126
Views
51
CrossRef citations to date
0
Altmetric
Article

Proteasome Failure Promotes Positioning of Lysosomes around the Aggresome via Local Block of Microtubule-Dependent Transport

, , , , , & show all
Pages 1336-1348 | Received 21 Jan 2014, Accepted 21 Jan 2014, Published online: 20 Mar 2023

REFERENCES

  • Luo GR, Chen S, Le WD. 2007. Are heat shock proteins therapeutic target for Parkinson's disease? Int. J. Biol. Sci. 3:20–26. http://dx.doi.org/10.7150/ijbs.3.20.
  • Meriin AB, Sherman MY. 2005. Role of molecular chaperones in neurodegenerative disorders. Int. J. Hyperthermia 21:403–419. http://dx.doi.org/10.1080/02656730500041871.
  • Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM. 2001. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med. 7:1144–1150. http://dx.doi.org/10.1038/nm1001-1144.
  • Corboy MJ, Thomas PJ, Wigley WC. 2005. Aggresome formation. Methods Mol. Biol. 301:305–327. http://dx.doi.org/10.1385/1-59259-895-1:305.
  • Webb JL, Ravikumar B, Rubinsztein DC. 2004. Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int. J. Biochem. Cell Biol. 36:2541–2550. http://dx.doi.org/10.1016/j.biocel.2004.02.003.
  • Olzmann JA, Li L, Chin LS. 2008. Aggresome formation and neurodegenerative diseases: therapeutic implications. Curr. Med. Chem. 15:47–60. http://dx.doi.org/10.2174/092986708783330692.
  • Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, Mouradian MM. 2004. Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J. Biol. Chem. 279:4625–4631. http://dx.doi.org/10.1074/jbc.M310994200.
  • Taylor JP, Tanaka F, Robitschek J, Sandoval CM, Taye A, Markovic-Plese S, Fischbeck KH. 2003. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum. Mol. Genet. 12:749–757. http://dx.doi.org/10.1093/hmg/ddg074.
  • Iwata A, Christianson JC, Bucci M, Ellerby LM, Nukina N, Forno LS, Kopito RR. 2005. Increased susceptibility of cytoplasmic over nuclear polyglutamine aggregates to autophagic degradation. Proc. Natl. Acad. Sci. U. S. A. 102:13135–13140. http://dx.doi.org/10.1073/pnas.0505801102.
  • Iwata A, Riley BE, Johnston JA, Kopito RR. 2005. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J. Biol. Chem. 280:40282–40292. http://dx.doi.org/10.1074/jbc.M508786200.
  • Olzmann JA, Chin LS. 2008. Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4:85–87.
  • Wong ES, Tan JM, Soong WE, Hussein K, Nukina N, Dawson VL, Dawson TM, Cuervo AM, Lim KL. 2008. Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Hum. Mol. Genet. 17:2570–2582. http://dx.doi.org/10.1093/hmg/ddn157.
  • Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B, Rubinsztein DC. 2006. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr. Top. Dev. Biol. 76:89–101. http://dx.doi.org/10.1016/S0070-2153(06)76003-3.
  • Wong E, Bejarano E, Rakshit M, Lee K, Hanson HH, Zaarur N, Phillips GR, Sherman MY, Cuervo AM. 2012. Molecular determinants of selective clearance of protein inclusions by autophagy. Nat. Commun. 3:1240. http://dx.doi.org/10.1038/ncomms2244.
  • Kimura S, Noda T, Yoshimori T. 2008. Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct. Funct. 33:109–122. http://dx.doi.org/10.1247/csf.08005.
  • Korolchuk VI, Rubinsztein DC. 2011. Regulation of autophagy by lysosomal positioning. Autophagy 7:927–928. http://dx.doi.org/10.4161/auto.7.8.15862.
  • Korolchuk VI, Saiki S, Lichtenberg M, Siddiqi FH, Roberts EA, Imarisio S, Jahreiss L, Sarkar S, Futter M, Menzies FM, O'Kane CJ, Deretic V, Rubinsztein DC. 2011. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13:453–460. http://dx.doi.org/10.1038/ncb2204.
  • Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V. 2004. The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol. Biol. Cell 15:5369–5382. http://dx.doi.org/10.1091/mbc.E04-03-0272.
  • Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB. 2005. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 15:608–617. http://dx.doi.org/10.1016/j.tcb.2005.09.004.
  • Lam C, Vergnolle MA, Thorpe L, Woodman PG, Allan VJ. 2010. Functional interplay between LIS1, NDE1 and NDEL1 in dynein-dependent organelle positioning. J. Cell Sci. 123:202–212. http://dx.doi.org/10.1242/jcs.059337.
  • Dodson MW, Zhang T, Jiang C, Chen S, Guo M. 2012. Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Hum. Mol. Genet. 21:1350–1363. http://dx.doi.org/10.1093/hmg/ddr573.
  • Zaarur N, Meriin AB, Gabai VL, Sherman MY. 2008. Triggering aggresome formation. Dissecting aggresome-targeting and aggregation signals in synphilin 1. J. Biol. Chem. 283:27575–27584. http://dx.doi.org/10.1074/jbc.M802216200.
  • Meriin AB, Zaarur N, Sherman MY. 2012. Association of translation factor eEF1A with defective ribosomal products generates a signal for aggresome formation. J. Cell Sci. 125:2665–2674. http://dx.doi.org/10.1242/jcs.098954.
  • Bagshaw RD, Callahan JW, Mahuran DJ. 2006. The Arf-family protein, Arl8b, is involved in the spatial distribution of lysosomes. Biochem. Biophys. Res. Commun. 344:1186–1191. http://dx.doi.org/10.1016/j.bbrc.2006.03.221.
  • Hofmann I, Munro S. 2006. An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J. Cell Sci. 119:1494–1503. http://dx.doi.org/10.1242/jcs.02958.
  • Okai T, Araki Y, Tada M, Tateno T, Kontani K, Katada T. 2004. Novel small GTPase subfamily capable of associating with tubulin is required for chromosome segregation. J. Cell Sci. 117:4705–4715. http://dx.doi.org/10.1242/jcs.01347.
  • Kimura S, Noda T, Yoshimori T. 2007. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3:452–460.
  • Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP. 2010. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29:969–980. http://dx.doi.org/10.1038/emboj.2009.405.
  • Perez F, Diamantopoulos GS, Stalder R, Kreis TE. 1999. CLIP-170 highlights growing microtubule ends in vivo. Cell 96:517–527. http://dx.doi.org/10.1016/S0092-8674(00)80656-X.
  • Brunner D. 2002. How to grab a microtubule on the move. Dev. Cell 3:2–4. http://dx.doi.org/10.1016/S1534-5807(02)00209-5.
  • Cheng G, Takahashi M, Shunmugavel A, Wallenborn JG, DePaoli-Roach AA, Gergs U, Neumann J, Kuppuswamy D, Menick DR, Cooper G, IV. 2010. Basis for MAP4 dephosphorylation-related microtubule network densification in pressure overload cardiac hypertrophy. J. Biol. Chem. 285:38125–38140. http://dx.doi.org/10.1074/jbc.M110.148650.
  • Ebneth A, Drewes G, Mandelkow EM, Mandelkow E. 1999. Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. Cell Motil. Cytoskeleton 44:209–224. http://dx.doi.org/10.1002/(SICI)1097-0169(199911)44:3<209::AID-CM6>3.0.CO;2-4.
  • Hasan MR, Jin M, Matsushima K, Miyamoto S, Kotani S, Nakagawa H. 2006. Differences in the regulation of microtubule stability by the pro-rich region variants of microtubule-associated protein 4. FEBS Lett. 580:3505–3510. http://dx.doi.org/10.1016/j.febslet.2006.05.028.
  • Bulinski JC, McGraw TE, Gruber D, Nguyen HL, Sheetz MP. 1997. Overexpression of MAP4 inhibits organelle motility and trafficking in vivo. J. Cell Sci. 110(Pt 24):3055–3064.
  • Dehmelt L, Halpain S. 2005. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 6:204. http://dx.doi.org/10.1186/gb-2004-6-1-204.
  • Scholz D, McDermott P, Garnovskaya M, Gallien TN, Huettelmaier S, DeRienzo C, Cooper G. 2006. Microtubule-associated protein-4 (MAP-4) inhibits microtubule-dependent distribution of mRNA in isolated neonatal cardiocytes. Cardiovasc. Res. 71:506–516. http://dx.doi.org/10.1016/j.cardiores.2006.04.001.
  • Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ, Margolis RL, Troncoso JC, Lanahan AA, Worley PF, Dawson VL, Dawson TM, Ross CA. 1999. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat. Genet. 22:110–114. http://dx.doi.org/10.1038/8820.
  • O'Farrell C, Murphy DD, Petrucelli L, Singleton AB, Hussey J, Farrer M, Hardy J, Dickson DW, Cookson MR. 2001. Transfected synphilin-1 forms cytoplasmic inclusions in HEK293 cells. Brain Res. Mol. Brain Res. 97:94–102. http://dx.doi.org/10.1016/S0169-328X(01)00292-3.
  • Reference deleted.
  • Sakamoto K, Goransson O, Hardie DG, Alessi DR. 2004. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am. J. Physiol. Endocrinol. Metab. 287:E310–E317. http://dx.doi.org/10.1152/ajpendo.00074.2004.
  • Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG, Alessi DR. 2004. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23:833–843. http://dx.doi.org/10.1038/sj.emboj.7600110.
  • Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR. 2008. Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem. J. 411:249–260. http://dx.doi.org/10.1042/BJ20080067.
  • Sacco JJ, Coulson JM, Clague MJ, Urbe S. 2010. Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62:140–157. http://dx.doi.org/10.1002/iub.300.
  • Thomson DM, Hansen MD, Winder WW. 2008. Regulation of the AMPK-related protein kinases by ubiquitination. Biochem. J. 411:e9–e10. http://dx.doi.org/10.1042/BJ20080459.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.