15
Views
11
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Acidic Domain and First Immunoglobulin-Like Loop of Fibroblast Growth Factor Receptor 2 Modulate Downstream Signaling through Glycosaminoglycan Modification

, , &
Pages 6754-6764 | Received 23 Feb 1999, Accepted 23 Jun 1999, Published online: 28 Mar 2023

REFERENCES

  • Baird, A. 1994. Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Curr. Opin. Neurobiol. 4:78–86.
  • Bottaro, D. P., J. S. Rubin, D. Ron, P. W. Finch, C. Florio, and J. Aaronson 1990. Characterization of the receptor for keratinocyte growth factor: evidence for multiple fibroblast growth factor receptors. J. Biol. Chem. 265:12767–12770.
  • Champion-Arnaud, P., C. Ronsin, E. Gilbert, M. C. Gesnel, E. Houssaint, and J. Breanthnach 1991. Multiple mRNAs code for proteins related to the BEK fibroblast growth factor receptor. Oncogene 6:979–987.
  • Chao, M. V. 1992. Growth factor signaling: where is the specificity? Cell 68:995–997.
  • Curran, T., M. B. Gordon, K. L. Rubino, and J. Sambucetti 1987. Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro. Oncogene 2:79–84.
  • Damon, D. H., R. R. Lobb, P. A. D’Amore, and J. Wagner 1989. Heparin potentiates the action of acidic fibroblast growth factor by prolonging its biological half-life. J. Cell. Physiol. 138:221–226.
  • Danielson, P. E., S. Forss-Petter, M. A. Brow, L. Calavetta, J. Douglass, R. J. Milner, and J. Sutcliffe 1988. p1B15: a cDNA clone of the rat mRNA encoding cyclophilin. DNA 7:261–267.
  • Esko, J. D. 1991. Genetic analysis of proteoglycan structure, function and metabolism. Curr. Opin. Cell Biol. 3:805–816.
  • Folkman, J., and J. Klagsbrun 1987. Angiogenic factors. Science 235:442–447.
  • Gospodarowicz, D., and J. Cheng 1986. Heparin protects basic and acidic FGF from inactivation. J. Cell. Physiol. 128:475–484.
  • Hattori, Y., H. Odagiri, H. Nakatani, K. Miyagawa, K. Naito, H. Sakamoto, O. Katoh, T. Yoshida, T. Sugimura, and J. Terada 1990. K-sam, an amplified gene in stomach cancer, is a member of the heparin-binding growth factor receptor genes. Proc. Natl. Acad. Sci. USA 87:5983–5987.
  • Hill, C. S., J. Wynne, and J. Treisman 1995. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170.
  • Johnson, D. E., and J. Williams 1993. Structural and functional diversity in the FGF receptor multigene family. Adv. Cancer Res. 60:1–41.
  • Keegan, K., D. E. Johnson, L. T. Williams, and J. Hayman 1991. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR3. Proc. Natl. Acad. Sci. USA 88:1095–1099.
  • Klagsbrun, M., and J. Baird 1991. A dual receptor system is required for basic fibroblast growth factor activity. Cell 67:229–231.
  • Kokenyesi, R., and J. Bernfield 1994. Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J. Biol. Chem. 269:12304–12309.
  • Kouhara, H., Y. R. Hadari, T. Spivak-Kroizman, J. Schilling, D. Bar-Sagi, I. Lax, and J. Schlessinger 1997. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89:693–702.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Lobb, R. R. 1988. Thrombin inactivates acidic fibroblast growth factor but not basic fibroblast growth factor. Biochemistry 27:2572–2578.
  • Lorenzi, M. V., P. Castagnino, Q. Chen, M. Chedid, and J. Miki 1997. Ligand-independent activation of fibroblast growth factor-2 by carboxy terminal alterations. Oncogene 15:817–826.
  • Lorenzi, M. V., Y. Horii, R. Yamanaka, K. Sakaguchi, and J. Miki 1996. FRAG1, a gene that potently activates fibroblast growth factor receptor by C-terminal fusion through chromosomal rearrangement. Proc. Natl. Acad. Sci. USA 93:8956–8961.
  • Marshall, C. J. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.
  • Michieli, P., W. Li, M. V. Lorenzi, T. Miki, R. Zakut, D. Givol, and J. Pierce 1996. Inhibition of oncogene-mediated transformation by ectopic expression of p21waf1 in NIH3T3 cells. Oncogene 12:775–784.
  • Miki, T., D. P. Bottaro, T. P. Fleming, C. L. Smith, W. H. Burgess, A. M.-L. Chan, and J. Aaronson 1992. Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc. Natl. Acad. Sci. USA 89:246–250.
  • Miki, T., T. P. Fleming, D. P. Bottaro, J. S. Rubin, D. Ron, and J. Aaronson 1991. Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 251:72–75.
  • Moscatelli, D. 1988. Metabolism of receptor-bound and matrix-bound basic fibroblast growth factor by bovine capillary endothelial cells. J. Cell Biol. 107:753–759.
  • Munson, P. J., D. Rodbard 1984. Computerized analysis of ligand binding data: basic principles and recent development, p. 117–145. In D. Rodbard, G. Forti (ed.), Computers in endocrinology. Raven Press, New York, N.Y.
  • Ornitz, D. M., J. Xu, J. S. Colvin, D. G. McEwen, C. A. MacArthur, F. Coulier, G. Gao, and J. Goldfarb 1996. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271:15292–15297.
  • Pantoliano, M. W., R. A. Horlick, B. A. Springer, D. E. Van Dyk, T. Tobery, D. R. Wetmore, J. D. Lear, A. T. Nahapetian, J. D. Bradley, and J. Sisk 1994. Multivalent ligand-receptor binding interactions in the fibroblast growth factor system produce a cooperative growth factor and heparin mechanism for receptor dimerization. Biochemistry 33:10229–10248.
  • Rosengart, T. K., W. V. Johnson, R. Friesel, R. Clark, and J. Maciag 1988. Heparin protects heparin-binding growth factor-1 from proteolytic inactivation in vitro. Biochem. Biophys. Res. Commun. 152:432–440.
  • Rubin, J. S., H. Osada, P. W. Finch, W. G. Taylor, S. Rudikoff, and J. Aaronson 1989. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc. Natl. Acad. Sci. USA 86:802–806.
  • Sakaguchi, K. 1992. Acidic fibroblast growth factor autocrine system as a mediator of calcium-regulated parathyroid cell growth. J. Biol. Chem. 267:24554–24562.
  • Saksela, O., D. Moscatelli, A. Sommer, and J. Rifkin 1988. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol. 107:743–751.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schreiber, A. B., J. Kenney, W. J. Kowalski, R. Friesel, T. Mehlman, and J. Maciag 1985. Interaction of endothelial cell growth factor with heparin: characterization by receptor and antibody recognition. Proc. Natl. Acad. Sci. USA 82:6138–6142.
  • Shworak, N. W., M. Shirakawa, R. C. Mulligan, and J. Rosenberg 1994. Characterization of ryudocan glycosaminoglycan acceptor sites. J. Biol. Chem. 269:21204–21214.
  • Smallwood, P. M., I. Munoz-Sanjuan, P. Tong, J. P. Macke, S. H. C. Hendry, D. J. Gilbert, N. G. Copeland, N. A. Jenkins, and J. Nathans 1996. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc. Natl. Acad. Sci. USA 93:9850–9857.
  • Sommer, A., and J. Rifkin 1989. Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J. Cell. Physiol. 138:215–220.
  • Spivak-Kroizman, T., M. A. Lemmon, I. Dikic, J. E. Ladbury, D. Pinchasi, J. Huang, M. Jaye, G. Crumley, J. Schlessinger, and J. Lax 1994. Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation, and cell proliferation. Cell 79:1015–1024.
  • Szebenyi, G., and J. Fallon 1999. Fibroblast growth factors as multifunctional signaling factors. Int. Rev. Cytol. 185:45–106.
  • Takagi, Y., S. Shrivastav, T. Miki, and J. Sakaguchi 1994. Molecular cloning and expression of the acidic fibroblast growth factor (aFGF) receptors of a rat parathyroid cell line (PT-r): change of extracellular calcium concentration induces an apparent translocation of the aFGF receptors specifically in the parathyroid cells. J. Biol. Chem. 269:23743–23749.
  • Thornton, S. C., S. N. Mueller, and J. Levine 1983. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science 222:623–625.
  • Tripathi, R. C., N. S. Borisuth, and J. Tripathi 1992. Detection, quantification, and significance of basic fibroblast growth factor in the aqueous humor of man, cat, dog and pig. Exp. Eye Res. 54:447–454.
  • Vigny, M., M. P. Ollier-Hartmann, M. Lavigne, N. Fayein, J. C. Jeanny, M. Laurent, and J. Courtois 1988. Specific binding of basic fibroblast growth factor to basement membrane-like structures and to purified heparan sulfate proteoglycan of the EHS tumor. J. Cell. Physiol. 137:321–328.
  • Vlodavsky, I., J. Folkman, R. Sullivan, R. Fridman, R. Ishai-Michaeli, J. Sasse, and J. Klagsbrun 1987. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. USA 84:2292–2296.
  • Wang, F., M. Kan, G. Yan, J. Xu, and J. McKeehan 1995. Alternately spliced NH2-terminal immunoglobulin-like loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1. J. Biol. Chem. 270:10231–10235.
  • Yamasaki, M., A. Miyake, S. Tagashira, and J. Itoh 1996. Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J. Biol. Chem. 271:15918–15921.
  • Yan, G., G. McBride, and J. McKeehan 1993. Exon skipping causes alteration of the COOH-terminus and deletion of the phospholipase C gamma1 interaction site in the FGF receptor 2 kinase in prostate epithelial cells. Biochem. Biophys. Res. Commun. 194:512–518.
  • Yanagishita, M., and J. Hascall 1992. Cell surface heparan sulfate proteoglycans. J. Biol. Chem. 267:9451–9454.
  • Yayon, A., M. Klagsbrun, J. D. Esko, P. Leder, and J. Ornitz 1991. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848.
  • Zhang, L., G. David, and J. Esko 1995. Repetitive ser-gly sequences enhance heparan sulfate assembly in proteoglycans. J. Biol. Chem. 270:27127–27135.
  • Zhang, L., and J. Esko 1994. Amino acid determinants that drive heparan sulfate assembly in a proteoglycan. J. Biol. Chem. 269:19295–19299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.