12
Views
36
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

AnCF, the CCAAT Binding Complex of Aspergillus nidulans, Is Essential for the Formation of a DNase I-Hypersensitive Site in the 5′ Region of the amdS Gene

, &
Pages 6523-6531 | Received 18 Mar 1999, Accepted 17 Jun 1999, Published online: 28 Mar 2023

REFERENCES

  • Almer, A., and J. Horz 1986. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J. 5:2681–2687.
  • Almer, A., H. Rudolph, A. Hinnen, and J. Horz 1986. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5:2689–2696.
  • Andrianopoulos, A., J. Brons, M. A. Davis, and J. Hynes 1996. The amdA regulatory gene of Aspergillus nidulans: characterization of gain-of-function mutations and identification of binding sites for the gene product. Fungal Genet. Biol. 21:50–63.
  • Aparicio, O. M., B. L. Billington, and J. Gottschling 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287.
  • Barlev, N. A., R. Candau, L. Wang, P. Darpino, N. Silverman, and J. Berger 1995. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270:19337–19344.
  • Baum, J. A., and J. Giles 1986. DNase I hypersensitive sites within the inducible qa gene cluster of Neurospora crassa. Proc. Natl. Acad. Sci. USA 83:6533–6537.
  • Becker, P. B., S. K. Rabindran, and J. Wu 1991. Heat shock-regulated transcription in vitro from a reconstituted chromatin template. Proc. Natl. Acad. Sci. USA 88:4109–4113.
  • Boyes, J., P. Byfield, Y. Nakatani, and J. Ogryzko 1998. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396:594–598.
  • Bresnick, E. H., M. Bustin, V. Marsaud, H. Richard-Foy, and J. Hager 1992. The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res. 20:273–278.
  • Cairns, B. R. 1998. Chromatin remodeling machines: similar motors, ulterior motives. Trends Biochem. Sci. 23:20–25.
  • Candau, R., J. X. Zhou, C. D. Allis, and J. Berger 1997. Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J. 16:555–565.
  • Cove, D. J. 1966. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. Biophys. Acta 113:51–56.
  • Currie, R. A. 1998. NF-Y is associated with the histone acetyltransferases GCN5 and P/CAF. J. Biol. Chem. 273:1430–1434.
  • Davis, M. A., C. S. Cobbett, and J. Hynes 1988. An amdS-lacZ fusion for studying gene regulation in Aspergillus. Gene 63:199–212.
  • del Olmo, M. L., J. M. Sogo, L. Franco, and J. Perez-Ortin 1993. Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions. Yeast 9:1229–1240.
  • Dowzer, C. E., and J. Kelly 1991. Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol. Cell. Biol. 11:5701–5709.
  • Felsenfeld, G. 1992. Chromatin as an essential part of the transcriptional mechanism. Nature 355:219–224.
  • Forsburg, S. L., and J. Guarente 1989. Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev. 3:1166–1178.
  • Fraser, J. Personal communication.
  • Georgakopoulos, T., and J. Thireos 1992. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11:4145–4152.
  • Godde, J. S., Y. Nakatani, and J. Wolffe 1995. The amino-terminal tails of the core histones and the translational position of the TATA box determine TBP/TFIIA association with nucleosomal DNA. Nucleic Acids Res. 23:4557–4564.
  • Gonzalez, R., and J. Scazzocchio 1997. A rapid method for chromatin structure analysis in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res. 25:3955–3956.
  • Gross, D. S., C. C. Adams, S. Lee, and J. Stentz 1993. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO J. 12:3931–3945.
  • Hahn, S., and J. Guarente 1988. Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science 240:317–321.
  • Higgins, N. P., D. A. Collier, M. W. Kilpatrick, and J. Krause 1989. Supercoiling and integration host factor change the DNA conformation and alter the flow of convergent transcription in phage Mu. J. Biol. Chem. 264:3035–3042.
  • Higuchi, R. 1990. Recombinant PCR, p. 177–183. In M. A. Innis, D. H. Gelfand, J. S. Sninsky, T. J. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, Inc., San Diego, Calif.
  • Hynes, M. J. Personal communication.
  • Hynes, M. J., C. M. Corrick, and J. King 1983. Isolation of genomic clones containing the amdS gene of Aspergillus nidulans and their use in the analysis of structural and regulatory mutations. Mol. Cell. Biol. 3:1430–1439.
  • Hynes, M. J., M. A. Davis 1996. Regulation of acetamide catabolism, p. 381–393. In R. Brambl, G. Marzluf (ed.), The mycota III: biochemistry and molecular biology. Springer-Verlag, Berlin, Germany.
  • Imbalzano, A. N., H. Kwon, M. R. Green, and J. Kingston 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–485.
  • Jin, S., and J. Scotto 1998. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol. Cell. Biol. 18:4377–4384.
  • Knezetic, J. A., and J. Luse 1986. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45:95–104.
  • Kunkel, T. A. 1985. Rapid and efficient site-directed mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82:488–492.
  • Landsberger, N., and J. Wolffe 1995. Role of chromatin and Xenopus laevis heat shock transcription factor in regulation of transcription from the X. laevis hsp70 promoter in vivo. Mol. Cell. Biol. 15:6013–6024.
  • Laybourn, P. J., and J. Kadonaga 1991. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254:238–245.
  • Lee, M. S., and J. Garrard 1991. Transcription-induced nucleosome “splitting”: an underlying structure for DNase I sensitive chromatin. EMBO J. 10:607–615.
  • Li, G., S. P. Chandler, A. P. Wolffe, and J. Hall 1998. Architectural specificity in chromatin structure at the TATA box in vivo: nucleosome displacement upon beta-phaseolin gene activation. Proc. Natl. Acad. Sci. USA 95:4772–4777.
  • Li, Q., M. Herrler, N. Landsberger, N. Kaludov, V. V. Ogryzko, Y. Nakatani, and J. Wolffe 1998. Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J. 17:6300–6315.
  • Liberati, C., A. di Silvio, S. Ottolenghi, and J. Mantovani 1999. NF-Y binding to twin CCAAT boxes: role of Q-rich domains and histone fold helices. J. Mol. Biol. 285:1441–1455.
  • Linhoff, M. W., K. L. Wright, and J. Ting 1997. CCAAT-binding factor NF-Y and RFX are required for in vivo assembly of a nucleoprotein complex that spans 250 base pairs: the invariant chain promoter as a model. Mol. Cell. Biol. 17:4589–4596.
  • Lints, R., M. A. Davis, and J. Hynes 1995. The positively acting amdA gene of Aspergillus nidulans encodes a protein with two C2H2 zinc-finger motifs. Mol. Microbiol. 15:965–975.
  • Lis, J. T., C. Wu 1994. Transcriptional regulation of heat shock genes, p. 459–475. In R. C. Cronaway, J. W. Cronaway (ed.), Transcription: mechanisms and regulation. Raven Press, New York, N.Y.
  • Littlejohn, T. G., and J. Hynes 1992. Analysis of the site of action of the amdR product for regulation of the amdS gene of Aspergillus nidulans. Mol. Gen. Genet. 235:81–88.
  • Litzka, O., P. Papagiannopolous, M. A. Davis, M. J. Hynes, and J. Brakhage 1998. The penicillin regulator PENR1 of Aspergillus nidulans is a HAP-like transcriptional complex. Eur. J. Biochem. 251:758–767.
  • Muro-Pastor, M. I., R. Gonzales, J. Strauss, F. M. Narendja, and J. Scazzocchio 1999. The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. EMBO J. 18:1584–1597.
  • Mantovani, R. 1998. A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res. 26:1135–1143.
  • Marcus, G. A., N. Silverman, S. L. Berger, J. Horiuchi, and J. Guarente 1994. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J. 13:4807–4815.
  • McNabb, D. S., Y. Xing, and J. Guarente 1995. Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev. 9:47–58.
  • Meisterernst, M., M. Horikoshi, and J. Roeder 1990. Recombinant yeast TFIID, a general transcription factor, mediates activation by the gene-specific factor USF in a chromatin assembly assay. Proc. Natl. Acad. Sci. USA 87:9153–9157.
  • Mizzen, C. A., X. J. Yang, T. Kokubo, J. E. Brownell, A. J. Bannister, T. Owen-Hughes, J. Workman, L. Wang, S. L. Berger, T. Kouzarides, Y. Nakatani, and J. Allis 1996. The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270.
  • Moreira, J. M., and J. Holmberg 1998. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J. 17:6028–6038.
  • Motta, M. C., G. Caretti, G. F. Badaracco, and J. Mantovani 1999. Interactions of the CCAAT-binding trimer NF-Y with nucleosomes. J. Biol. Chem. 274:1326–1333.
  • Murphy, R. L., A. Andrianopoulos, M. A. Davis, and J. Hynes 1997. Identification of amdX, a new Cys-2-His-2 (C2H2) zinc-finger gene involved in the regulation of the amdS gene of Aspergillus nidulans. Mol. Microbiol. 23:591–602.
  • Nakshatri, H., P. Bhat-Nakshatri, and J. Currie 1996. Subunit association and DNA binding activity of the heterotrimeric transcription factor NF-Y is regulated by cellular redox. J. Biol. Chem. 271:28784–28791.
  • Narendja, F. M. Unpublished data.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Papagiannopoulos, P., A. Andrianopoulos, J. A. Sharp, M. A. Davis, and J. Hynes 1996. The hapC gene of Aspergillus nidulans is involved in the expression of CCAAT-containing promoters. Mol. Gen. Genet. 251:412–421.
  • Punt, P. J., M. A. Dingemanse, A. Kuyvenhoven, R. D. Soede, P. H. Pouwels, and J. van den Hondel 1990. Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene 93:101–109.
  • Reik, A., G. Schutz, and J. Stewart 1991. Glucocorticoids are required for establishment and maintenance of an alteration in chromatin structure: induction leads to a reversible disruption of nucleosomes over an enhancer. EMBO J. 10:2569–2576.
  • Ronchi, A., M. Bellorini, N. Mongelli, and J. Mantovani 1995. CCAAT-box binding protein NF-Y (CBF, CP1) recognizes the minor groove and distorts DNA. Nucleic Acids Res. 23:4565–4572.
  • Schmid, A., K. D. Fascher, and J. Horz 1992. Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication. Cell 71:853–864.
  • Stamatoyannopoulos, J. A., A. Goodwin, T. Joyce, and J. Lowrey 1995. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region. EMBO J. 14:106–116.
  • Steidl, S., P. Papagiannopoulos, O. Litzka, A. Andrianopoulos, M. A. Davis, A. A. Brakhage, and J. Hynes 1999. AnCF, the CCAAT binding complex of Aspergillus nidulans, contains products of the hapB, hapC, and hapE genes and is required for activation by the pathway-specific regulatory gene amdR. Mol. Cell. Biol. 19:99–106.
  • Sterner, D. E., P. A. Grant, S. M. Roberts, L. J. Duggan, R. Belotserkovskaya, L. A. Pacella, F. Winston, J. L. Workman, and J. Berger 1999. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19:86–98.
  • Straka, C., and J. Horz 1991. A functional role for nucleosomes in the repression of a yeast promoter. EMBO J. 10:361–368.
  • Svaren, J., and J. Horz 1997. Transcription factors vs. nucleosomes: regulation of the PHO5 promoter in yeast. Trends Biochem. Sci. 22:93–97.
  • van Heeswijck, R., and J. Hynes 1991. The amdR product and a CCAAT-binding factor bind to adjacent, possibly overlapping DNA sequences in the promoter region of the Aspergillus nidulans amdS gene. Nucleic Acids Res. 19:2655–2660.
  • Vincenz, C., J. Fronk, G. A. Tank, and J. Langmore 1991. Nucleoprotein hybridization: a method for isolating active and inactive genes as chromatin. Nucleic Acids Res. 19:1325–1336.
  • Wang, L., L. Liu, and J. Berger 1998. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12:640–653.
  • Wang, L., C. Mizzen, C. Ying, R. Candau, N. Barlev, J. Brownell, C. D. Allis, and J. Berger 1997. Histone acetyltransferase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation. Mol. Cell. Biol. 17:519–527.
  • Widlund, H. R., H. Cao, S. Simonsson, E. Magnusson, T. Simonsson, P. E. Nielsen, J. D. Kahn, D. M. Crothers, and J. Kubista 1997. Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267:807–817.
  • Winston, F., and J. Carlson 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8:387–391.
  • Wolffe, A. P. 1994. Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem. Sci. 19:240–244.
  • Workman, J. L., and J. Roeder 1987. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51:613–622.
  • Wu, C. 1980. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286:854–860.
  • Wu, C., Y. C. Wong, and J. Elgin 1979. The chromatin structure of specific genes. II. Disruption of chromatin structure during gene activity. Cell 16:807–814.
  • Yang, X. J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.