36
Views
42
CrossRef citations to date
0
Altmetric
Article

Activation of p53 Function by Human Transcriptional Coactivator PC4: Role of Protein-Protein Interaction, DNA Bending, and Posttranslational Modifications

&
Pages 7603-7614 | Received 15 Jun 2007, Accepted 20 Aug 2007, Published online: 27 Mar 2023

REFERENCES

  • An, W., J. Kim, and R. G. Roeder. 2004. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117:735–748.
  • Ashcroft, M., and K. H. Vousden. 1999. Regulation of p53 stability. Oncogene 18:7637–7643.
  • Balasubramanyam, K., R. A. Varier, M. Altaf, V. Swaminathan, N. B. Siddappa, U. Ranga, and T. K. Kundu. 2004. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279:51163–51171.
  • Banerjee, S., B. R. Kumar, and T. K. Kundu. 2004. General transcriptional coactivator PC4 activates p53 function. Mol. Cell. Biol. 24:2052–2062.
  • Buschmann, T., Y. Lin, N. Aithmitti, S. Y. Fuchs, H. Lu, L. Resnick-Silverman, J. J. Manfredi, Z. Ronai, and X. Wu. 2001. Stabilization and activation of p53 by the coactivator protein TAFII31. J. Biol. Chem. 276:13852–13857.
  • Chen, X., G. Farmer, H. Zhu, R. Prywes, and C. Prives. 1993. Cooperative DNA binding of p53 with TFIID (TBP): a possible mechanism for transcriptional activation. Genes Dev. 7:1837–1849.
  • Chowdary, D. R., J. J. Dermody, K. K. Jha, and H. L. Ozer. 1994. Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol. Cell. Biol. 14:1997–2003.
  • Chuikov, S., J. K. Kurash, J. R. Wilson, B. Xiao, N. Justin, G. S. Ivanov, K. McKinney, P. Tempst, C. Prives, S. J. Gamblin, N. A. Barlev, and D. Reinberg. 2004. Regulation of p53 activity through lysine methylation. Nature 432:353–360.
  • Das, C., K. Hizume, K. Batta, B. R. P. Kumar, S. S. Gadad, S. Ganguly, S. Lorain, A. Verreault, P. P. Sadhale, K. Takeyasu, and T. K. Kundu. 2006. Transcriptional coactivator PC4, a chromatin-associated protein, induces chromatin condensation. Mol. Cell. Biol. 26:8303–8315.
  • Dornan, D., I. Wertz, H. Shimizu, D. Arnott, D. G. Frantz, P. Dowd, K. O'Rourke, H. Koeppen, and V. M. Dixit. 2004. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429:86–92.
  • el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Ge, H., and R. G. Roeder. 1994. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 78:513–523.
  • Ge, H., Y. Zhao, B. T. Chait, and R. G. Roeder. 1994. Phosphorylation negatively regulates the function of coactivator PC4. Proc. Natl. Acad. Sci. USA 91:12691–12695.
  • Gu, W., and R. G. Roeder. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Haupt, Y., R. Maya, A. Kaza, and M. Oren. 1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.
  • Huang, Q., A. Raya, P. DeJesus, S. H. Chao, K. C. Quon, J. S. Caldwell, S. K. Chanda, J. C. Izpisua-Belmonte, and P. G. Schultz. 2004. Identification of p53 regulators by genome-wide functional analysis. Proc. Natl. Acad. Sci. USA 101:3456–3461.
  • Jayaraman, L., N. C. Moorthy, K. G. Murthy, J. L. Manley, M. Bustin, and C. Prives. 1998. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev. 12:462–472.
  • Jonker, H. R., R. W. Wechselberger, R. Boelens, R. Kaptein, and G. E. Folkers. 2006. The intrinsically unstructured domain of PC4 modulates the activity of the structured core through inter- and intramolecular interactions. Biochemistry 45:5067–5081.
  • Jonker, H. R., R. W. Wechselberger, M. Pinkse, R. Kaptein, and G. E. Folkers. 2006. Gradual phosphorylation regulates PC4 coactivator function. FEBS J. 273:1430–1444.
  • Kannan, P., and M. A. Tainsky. 1999. Coactivator PC4 mediates AP-2 transcriptional activity and suppresses ras-induced transformation dependent on AP-2 transcriptional interference. Mol. Cell. Biol. 19:899–908.
  • Kastan, M. B., Q. Zhan, W. S. El-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fornace, Jr. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597.
  • Kishore, A. H., K. Batta, C. Das, S. Agarwal, and T. K. Kundu. 8 June 2007. p53 regulates its own activator: transcriptional co-activator PC4, a new p53-responsive gene. Biochem. J. https://doi.org/10.1042/BJ20070390.
  • Knights, C. D., J. Catania, S. D. Giovanni, S. Muratoglu, R. Perez, A. Swartzbeck, A. A. Quong, X. Zhang, T. Beerman, R. G. Pestell, and M. L. Avantaggiati. 2006. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J. Cell Biol. 173:533–544.
  • Ko, L. J., and C. Prives. 1996. p52: puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Kubbutat, M. H. G., S. N. Jones, and K. Vousden. 1997. Regulation of p53 stability by MDM2. Nature 387:299–303.
  • Kumar, B. R., V. Swaminathan, S. Banerjee, and T. K. Kundu. 2001. p300-mediated acetylation of human transcriptional coactivator PC4 is inhibited by phosphorylation. J. Biol. Chem. 276:16804–16809.
  • Kundu, T. K., Z. Wang, and R. G. Roeder. 1999. Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol. Cell. Biol. 19:1605–1615.
  • Leng, R. P., Y. Lin, W. Ma, H. Wu, B. Lemmers, S. Chung, J. M. Parant, G. Lozano, R. Hakem, and S. Benchimol. 2003. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112:779–791.
  • Li, M., C. L. Brooks, N. Kon, and W. Gu. 2004. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13:879–886.
  • McKinney, K., and C. Prives. 2002. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol. Cell. Biol. 22:6797–6808.
  • Miyashita, T., and J. C. Reed. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299.
  • Mosner, J., T. Mummenbrauer, C. Bauer, G. Sczakiel, F. Grosse, and W. Deppert. 1995. Negative feedback regulation of wild-type p53 biosynthesis. EMBO J. 14:4442–4449.
  • Nagaich, A. K., E. Appella, and R. E. Harrington. 1997. DNA bending is essential for the site-specific recognition of DNA response elements by the DNA binding domain of the tumor suppressor protein p53. J. Biol. Chem. 272:14842–14849.
  • Oliner, J. D., J. A. Pientenpol, S. Thiagalingam, J. Gyuris, K. W. Kinzler, and B. Vogelstein. 1993. Oncoprotien MDM2 conceals the activation domain of tumor suppressor p53. Nature 362:857–860.
  • Pan, Z. Q., H. Ge, A. A. Amin, and J. Hurwitz. 1996. Transcription-positive cofactor 4 forms complexes with HSSB (RPA) on single-stranded DNA and influences HSSB dependent enzymatic synthesis of simian virus 40 DNA. J. Biol. Chem. 271:22111–22116.
  • Pokholok, D. K., C. T. Harbison, S. Levine, M. Cole, N. M. Hannett, G. W. Bell, K. Walker, P. A. Rolfe, E. Herbolsheimer, J. Zeitlinger, F. Lewitter, D. K. Gifford, and R. A. Young. 2005. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527.
  • Pomerantz, J., N. Schreiber-Agus, N. J. Liegeois, A. Silverman, L. Allan, L. Chin, J. Potes, K. Chen, I. Orlow, H. W. Lee, C. Cordon-Cardo, and R. A. DePinho. 1998. The Ink4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92:713–723.
  • Samuels-Lev, Y., D. J. O'Connor, D. Bergamaschi, G. Trigiante, J. K. Hsieh, S. Zhong, I. Campargue, L. Naumovski, T. Crook, and X. Lu. 2001. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8:781–794.
  • Shieh, S. Y., M. Ikeda, Y. Taya, and C. Prives. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334.
  • Stros, M. 1998. DNA bending by the chromosomal protein HMG1 and its high mobility group box domains. Effect of flanking sequences. J. Biol. Chem. 273:10355–10361.
  • Wang, J. Y., A. H. Sarker, P. K. Cooper, and M. R. Volkert. 2004. The single-strand DNA binding activity of human PC4 prevents mutagenesis and killing by oxidative DNA damage. Mol. Cell. Biol. 24:6084–6093.
  • Werten, S., and D. Moras. 2006. A global transcription cofactor bound to juxtaposed strands of unwound DNA. Nat. Struct. Mol. Biol. 13:181–182.
  • Wu, J., K. M. Parkhurst, R. M. Powell, and L. J. Parkhurst. 2001. DNA sequence-dependent differences in TATA-binding protein-induced DNA bending in solution are highly sensitive to osmolytes. J. Biol. Chem. 276:14623–14627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.