36
Views
37
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Regulated Formation of Extrachromosomal Circular DNA Molecules during Development in Xenopus laevis

, &
Pages 6682-6689 | Received 19 Feb 1999, Accepted 21 Jun 1999, Published online: 28 Mar 2023

REFERENCES

  • Ackerman, E. J. 1983. Molecular cloning and sequencing of OAX DNA: an abundant gene family transcribed and activated in Xenopus oocytes. EMBO J. 2:1417–1422.
  • Blow, J. J., and J. Laskey 1986. Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47:577–587.
  • Bogenhagen, D. F., S. Sakonju, and J. Brown 1980. A control region in the center of the 5S RNA gene directs specific initiation of transcription. II. The 3′ border of the region. Cell 19:27–35.
  • Boveri, T. 1887. Ueber Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anat. Anz. 2:688–693.
  • Brack, C., M. Hirama, R. Lenhard-Schuller, and J. Tonegawa 1978. A complete immunoglobulin gene is created by somatic recombination. Cell 15:1–14.
  • Brewer, B. J., and J. Fangman 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471.
  • Brown, D. D., and J. Dawid 1968. Specific gene amplification in oocytes. Oocyte nuclei contain extrachromosomal replicas of the genes for ribosomal RNA. Science 160:272–280.
  • Busby, S. J., and J. Reeder 1982. Fate of amplified nucleoli in Xenopus laevis embryos. Dev. Biol. 91:458–467.
  • Carroll, D., and J. Brown 1976. Adjacent repeating units of Xenopus laevis 5S DNA can be heterogeneous in length. Cell 7:477–486.
  • Carroll, D., and J. Brown 1976. Repeating units of Xenopus laevis oocyte-type 5S DNA are heterogeneous in length. Cell 7:467–475.
  • Chambers, J. C., S. Watanabe, and J. Taylor 1982. Dissection of a replication origin of Xenopus DNA. Proc. Natl. Acad. Sci. USA 79:5572–5576.
  • Cohen, S., and J. Lavi 1996. Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol. Cell. Biol. 16:2002–2014.
  • Cohen, S., and M. Mechali. Unpublished data.
  • Cohen, S., A. Regev, and J. Lavi 1997. Small polydispersed circular DNA (spcDNA) in human cells: association with genomic instability. Oncogene 14:977–985.
  • Coue, M., S. E. Kearsey, and J. Mechali 1996. Chromatin binding, nuclear localization and phosphorylation of Xenopus cdc21 are cell-cycle dependent and associated with the control of initiation of DNA replication. EMBO J. 15:1085–1097.
  • Dunon-Bluteau, D., A. Cordonnier, and J. Brun 1987. DNA synthesis in a mitochondrial lysate of Xenopus laevis oocytes. H strand replication in vitro. J. Mol. Biol. 197:175–185.
  • Fujimoto, S., and J. Yamagishi 1987. Isolation of an excision product of T-cell receptor alpha-chain gene rearrangements. Nature 327:242–243 (Erratum, 327:439.)
  • Gaubatz, J. W. 1990. Extrachromosomal circular DNAs and genomic sequence plasticity in eukaryotic cells. Mutat. Res. 237:271–292.
  • Goto, Y., S. Kubota, and J. Kohno 1998. Highly repetitive DNA sequences that are restricted to the germ line in the hagfish Eptatretus cirrhatus: a mosaic of eliminated elements. Chromosoma 107:17–32.
  • Gurdon, J. B. 1986. Nuclear transplantation in eggs and oocytes. J. Cell Sci. Suppl. 4:287–318.
  • Gurdon, J. B., and J. Wickens 1983. The use of Xenopus oocytes for the expression of cloned genes. Methods Enzymol. 101:370–386.
  • Hensey, C., and J. Gautier 1997. A developmental timer that regulates apoptosis at the onset of gastrulation. Mech. Dev. 69:183–195.
  • Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26:365–369.
  • Hourcade, D., D. Dressler, and J. Wolfson 1973. The amplification of ribosomal RNA genes involves a rolling circle intermediate. Proc. Natl. Acad. Sci. USA 70:2926–2930.
  • Hyrien, O., C. Maric, and J. Mechali 1995. Transition in specification of embryonic metazoan DNA replication origins. Science 270:994–997.
  • Hyrien, O., and J. Mechali 1993. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J. 12:4511–4520.
  • Kiyama, R., H. Matsui, and J. Oishi 1986. A repetitive DNA family (Sau3A family) in human chromosomes: extrachromosomal DNA and DNA polymorphism. Proc. Natl. Acad. Sci. USA 83:4665–4669.
  • Kiyama, R., H. Matsui, K. Okumura, and J. Oishi 1987. A group of repetitive human DNA families that is characterized by extrachromosomal oligomers and restriction-fragment length polymorphism. J. Mol. Biol. 193:591–597.
  • Kubota, S., T. Ishibashi, and J. Kohno 1997. A germline restricted, highly repetitive DNA sequence in Paramyxine atami: an interspecifically conserved, but somatically eliminated, element. Mol. Gen. Genet. 256:252–256.
  • Kunisada, T., H. Yamagishi, Z. Ogita, T. Kirakawa, and J. Mitsui 1985. Appearance of extrachromosomal circular DNAs during in vivo and in vitro ageing of mammalian cells. Mech. Ageing Dev. 29:89–99.
  • Lam, B. S., and J. Carroll 1983. Tandemly repeated DNA sequences from Xenopus laevis. I. Studies on sequence organization and variation in satellite 1 DNA (741 base-pair repeat). J. Mol. Biol. 165:567–585.
  • Lehman, C. W., M. Clemens, D. K. Worthylake, J. K. Trautman, and J. Carroll 1993. Homologous and illegitimate recombination in developing Xenopus oocytes and eggs. Mol. Cell. Biol. 13:6897–6906.
  • Lin, F. L., K. Sperle, and J. Sternberg 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4:1020–1034.
  • Lohka, M. J., and J. Masui 1983. Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220:719–721.
  • Lund, E., and J. Dahlberg 1992. Control of 4-8S RNA transcription at the midblastula transition in Xenopus laevis embryos. Genes Dev. 6:1097–1106.
  • Matsuoka, M., K. Yoshida, T. Maeda, S. Usuda, and J. Sakano 1990. Switch circular DNA formed in cytokine-treated mouse splenocytes: evidence for intramolecular DNA deletion in immunoglobulin class switching. Cell 62:135–142.
  • Meyerhof, W., B. Tappeser, E. Korge, and J. Knochel 1983. Satellite DNA from Xenopus laevis: comparative analysis of 745 and 1037 base pair Hind III tandem repeats. Nucleic Acids Res. 11:6997–7009.
  • Moritz, K. B., and J. Roth 1976. Complexity of germline and somatic DNA in Ascaris. Nature 259:55–57.
  • Motejlek, K., D. Schindler, G. Assum, and J. Krone 1993. Increased amount and contour length distribution of small polydisperse circular DNA (spcDNA) in Fanconi anemia. Mutat. Res. 293:205–214.
  • Muller, F., V. Bernard, and J. Tobler 1996. Chromatin diminution in nematodes. Bioessays 18:133–138.
  • Murray, A. 1991. Cell cycle extracts. Methods Cell Biol. 36:581–605.
  • Okazaki, K., D. D. Davis, and J. Sakano 1987. T cell receptor beta gene sequences in the circular DNA of thymocyte nuclei: direct evidence for intramolecular DNA deletion in V-D-J joining. Cell 49:477–485.
  • Plasterk, R. H. 1992. Genetic switches: mechanism and function. Trends Genet. 8:403–406.
  • Pont, G., F. Degroote, and J. Picard 1987. Some extrachromosomal circular DNAs from Drosophila embryos are homologous to tandemly repeated genes. J. Mol. Biol. 195:447–451.
  • Pont-Kingdon, G., R. J. Dawson, and J. Carroll 1993. Intermediates in extrachromosomal homologous recombination in Xenopus laevis oocytes: characterization by electron microscopy. EMBO J. 12:23–34.
  • Prioleau, M. N., J. Huet, A. Sentenac, and J. Mechali 1994. Competition between chromatin and transcription complex assembly regulates gene expression during early development. Cell 77:439–449.
  • Reeder, R. H. 1990. rRNA synthesis in the nucleolus. Trends Genet. 6:390–395.
  • Rochaix, J. D., A. Bird, and J. Barkken 1974. Ribosomal RNA gene amplification by rolling circles. J. Mol. Biol. 87:473–487.
  • Sible, J. C., J. A. Anderson, A. L. Lewellyn, and J. Maller 1997. Zygotic transcription is required to block a maternal program of apoptosis in Xenopus embryos. Dev. Biol. 189:335–346.
  • Sinclair, D. A., and J. Guarente 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042.
  • Stack, J. H., and J. Newport 1997. Developmentally regulated activation of apoptosis early in Xenopus gastrulation results in cyclin A degradation during interphase of the cell cycle. Development 124:3185–3195.
  • Stanfield, S., and J. Helinski 1976. Small circular DNA in Drosophila melanogaster. Cell 9:333–345.
  • Sunnerhagen, P., R. M. Sjoberg, and J. Bjursell 1989. Increase of extrachromosomal circular DNA in mouse 3T6 cells on perturbation of DNA synthesis: implications for gene amplification. Somatic Cell Mol. Genet. 15:61–70.
  • Tlsty, T. D., A. Briot, A. Gualberto, I. Hall, S. Hess, M. Hixon, D. Kuppuswamy, S. Romanov, M. Sage, and J. White 1995. Genomic instability and cancer. Mutat. Res. 337:1–7.
  • Vogt, P. 1990. Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved “chromatin folding code.” Hum. Genet. 84:301–336.
  • von Schwedler, U., H. M. Jack, and J. Wabl 1990. Circular DNA is a product of the immunoglobulin class switch rearrangement. Nature 345:452–456.
  • Wahl, G. M. 1989. The importance of circular DNA in mammalian gene amplification. Cancer Res. 49:1333–1340.
  • Wellauer, P. K., R. H. Reeder, I. B. Dawid, and J. Brown 1976. Arrangement of length heterogeneity in repeating units of amplified and chromosomal ribosomal DNA from Xenopus laevis. J. Mol. Biol. 105:487–505.
  • Yamagishi, H., T. Kunisada, Y. Iwakura, Y. Nishimune, Y. Ogiso, and J. Matsushiro 1983. Emergence of the extrachromosomal circular DNA complexes as one of the earliest signals of cellular differentiation in the early development of mouse embryo. Dev. Growth Differ. 25:563–569.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.