41
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Cloning and Sequence Analysis of Fatty Acid Hydroxylase Gene in Lactobacillus Sakei Y-20 Strain and Characteristics of Fatty Acid Hydroxylase

, , , , &

Literature Cited

  • Alderson, N. L., Walla, M. D., and Hama, H. A novel method for the measurement of in vitro fatty acid 2-hydroxylase activity by gas chromatography–mass spectrometry. J. Lipid Res. 46:1569–1575, 2005.
  • Bambal, R. B., and Hanzlik, R. P. Effects of steric bulk and conformational rigidity on fatty acid omega hydroxylation by a cytochrome P-450 4A1 fusion protein. Arch. Biochem. Biophys. 334:59–66, 1996.
  • Behr, J., Gänzle, M. G., and Vogel, R. F. Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport. Appl. Environ. Microbiol. 72:6483–6492, 2006.
  • Bhattarai, S., Liou, K., and Oh, T. J. Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch. Biochem. Biophys. 539:63–69, 2013.
  • Bligh, E. G., and Dyer, W. J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917, 1959.
  • Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities utilising principle of protein dye staining. Anal. Biochem. 72:248–254, 1976.
  • Chaillou, S., Champomier-Vergès, M. C., Crutz-Le Coq, A. M., Dudez, A. M., Martin, V., Beaufils, S., Darbon-Rongère, E., Bossy, R., Loux, V., and Zagorec, M. The complete genome sequence of the meatborne lactic acid bacterium Lactobacillus sakei 23K. Nat. Biotechnol. 23:1527–1533, 2005.
  • DiNardo, G., and Gilardi, G. Optimization of the bacterial cytochrome P450 BM3 system for the production of human drug metabolites. Int. J. Mol. Sci. 13:15901–15924, 2012.
  • Duwat, P., Sourice, S., Cesselin, B., Lamberet, G., Vido, K., Gaudu, P., Le Loir, Y., Violet, F., Loubiere, P., and Gruss, A. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J. Bacteriol. 183:4509–4516, 2001.
  • Endo, A., and Dicks, L. M. Taxonomy and atypical characteristics of the genus Lactobacillus. J. Jpn. Soc. Lactic Acid Bact. 19:152–159, 2008.
  • Funhoff, E. G., Bauer, U., Garcia-Rubio, I., Witholt, B., and van Beilen, J. B. CYP153A6, a soluble P-450 oxygenase catalyzing terminal-alkane hydroxylation. J. Bacteriol. 188:5220–5227, 2006.
  • Girvan, H. M., Dunford, A. J., Neeli, R., Ekanem, I. S., Waltham, T. N., Joyce, M. G., Leys, D., Curtis, R. A., Williams, P., Fisher, K., Voice, M. W., and Munro, A. W. Flavocytochrome P450 BM3 mutant W1046A is a NADH-dependent fatty acid hydroxylase: Implications for the mechanism of electron transfer in the P-450 BM3 dimer. Arch. Biochem. Biophys. 507:75–85, 2011.
  • Hasemann, C. A., Kurumbail, R. G., Boddupalli, S. S., Peterson, J. A., and Deisenhofer, J. Structure and function of cytochromes P-450: A comparative analysis of three crystal structures. Structure 3:41–62, 1995.
  • Izuta, H., Chikaraishi, Y., and Shimazawa, M. 10-Hydroxy-2-decenoic acid, a major fatty acid from royal jelly, inhibits VEGF-induced angiogenesis in human umbilical vein endothelial cells. Evid. Based Complement. Alternat. Med. 6:489–494, 2009.
  • Käppeli, O. Cytochromes P-450 of yeasts. Microbiol. Rev. 50:244–258, 1986.
  • Kim, B. N., Joo, Y. C., Kim, Y. S., Kim, K. R., and Oh, D. K. Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Appl. Microbiol. Biotechnol. 95:929–937, 2012.
  • Kishino, S., Ogawa, J., Yokozeki, K., and Shimizu, S. Linoleic acid isomerase in Lactobacillus plantarum AKU1009a proved to be a multi-component enzyme system requiring oxidoreduction cofactor. Biosci. Biotechnol. Biochem. 75:318–322, 2011.
  • Kobayashi, N., Kaneda, H., Kano, Y., and Koshino, S. Behavior of lipid hydroperoxides during mashing. J. Am. Soc. Brew. Chem. 52:141–145, 1994.
  • Konings, W. N., Lolkema, J. S., Bolhuis, H., van Veen, H. W., Poolman, B., and Driessen, A. J. The role of transport processes in survival of lactic acid bacteria: Energy transduction and multidrug resistance. Antonie Van Leeuwenhoek 71:117–128, 1997.
  • Lee, D. S., Yamada, A., Sugimoto, H., Matsunaga, I., Ogura, H., Ichihara, K., Adachi, S., Park, S. Y., and Shiro, Y. Substrate recognition and molecular mechanism of fatty acid hydroxylation by cytochrome P450 from Bacillus subtilis. J. Biol. Chem. 278:9761–9767, 2003.
  • Lewis, D. F. V., and Wiseman, A. A selective review of bacterial forms of cytochrome P-450 enzymes. Enzyme Microbial. Technol. 36:377–378, 2005.
  • Lu, A. Y. H., Junk, K. W., and Coon, M. J. Resolution of the cytochrome P-450-containing ω-hydroxylation system of liver microsomes into three components. J. Biol. Chem. 244:3714–3721, 1969.
  • Luchansky, J. B., Tennant, M. C., and Klaenhammer, T. R. Molecular cloning and deoxyribonucleic acid polymorphisms in Lactobacillus acidophilus and Lactobacillus gasseri. J. Dairy Sci. 74:3293–3302, 1991.
  • Matsunaga, I., Yamada, M., Kusunose, E., Nishiuchi, Y., Yano, I., and Ichihara, K. Direct involvement of hydrogen peroxide in bacterial α-hydroxylation of fatty acid. FEBS Lett. 386:252–254, 1996.
  • McKenna, E. J., and Coon, M. J. Enzymatic ω-oxidation—IV. Purification and properties of the ω-hydroxylase of Pseudomonas oleovorans. J. Biol. Chem. 245:3882–3889, 1970.
  • Means, G. E., and Feeney, R. E. Chemical Modification of Proteins, Holden-Day, San Francisco, CA, pp. 105–138, 198–204, 1971.
  • Narhi, L. O., and Fulco, A. J. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 261:7160–7169, 1986.
  • National Center for Biotechnology Information (NCBI). Open Reading Frame Finder, www.ncbi.nlm.nih.gov/projects/gorf/orfig.cgi
  • National Center for Biotechnology Information (NCBI). Basic Local Alignment Search Tool (BLAST), http://blast.ncbi.nlm.nih.gov/Blast.cgi
  • Nelson, D. R. A world of cytochrome P450s. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368:20120430, 2013.
  • Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., Waxman, D. J., Waterman, M. R., Gotoh, O., Coon, M. J., and Estabrook, R. W. P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42, 1996.
  • Ogawa, J., Matsumura, K., Kishino, S., Omura, Y., and Shimizu, S. Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecanoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl. Environ. Microbiol. 67:1246–1252, 2001.
  • Ogawa, J., and Shimizu, S. A view from the front line of industrial uses of microbial enzymes. Kagaku to Seibutsu 47:412–418, 2009. [In Japanese.]
  • Ohmura, T., Ishimura, Y., and Fujii, Y. Molecular Biology of P-450, 2nd Ed. Kodansya, Tokyo, Japan, 2009. [In Japanese.]
  • Parajuli, N., Basnet, D. B., Kim, B. G., Lee, H. C., Sohng, J. K., and Liou, K. Diversity of cytochrome P-450 in Streptomyces peucetius. Appl. Chem. 8:151–154, 2004.
  • Sakaguchi, M. 1997. Mechanism for intracellular localization of cytochrome P-450. Biophysics 37(2):52–57. [In Japanese.]
  • Sakamoto, K., and Konings, W. N. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 89:105–124, 2003.
  • Sambrook, J., and Russell, D. W. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001.
  • Sano, M., and Tomita, I. Peroxidized fat experimental technique: Measurements made on an antioxidant enzyme. SOD, GSHPx, catalase, and GSH-S–transferase. Kagaku to Seibutsu 30:743–747, 1992. [In Japanese.]
  • Sato, R., and Omura, T., eds. Cytochrome P-450, Academic Press, New York, NY, pp. 137–208, 1978.
  • Suzuki, Y., Hatanaka, S., Kanauchi, M., Kasahara, S. and Shimoyamada, M. Screening the hydroxylation of fatty acids with lactic acid bacteria based on the lactonization of the hydroxylated products. J. Am. Soc. Brew. Chem. [Accepted.]
  • Walker, M. D., Hughes, P. S., and Simpson, W. J. Use of chemilumi-nescence HPLC for measurement of positional isomers of hydroperoxy fatty acids in malting and the protein rest stage of mashing. J. Sci. Food Agric. 70:341–346, 1996.
  • Wanikawa, A., Hosoi, K., Takise, I., and Kato, T. Detection of γ-lactones in malt whisky. J. Inst. Brew. 106(1):39–43, 2000.
  • Wanikawa, A. Involvement of quality of malt whisky by lactic acid bacteria and brewer's yeast, lactic acid bacteria sweeten malt whisky from brewer's yeast. J. Brew. Soc. Jpn. 98:241–50, 2003. [In Japanese.]
  • Yang, G., and Schwarz, P. B. Activity of lipoxygenase isoenzymes during malting and mashing. J. Am. Soc. Brew. Chem. 53:45–49, 1995.
  • Yang, G., Schwarz, P. B., and Vick, B. A. Purification and characterization of lipoxygenase isoenzymes in germinating barley. Cereal Chem. 70:589–595, 1993.
  • Yonekura, M., Watanabe, Y., and Kaneeda, J. Tyrosinase-activity inhibitor and beautifying cosmetics using the same. Japanese patent JP H8–133746, 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.