347-2.
  • Taylan, O.; Yilmaz, M. T.; Dertli, E. Partial Characterization of a Levan Type Exopolysaccharide (EPS) Produced by Leuconostoc mesenteroides Showing Immunostimulatory and Antioxidant Activities. Int. J. Biol. Macromol. 2019, 136, 436–444. DOI: 10.1016/j.ijbiomac.2019.06.078.
  • Aburas, H.; İspirli, H.; Taylan, O.; Yilmaz, M. T.; Dertli, E. Structural and Physicochemical Characterisation and Antioxidant Activity of an α-D-Glucan Produced by Sourdough Isolate Weissella Cibaria MED17. Int. J. Biol. Macromol. 2020, 161, 648–655. DOI: 10.1016/j.ijbiomac.2020.06.030.
  • Ahmed, R. Z.; Siddiqui, K.; Arman, M.; Ahmed, N. Characterization of High Molecular Weight Dextran Produced by Weissella Cibaria CMGDEX3. Carbohyd. Polym. 2012, 90(1), 441–446. DOI: 10.1016/j.carbpol.2012.05.063.
  • Vermeulen, N.; Gänzle, M. G.; Vogel, R. F. Glutamine Deamidation by Cereal‐Associated Lactic Acid Bacteria. J. Appl. Microbiol. 2007, 103(4), 1197–1205. DOI: 10.1111/j.1365-2672.2007.03333.x.
  • Yazar, G.; Tavman, Ş. Functional and Technological Aspects of Sourdough Fermentation with Lactobacillus Sanfranciscensis. Food Eng. Rev. 2012, 4(3), 171–190. DOI: 10.1007/s12393-012-9052-1.
  • De Angelis, M.; Gallo, G.; Corbo, M. R.; McSweeney, P. L.; Faccia, M.; Giovine, M.; Gobbetti, M. Phytase Activity in Sourdough Lactic Acid Bacteria: Purification and Characterization of a Phytase from Lactobacillus Sanfranciscensis CB1. Int. J. Food Microbiol. 2003, 87(3), 259–270. DOI: 10.1016/S0168-1605(03)00072-2.
  • Zhang, G.; Zhang, W.; Sun, L.; Sadiq, F. A.; Yang, Y.; Gao, J.; Sang, Y. Preparation Screening, Production Optimization and Characterization of Exopolysaccharides Produced by Lactobacillus Sanfranciscensis Ls-1001 Isolated from Chinese Traditional Sourdough. Int. J. Biol. Macromol. 2019, 139, 1295–1303. DOI: 10.1016/j.ijbiomac.2019.08.077.
  • Llamas-Arriba, M. G.; Hernández-Alcántara, A. M.; Mohedano, M. L.; Chiva, R.; Celador-Lera, L.; Velázquez, E.; Prieto, A.; DueñDueñAs, M. T.; Tamame, M.; López, P. Lactic Acid Bacteria Isolated from Fermented Doughs in Spain Produce Dextrans and Riboflavin. Foods. 2021, 10(9), 2004. DOI: 10.3390/foods10092004.
  • Nakata, H.; Imamura, Y.; Saha, S.; Lobo, R. E.; Kitahara, S.; Araki, S.; Tomokiyo, M.; Namai, F.; Hiramitsu, M.; Inoue, T., et al. Partial Characterization and Immunomodulatory Effects of Exopolysaccharides from Streptococcus Thermophilus SBC8781 During Soy Milk and Cow Milk Fermentation. Foods. 2023, 12 (12), 2374. DOI: 10.3390/foods12122374.
  • Liu, J.; Wang, X.; Pu, H.; Liu, S.; Kan, J.; Jin, C. Recent Advances in Endophytic Exopolysaccharides: Production, Structural Characterization, Physiological Role and Biological Activity. Carbohydr. Polym. 2017, 157, 1113–1124. DOI: 10.1016/j.carbpol.2016.10.084.
  • Yang, Y.; Feng, F.; Zhou, Q.; Zhao, F.; Du, R.; Zhou, Z.; Han, Y. Isolation, Purification and Characterization of Exopolysaccharide Produced by Leuconostoc Pseudomesenteroides YF32 from Soybean Paste. Int. J. Biol. Macromol. 2018, 114, 529–535. DOI: 10.1016/j.ijbiomac.2018.03.162.
  • Lay, J. O.; Liyanage, R.; Borgmann, S.; Wilkins, C. L. Problems with the “Omics. Trends Anal. Chem. 2006, 25(11), 1046–1056. DOI: 10.1016/j.trac.2006.10.007.
  • Rizo, J.; Guillén, D.; Farrés, A.; Díaz-Ruiz, G.; Sánchez, S.; Wacher, C.; Rodríguez-Sanoja, R. Omics in Traditional Vegetable Fermented Foods and Beverages. Crit. Rev. Food Sci. 2020, 60(5), 791–809. DOI: 10.1080/10408398.2018.1551189.
  • Lacalle-Bergeron, L.; Izquierdo-Sandoval, D.; Sancho, J. V.; López, F. J.; Hernández, F.; Portolés, T. Chromatography Hyphenated to High Resolution Mass Spectrometry in Untargeted Metabolomics for Investigation of Food (Bio)markers. Trends Anal. Chem. 2021, 135, 116161. DOI: 10.1016/j.trac.2020.116161.
  • Begou, O.; Gika, H. G.; Wilson, I. D.; Theodoridis, G. Hyphenated MS-Based Targeted Approaches in Metabolomics. Analyst. 2017, 142(17), 3079–3100. DOI: 10.1039/C7AN00812K.
  • León, C.; Cifuentes, A.; Valdés, A. Chapter Twenty-Two - Foodomics Applications. Compr. Anal. Chem. 2018, 82, 643–685. DOI: 10.1016/bs.coac.2018.06.008.
  • Pezzatti, J.; Boccard, J.; Codesido, S.; Gagnebin, Y.; Joshi, A.; Picard, D.; González-Ruiz, V.; Rudaz, S. Implementation of Liquid Chromatography–High Resolution Mass Spectrometry Methods for Untargeted Metabolomic Analyses of Biological Samples: A Tutorial. Anal. Chim. 2020, 1105, 28–44. DOI: 10.1016/j.aca.2019.12.062.
  • Liu, X.; Locasale, J. W. Metabolomics: A Primer. Trends. Biochem. Sci. 2017, 42(4), 274–284. DOI: 10.1016/j.tibs.2017.01.004.
  • Liland, K. H. Multivariate Methods in Metabolomics – from Pre-Processing to Dimension Reduction and Statistical Analysis. Trends Anal. Chem. 2011, 30(6), 827–841. DOI: 10.1016/j.trac.2011.02.007.
  • Lindon, J. C.; Nicholson, J. K. Spectroscopic and Statistical Techniques for Information Recovery in Metabonomics and Metabolomics. Annu. Rev. Anal. Chem. 2008, 1(1), 45–69. DOI: 10.1146/annurev.anchem.1.031207.113026.
  • Sun, J.; Xia, Y. Pretreating and Normalizing Metabolomics Data for Statistical Analysis. Genes Dis. 2023, 11(3), 100979. DOI: 10.1016/j.gendis.2023.04.018.
  • Vignoli, A.; Ghini, V.; Meoni, G.; Licari, C.; Takis, P. G.; Tenori, L.; Turano, P.; Luchinat, C. High-Throughput Metabolomics by 1D NMR. Angew. Chem. Int. Ed. 2019, 58(4), 968–994. DOI: 10.1002/anie.201804736.
  • Abadl, M. M. T.; Marzlan, A. A.; Sulaiman, R.; Abas, F.; Meor Hussin, A. S. Optimization of Coconut Milk Kefir Beverage by RSM and Screening of Its Metabolites and Peptides. Fermentation. 2023, 9(5), 430–435. DOI: 10.3390/fermentation9050430.
  • Qadi, W. S. M.; Mediani, A.; Benchoula, K.; Wong, E. H.; Misnan, N. M.; Sani, N. A. Characterization of Physicochemical, Biological, and Chemical Changes Associated with Coconut Milk Fermentation and Correlation Revealed by 1H NMR-Based Metabolomics. Foods. 2023, 12(10), 1971. DOI: 10.3390/foods12101971.
  • Gao, Y. X.; Xu, B.; Fan, H. R.; Zhang, M. R.; Zhang, L. J.; Lu, C.; Zhang, N. N.; Fan, B.; Wang, F. Z.; Li, S. 1H NMR-Based Chemometric Metabolomics Characterization of Soymilk Fermented by Bacillus subtilis BSNK-5. Food. Res. Int. 2020, 138, 109686. DOI: 10.1016/j.foodres.2020.109686.
  • Park, K. Y.; Jeong, J. K.; Lee, Y. E.; Daily, J., III. Health Benefits of Kimchi (Korean Fermented Vegetables) As a Probiotic Food. J. Med. Food. 2014, 17(1), 6–20. DOI: 10.1089/jmf.2013.3083.
  • Koo, O. K.; Lee, S. J.; Chung, K. R.; Jang, D. J.; Yang, H. J.; Kwon, D. Y. Korean Traditional Fermented Fish Products: Jeotgal. J. Ethn. Foods. 2016, 3(2), 107–116. DOI: 10.1016/j.jef.2016.06.004.
  • Jung, M. Y.; Kim, T.-W.; Lee, C.; Kim, J. Y.; Song, H. S.; Kim, Y. B.; Ahn, S. W.; Kim, J. S.; Roh, S. W.; Lee, S. H. Role of Jeotgal, a Korean Traditional Fermented Fish Sauce, in Microbial Dynamics and Metabolite Profiles During Kimchi Fermentation. Food Chem. 2018, 265, 135–143. DOI: 10.1016/j.foodchem.2018.05.093.
  • Seo, H.; Bae, J.-H.; Kim, G.; Kim, S.-A.; Ryu, B. H.; Han, N. S. Suitability Analysis of 17 Probiotic Type Strains of Lactic Acid Bacteria as Starter for Kimchi Fermentation. Foods. 2021, 10(6), 1435. DOI: 10.3390/foods10061435.
  • Song, H. S.; Lee, S. H.; Ahn, S. W.; Kim, J. Y.; Rhee, J.-K.; Roh, S. W. Effects of the Main Ingredients of the Fermented Food, Kimchi, on Bacterial Composition and Metabolite Profile. Food. Res. Int. 2021, 149, 110668. DOI: 10.1016/j.foodres.2021.110668.
  • Tomita, S.; Nakamura, T.; Okada, S. NMR- and GC/MS-Based Metabolomic Characterization of Sunki, an Unsalted Fermented Pickle of Turnip Leaves. Food Chem. 2018, 258, 25–34. DOI: 10.1016/j.foodchem.2018.03.038.
  • Tomita, S.; Watanabe, J.; Kuribayashi, T.; Tanaka, S.; Kawahara, T. Metabolomic Evaluation of Different Starter Culture Effects on Water-Soluble and Volatile Compound Profiles in Nozawana Pickle Fermentation. Food Chem. Mol. Sci. 2021, 2, 100019. DOI: 10.1016/j.fochms.2021.100019.
  • Gaudioso, G.; Weil, T.; Marzorati, G.; Solovyev, P.; Bontempo, L.; Franciosi, E.; Bertoldi, L.; Pedrolli, C.; Tuohy, K. M.; Fava, F. Microbial and Metabolic Characterization of Organic Artisanal Sauerkraut Fermentation and Study of Gut Health-Promoting Properties of Sauerkraut Brine. Front. Microbiol. 2022, 13, 929738. DOI: 10.3389/fmicb.2022.929738.
  • Barbosa, J.; Teixeira, P. Development of Probiotic Fruit Juice Powders by Spray-Drying: A Review. Food Rev. Int. 2017, 33(4), 335–358. DOI: 10.1080/87559129.2016.1175016.
  • Agatha, R.; Maryati, Y.; Susilowati, A.; Aspiyanto, A.; Devi, A. F.; Mulyani, H.; Budiari, S.; Filailla, E.; Rahmawati, D.; Artanti, N. Effect of Type and Concentration of Encapsulating Agents on Physicochemical, Phytochemical, and Antioxidant Properties of Red Dragon Fruit Kombucha Powdered Beverage. Indones. J. Chem. 2016, 23(1), 7–15. DOI: 10.14203/inajac.v23i1.474.
  • Mohsin, A. Z.; Mat nor, N. A.; Muhialdin, B. J.; Mohd Roby, B. H.; Abadl, M. M.; Marzlan, A. A.; Hussain, N.; Meor Hussin, A. S. The Effects of Encapsulation Process Involving Arabic Gum on the Metabolites, Antioxidant and Antibacterial Activity of Kombucha (Fermented Sugared Tea). Food Hydrocoll. Health. 2022, 2, 100072. DOI: 10.1016/j.fhfh.2022.100072.
  • Pauzi, N.; Man, S.; Nawawi, M. S. A. M.; Abu-Hussin, M. F. Ethanol Standard in Halal Dietary Product Among Southeast Asian Halal Governing Bodies. Trends Food Sci. Technol. 2019, 86, 375–380. DOI: 10.1016/j.tifs.2019.02.042.
  • Landis, E. A.; Fogarty, E.; Edwards, J. C.; Popa, O.; Eren, A. M.; Wolfe, B. E.; Traxler, M. F. Microbial Diversity and Interaction Specificity in Kombucha Tea Fermentations. mSystems. 2022, 7(3), e00157–22. DOI: 10.1128/msystems.00157-22.
  • Harrison, K.; Navarro, R.; Jensen, K.; Cayler, W.; Nielsen, T.; Live, C. C. Probiotic, or Neither? Microbial Composition of Retail-Available Kombucha and “Hard” Kombucha in the Pacific Northwest of the United States. Beverages. 2023, 9(3), 3. DOI: 10.3390/beverages9030059.
  • Lutchmedial, M.; Ramlal, R.; Badrie, N.; Chang-Yen, I. Nutritional and Sensory Quality of Stirred Soursop (Annona Muricata L.) Yoghurt. Int. J. Food Sci. Nutr. 2004, 55(5), 407–414. DOI: 10.1080/09637480400002800.
  • George, V. C.; Kumar, D. N.; Suresh, P. K.; Kumar, R. A. Antioxidant, DNA Protective Efficacy and HPLC Analysis of Annona Muricata (Soursop) Extracts. J. Food Sci. Technol. 2015, 52(4), 2328–2335. DOI: 10.1007/s13197-014-1289-7.
  • Jayabalan, R.; Malbaša, R. V.; Lon ́ Car, E. S.; Vitas, J. S.; Sathishkumar, M. A Review on Kombucha Tea—Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus. Compr. Rev. Food Sci. 2014, 13(4), 538–550. DOI: 10.1111/1541-4337.12073.
  • Tan, W. C.; Muhialdin, B. J.; Meor Hussin, A. S. Influence of Storage Conditions on the Quality, Metabolites, and Biological Activity of Soursop (Annona Muricata. L.) Kombucha. Front. Microbiol. 2020, 11. DOI: 10.3389/fmicb.2020.603481.
  • Mohd Roby, B. H.; Muhialdin, B. J.; Abadl, M. M. T.; Mat nor, N. A.; Marzlan, A. A.; Lim, S. A. H.; Mustapha, N. A.; Meor Hussin, A. S. Physical Properties, Storage Stability, and Consumer Acceptability for Sourdough Bread Produced Using Encapsulated Kombucha Sourdough Starter Culture. J. Food Sci. 2020, 85(8), 2286–2295. DOI: 10.1111/1750-3841.15302.
  • Chong, S.-G.; Ismail, I. S.; Ahmad Azam, A.; Tan, S.-J.; Shaari, K.; Tan, J.-K. Nuclear Magnetic Resonance Spectroscopy and Liquid Chromatography–Mass Spectrometry Metabolomics Studies on Non-Organic Soybeans versus Organic Soybeans (Glycine Max), and Their Fermentation by Rhizopus Oligosporus. J. Sci. Food Agric. 2023, 103(6), 3146–3156. DOI: 10.1002/jsfa.12355.
  • Kamal, G. M.; Uddin, J.; Muhsinah, A. B.; Wang, X.; Noreen, A.; Sabir, A.; Musharraf, S. G. 1H NMR-Based Metabolomics and 13C Isotopic Ratio Evaluation to Differentiate Conventional and Organic Soy Sauce. Arabian J. Chem. 2022, 15(1), 103516. DOI: 10.1016/j.arabjc.2021.103516.
  • Dimidi, E.; Cox, S. R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients. 2019, 11(8), 8. DOI: 10.3390/nu11081806.
  • Motonaga, M.; Watanabe, H.; Tayama, Y.; Shimizu, R.; Sanoh, S.; Kotake, Y.; Kitamura, S.; Ohta, S.; Sugihara, K. Comparison of the Components of Three Types of Miso (Fermented Soybean Paste) by 1H NMR Metabolomic Analysis. BPB Reports. 2021, 4(5), 148–154. DOI: 10.1248/bpbreports.4.5_148.
  • Ferri, M.; Graen-Heedfeld, J.; Bretz, K.; Guillon, F.; Michelini, E.; Calabretta, M. M.; Lamborghini, M.; Gruarin, N.; Roda, A.; Kraft, A., et al. Peptide Fractions Obtained from Rice By-Products by Means of an Environment-Friendly Process Show in vitro Health-Related Bioactivities. PLOS ONE. 2017, 12(1), e0170954. DOI: 10.1371/journal.pone.0170954.
  • Donkor, O. N.; Henriksson, A.; Vasiljevic, T.; Shah, N. P. Probiotic Strains as Starter Cultures Improve Angiotensin‐Converting Enzyme Inhibitory Activity in Soy Yogurt. J. Food Sci. 2005, 70(8), m375–m381. DOI: 10.1111/j.1365-2621.2005.tb11522.x.
  • Trimigno, A.; Bøge Lyndgaard, C.; Atladóttir, G. A.; Aru, V.; Balling Engelsen, S.; Harder Clemmensen, L. K. An NMR Metabolomics Approach to Investigate Factors Affecting the Yoghurt Fermentation Process and Quality. Metabolites. 2020, 10(7), 293. DOI: 10.3390/metabo10070293.
  • Wongsa, P.; Yuenyongrattanakorn, K.; Pongvachirint, W.; Auntalarok, A. Improving Anti-Hypertensive Properties of Plant-Based Alternatives to Yogurt Fortified with Rice Protein Hydrolysate. Heliyon. 2022, 8(10), e11087. DOI: 10.1016/j.heliyon.2022.e11087.
  • Lu, Y.; Hu, F.; Miyakawa, T.; Tanokura, M. Complex Mixture Analysis of Organic Compounds in Yogurt by NMR Spectroscopy. Metabolites. 2016, 6(2), 19. DOI: 10.3390/metabo6020019.
  • Lu, Y.; Ishikawa, H.; Kwon, Y.; Hu, F.; Miyakawa, T.; Tanokura, M. Real-Time Monitoring of Chemical Changes in Three Kinds of Fermented Milk Products During Fermentation Using Quantitative Difference Nuclear Magnetic Resonance Spectroscopy. J. Agric. Food Chem. 2018, 66(6), 1479–1487. DOI: 10.1021/acs.jafc.7b05279.
  • Muhialdin, B. J.; Kadum, H.; Zarei, M.; Meor Hussin, A. S. Effects of Metabolite Changes During Lacto-Fermentation on the Biological Activity and Consumer Acceptability for Dragon Fruit Juice. LWT - Food Sci. Technol. 2020, 121, 108992. DOI: 10.1016/j.lwt.2019.108992.
  • Muhialdin, B. J.; Kadum, H.; Meor Hussin, A. S. Metabolomics Profiling of Fermented Cantaloupe Juice and the Potential Application to Extend the Shelf Life of Fresh Cantaloupe Juice for Six Months at 8 °C. Food Control. 2021, 120, 107555. DOI: 10.1016/j.foodcont.2020.107555.
  • Muhialdin, B. J.; Meor Hussin, A. S.; Kadum, H.; Abdul Hamid, A.; Jaafar, A. H. Metabolomic Changes and Biological Activities During the Lacto-Fermentation of Jackfruit Juice Using Lactobacillus Casei ATCC334. LWT - Food Sci. Technol. 2021, 141, 110940. DOI: 10.1016/j.lwt.2021.110940.
  • Markkinen, N.; Pariyani, R.; Jokioja, J.; Kortesniemi, M.; Laaksonen, O.; Yang, B. NMR-Based Metabolomics Approach on Optimization of Malolactic Fermentation of Sea Buckthorn Juice with Lactiplantibacillus plantarum. Food Chem. 2022, 366, 130630. DOI: 10.1016/j.foodchem.2021.130630.
  • Colosimo, R.; Gabriele, M.; Cifelli, M.; Longo, V.; Domenici, V.; Pucci, L. The Effect of Sourdough Fermentation on Triticum Dicoccum from Garfagnana: 1H NMR Characterization and Analysis of the Antioxidant Activity. Food Chem. 2020, 305, 125510. DOI: 10.1016/j.foodchem.2019.125510.
  • Brigante, F. I.; García, M. E.; López Radcenco, A.; Moyna, G.; Wunderlin, D. A.; Baroni, M. V. Identification of Chia, Flax and Sesame Seeds Authenticity Markers by NMR-Based Untargeted Metabolomics and Their Validation in Bakery Products Containing Them. Food Chem. 2022, 387, 132925. DOI: 10.1016/j.foodchem.2022.132925.
  • Marques, V. D.; Franzolin, M. R.; Sanabani, S. S.; Vigerelli, H.; Piazza, R. M. F.; Pimenta, D. C.; Venâncio, T.; Neves, I. V.; de Sousa Silva, H. G. A New Class of Antimicrobial Molecules Derived from Kefir, Effective Against Pseudomonas aeruginosa and Methicillin Resistant Staphylococcus Aureus (MRSA) Strains. Sci. Rep. 2020, 10(1), 17434.
  • Ullah, I.; Hu, Y.; You, J.; Yin, T.; Xiong, S.; Din, Z.; Huang, Q.; Liu, R. Influence of Okara Dietary Fiber with Varying Particle Sizes on Gelling Properties, Water State and Microstructure of Tofu Gel. Food Hydrocoll. 2019, 89, 512–522. DOI: 10.1016/j.foodhyd.2018.11.006.
  • Ge, X.; Tang, N.; Huang, Y. ;.; Chen, X.; Dong, M.; Rui, X.; Zhang, Q.; Li, W. Fermentative and Physicochemical Properties of Fermented Milk Supplemented with Sea Buckthorn (Hippophae Elaeagnaceae L.). LWT - Food Sci. Technol. 2022, 153, 112484. DOI: 10.1016/j.lwt.2021.112484.
  • Xiao, R.; Liu, M.; Tian, Q.; Hui, M.; Shi, X.; Hou, X. Physical and Chemical Properties, Structural Characterization and Nutritional Analysis of Kefir Yoghurt. Front. Microbiol. 2022, 13, 1107092. DOI: 10.3389/fmicb.2022.1107092.
  • Santos, M. H. S. Biogenic Amines: Their Importance in Foods. Int. J. Food Microbiol. 1996, 29(2), 213–231. DOI: 10.1016/0168-1605(95)00032-1.
  • Mannaa, M.; Seo, Y.-S.; Park, I. Addition of Coriander During Fermentation of Korean Soy Sauce (Gangjang) Causes Significant Shift in Microbial Composition and Reduction in Biogenic Amine Levels. Foods. 2020, 9(10), 1346. DOI: 10.3390/foods9101346.
  • He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44(2), 532–553. DOI: 10.1159/000485089.
  • Hu, Y.; Liu, X.; Wu, X.; Zhang, Z.; Wu, D.; Chen, C.; Su, W.; Zhang, L.; Li, J.; Wang, H.-M. D. Several Natural Phytochemicals from Chinese Traditional Fermented Food-Pickled Raphanus Sativus L.: Purification and Characterization. Food Chem. X. 2022, 15, 100390. DOI: 10.1016/j.fochx.2022.100390.
  • Catzeddu, P.; Fois, S.; Tolu, V.; Sanna, M.; Braca, A.; Vitangeli, I.; Anedda, R.; Roggio, T. Quality Evaluation of Fresh Pasta Fortified with Sourdough Containing Wheat Germ and Wholemeal Semolina. Foods. 2023, 12(14), 2641. DOI: 10.3390/foods12142641.
  • Münger, L. H.; Trimigno, A.; Picone, G.; Freiburghaus, C.; Pimentel, G.; Burton, K. J.; Pralong, F. P.; Vionnet, N.; Capozzi, F.; Badertscher, R., et al. Identification of Urinary Food Intake Biomarkers for Milk, Cheese, and Soy-Based Drink by Untargeted GC-MS and NMR in Healthy Humans. J. Proteome Res. 2017, 16 (9), 3321–3335. DOI: 10.1021/acs.jproteome.7b00319.
  • Saha, D.; Bhattacharya, S. Hydrocolloids as Thickening and Gelling Agents in Food: A Critical Review. J. Food Sci. Technol. 2010, 47(6), 587–597. DOI: 10.1007/s13197-010-0162-6.
  • Radziej, S.; Scherb-Forster, J.; Schlicht, C.; Eisenreich, W. Fast Identification of Food Thickeners by Nontargeted NMR-Spectroscopy. J. Agric. Food Chem. 2021, 69(12), 3761–3775. DOI: 10.1021/acs.jafc.0c07760.