83
Views
144
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Erf2, a Novel Gene Product That Affects the Localization and Palmitoylation of Ras2 in Saccharomyces cerevisiae

, , &
Pages 6775-6787 | Received 15 Jun 1999, Accepted 08 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Bano, M. C., C. S. Jackson, and J. Magee 1998. Pseudo-enzymatic S-acylation of a myristoylated Yes protein tyrosine kinase peptide in vitro may reflect non-enzymatic S-acylation in vivo. Biochem J. 330:723–731.
  • Bender, A., and J. Pringle 1991. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:1295–1305.
  • Berger, M., and J. Schmidt 1984. Cell-free fatty acid acylation of Semliki forest viral polypeptides with microsomal membranes from eucaryotic cells. J. Biol. Chem. 259:7245–7252.
  • Berkower, C., D. Loayza, and J. Michaelis 1994. Metabolic instability and constitutive endocytosis of STE6, the a-factor transporter of Saccharomyces cerevisiae. Mol. Cell. Biol. 5:1185–1198.
  • Berthiaume, L., and J. Resh 1995. Biochemical characterization of a palmitoyl acyltransferase activity that palmitoylates myristoylated proteins. J. Biol. Chem. 270:22399–22405.
  • Bhattacharya, S., L. Chen, J. R. Broach, and J. Powers 1995. Ras membrane targeting is essential for glucose signaling but not for viability in yeast. Proc. Natl. Acad. Sci. USA 92:2984–2988.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and J. Fink 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175.
  • Bohm, S., D. Frishman, and J. Mewes 1997. Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res. 25:2464–2469.
  • Boyartchuk, V. L., M. N. Ashby, and J. Rine 1997. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 275:1796–1800.
  • Breviario, D., A. Hinnebusch, J. Cannon, K. Tatchell, and J. Dhar 1986. Carbon source regulation of RAS1 expression in Saccharomyces cerevisiae and the phenotypes of ras2 cells. Proc. Natl. Acad. Sci. USA 83:4152–4156.
  • Breviario, D., A. G. Hinnebusch, and J. Dhar 1988. Multiple regulatory mechanisms control the expression of the RAS1 and RAS2 genes of Saccharomyces cerevisiae. EMBO J. 7:1805–1813.
  • Broach, J. R., and J. Deschenes 1990. The function of RAS genes in Saccharomyces cerevisiae. Adv. Cancer Res. 54:79–140.
  • Broek, D., N. Samiy, O. Fasano, A. Fujiyama, F. Tamanoi, J. Northup, and J. Wigler 1985. Differential activation of yeast adenylate cyclase by wild-type and mutant RAS proteins. Cell 41:763–769.
  • Cadwallader, K. A., H. Paterson, S. G. Macdonald, and J. Hancock 1994. N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization. Mol. Cell. Biol. 14:4722–4730.
  • Clarke, S. 1992. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu. Rev. Biochem. 61:355–386.
  • Clarke, S., J. P. Vogel, R. J. Deschenes, and J. Stock 1988. Posttranslational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferases. Proc. Natl. Acad. Sci. USA 85:4643–4647.
  • Colombo, S., P. Ma, L. Cauwenberg, J. Winderickx, M. Crauwels, A. Teunissen, D. Nauwelaers, J. H. de Winde, M. F. Gorwa, D. Colavizza, and J. Thevelein 1998. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signaling in the yeast Saccharomyces cerevisiae. EMBO J. 17:3326–3341.
  • Dai, Q., E. Choy, V. Chiu, J. Romano, S. R. Slivka, S. A. Steitz, S. Michaelis, and J. Philips 1998. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 273:15030–15034.
  • Das, A. K., B. Dasgupta, R. Bhattacharya, and J. Basu 1997. Purification and biochemical characterization of a protein-palmitoyl acyltransferase from human erythrocytes. J. Biol. Chem. 272:11021–11025.
  • Der, C. J., and J. Cox 1991. Isoprenoid modification and plasma membrane association: critical factors for ras oncogenicity. Cancer Cells 3:331–340.
  • Deschenes, R. J., M. D. Resh, and J. Broach 1990. Acylation and prenylation of proteins. Curr. Opin. Cell Biol. 2:1108–1113.
  • Deschenes, R. J., J. B. Stimmel, S. Clarke, J. Stock, and J. Broach 1989. RAS2 protein of Saccharomyces cerevisiae is methyl-esterified at its carboxyl terminus. J. Biol. Chem. 264:11865–11873.
  • Duncan, J. A., and J. Gilman 1996. Autoacylation of G protein alpha subunits. J. Biol. Chem. 271:23594–23600.
  • Epstein, W. W., D. Lever, L. M. Leining, E. Bruenger, and J. Rilling 1991. Quantitation of prenylcysteines by a selective cleavage reaction. Proc. Natl. Acad. Sci. USA 88:9668–9670.
  • Gimeno, C. J., and J. Fink 1994. Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol. Cell. Biol. 14:2100–2112.
  • Givan, S. A., G. F. Sprague Jr.. 1997. The ankyrin repeat-containing protein Akr1p is required for the endocytosis of yeast pheromone receptors. Mol. Biol. Cell 8:1317–1327.
  • Haarer, B. Personal communication.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and J. Tzagoloff 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Horazdovsky, B. F., and J. Emr 1993. The VPS16 gene product associates with a sedimentable protein complex and is essential for vacuolar protein sorting in yeast. J. Biol. Chem. 268:4953–4962.
  • Hurwitz, N., M. Segal, I. Marbach, and J. Levitzki 1995. Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus. Proc. Natl. Acad. Sci. USA 92:11009–11013.
  • Ito, H., Y. Fukada, K. Murata, and J. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jung, V., L. Chen, S. L. Hofmann, M. Wigler, and J. Powers 1995. Mutations in the SHR5 gene of Saccharomyces cerevisiae suppress Ras function and block membrane attachment and palmitoylation of Ras proteins. Mol. Cell. Biol. 15:1333–1342.
  • Kao, L. R., J. Peterson, R. Ji, L. Bender, and J. Bender 1996. Interactions between the ankyrin repeat-containing protein Akr1p and the pheromone response pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:168–178.
  • Kazanietz, M. G., X. R. Bustelo, M. Barbacid, W. Kolch, H. Mischak, G. Wong, G. R. Pettit, J. D. Bruns, and J. Blumberg 1994. Zinc finger domains and phorbol ester pharmacophore. Analysis of binding to mutated form of protein kinase C zeta and the vav and c-raf proto-oncogene products. J. Biol. Chem. 269:11590–11594.
  • Kohl, N. E., R. E. Diehl, M. D. Schaber, E. Rands, D. D. Soderman, B. He, S. L. Moores, D. L. Pompliano, S. Ferro-Novick, S. Powers, K. A. Thomas, and J. Gibbs 1991. Structural homology among mammalian and Saccharomyces cerevisiae isoprenyl-protein transferases. J. Biol. Chem. 266:18884–18888.
  • Kubler, E., H. U. Mosch, S. Rupp, and J. Lisanti 1997. Gpa2p, a G-protein alpha-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism. J. Biol. Chem. 272:20321–20323.
  • Kuchler, K., and J. Thorner 1992. Secretion of peptides and proteins lacking hydrophobic signal sequences: the role of adenosine triphosphate driven membrane translocators. Endocrine Rev. 13:499–514.
  • Liu, L., T. Dudler, and J. Gelb 1996. Purification of a protein palmitoyltransferase that acts on H-Ras protein and on a C-terminal N-Ras peptide. J. Biol. Chem. 271:23269–23276.
  • Lorenz, M. C., and J. Heitman 1997. Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J. 16:7008–7018.
  • Manne, V., D. Roberts, A. Tobin, E. O’Rourke, M. De Virgilio, C. Meyers, N. Ahmed, B. Kurz, M. Resh, H.-F. Kung, and J. Barbacid 1990. Identification and preliminary characterization of protein-cysteine farnesyltransferase. Proc. Natl. Acad. Sci. USA 87:7541–7545.
  • McGrath, J. P., and J. Varshavsky 1989. The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein. Nature 340:400–404.
  • McKiernan, C. J., P. F. Stabila, and J. Macara 1996. Role of the Rab3A-binding domain in targeting of rabphilin-3A to vesicle membranes of PC12 cells. Mol. Cell. Biol. 16:4985–4995.
  • Mesilaty-Gross, S., A. Reich, B. Motro, and J. Wides 1999. The Drosophila STAM gene homolog is in a tight gene cluster, and its expression correlates to that of the adjacent gene ial. Gene 231:173–186.
  • Mitchell, D. A., L. Farh, T. K. Marshall, and J. Deschenes 1994. A polybasic domain allows nonprenylated Ras proteins to function in Saccharomyces cerevisiae. J. Biol. Chem. 269:21540–21546.
  • Mitchell, D. A., T. K. Marshall, and J. Deschenes 1993. Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–722.
  • Morishita, T., H. Mitsuzawa, M. Nakafuku, S. Nakamura, S. Hattori, and J. Anraku 1995. Requirement of Saccharomyces cerevisiae Ras for completion of mitosis. Science 270:1213–1215.
  • Mott, H. R., J. W. Carpenter, S. Zhong, S. Ghosh, R. M. Bell, and J. Campbell 1996. The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site. Proc. Natl. Acad. Sci. USA 93:8312–8317.
  • Mumberg, D., R. Müller, and J. Funk 1994. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22:5767–5768.
  • Mumby, S. M. 1997. Reversible palmitoylation of signaling proteins. Curr. Opin. Cell Biol. 9:148–154.
  • Nakafuku, M., T. Obara, K. Kaibuchi, I. Miyajima, A. Miyajima, H. Itoh, S. Nakamura, K. Arai, K. Matsumoto, and J. Kaziro 1988. Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc. Natl. Acad. Sci. USA 85:1374–1378.
  • Panek, H. R., J. D. Stepp, H. M. Engle, K. M. Marks, P. K. Tan, S. K. Lemmon, and J. Robinson 1997. Suppressors of YCK-encoded yeast casein kinase 1 deficiency define the four subunits of a novel clathrin AP-like complex. EMBO J. 16:4194–4204.
  • Pryciak, P. M., and J. Hartwell 1996. AKR1 encodes a candidate effector of the G beta gamma complex in the Saccharomyces cerevisiae pheromone response pathway and contributes to control of both cell shape and signal transduction. Mol. Cell. Biol. 16:2614–2626.
  • Putilina, T., P. Wong, and J. Gentleman 1999. The DHHC domain: a new highly conserved cysteine-rich motif. Mol. Cell. Biochem. 195:219–226.
  • Reiss, Y., M. C. Seabra, S. A. Armstrong, C. A. Slaughter, J. L. Goldstein, and J. Brown 1991. Nonidentical subunits of p21H-ras farnesyltransferase: peptide binding and farnesyl pyrophosphate carrier functions. J. Biol. Chem. 266:10672–10677.
  • Romano, J. D., W. K. Schmidt, and J. Michaelis 1998. The Saccharomyces cerevisiae prenylcysteine carboxyl methyltransferase Ste14p is in the endoplasmic reticulum membrane. Mol. Cell. Biol. 9:2231–2247.
  • Rose, M. D., L. M. Misra, and J. Vogel 1989. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57:1211–1221.
  • Sapperstein, S., C. Berkower, and J. Michaelis 1994. Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxyl methyltransferase, and demonstration of its essential role in a-factor export. Mol. Cell. Biol. 14:1438–1449.
  • Schafer, W. R., and J. Rine 1992. Protein prenylation: genes, enzymes, targets, and functions. Annu. Rev. Genet. 26:209–237.
  • Schmidt, W. K., A. Tam, K. Fujimura-Kamada, and J. Michaelis 1998. Endoplasmic reticulum membrane localization of rce1p and ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc. Natl. Acad. Sci. USA 95:11175–11180.
  • Sherman, F., G. R. Fink, J. B. Hicks 1986. Laboratory course manual: methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Smith, A., M. P. Ward, and J. Garrett 1998. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 17:3556–3564.
  • Thissen, J. A., and J. Casey 1993. Microsomal membranes contain a high affinity binding site for prenylated peptides. J. Biol. Chem. 268:13780–13783.
  • Thissen, J. A., J. M. Gross, K. Subramanian, T. Meyer, and J. Casey 1997. Prenylation-dependent association of Ki-Ras with microtubules—evidence for a role in subcellular trafficking. J. Biol. Chem. 272:30362–30370.
  • Toda, T., I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, S. Cameron, J. Broach, K. Matsumoto, and J. Wigler 1985. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36.
  • Vavvas, D., X. Li, J. Avruch, and J. Zhang 1998. Identification of Nore1 as a potential Ras effector. J. Biol. Chem. 273:5439–5442.
  • Veit, M., and J. Schmidt 1998. Membrane targeting via protein palmitoylation. Methods Mol. Biol. 88:227–239.
  • Vojtek, A. B., S. M. Hollenberg, and J. Cooper 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214.
  • Wang, Y. X., H. Zhao, T. M. Harding, D. S. Gomes de Mesquita, C. L. Woldringh, D. J. Klionsky, A. L. Munn, and J. Weisman 1996. Multiple classes of yeast mutants are defective in vacuole partitioning yet target vacuole proteins correctly. Mol. Biol. Cell 7:1375–1389.
  • Willumsen, B. M., A. D. Cox, P. A. Solski, C. J. Der, and J. Buss 1996. Novel determinants of H-Ras plasma membrane localization and transformation. Oncogene 13:1901–1909.
  • Xue, Y., M. Batlle, and J. Hirsch 1998. GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Galpha subunit and functions in a Ras-independent pathway. EMBO J. 17:1996–2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.