72
Views
84
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The Essential Functions of Human Rad51 Are Independent of ATP Hydrolysis

, , , , , & show all
Pages 6891-6897 | Received 24 Mar 1999, Accepted 23 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Aboussekhra, A., R. Chanet, A. Adjiri, and J. Fabre 1992. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12:3224–3234.
  • Basile, G., M. Aker, and J. Mortimer 1992. Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51. Mol. Cell. Biol. 12:3235–3246.
  • Baumann, P., F. E. Benson, N. Hajibagheri, and J. West 1997. Purification of human Rad51 protein by selective spermidine precipitation. Mutat. Res. 384:65–72.
  • Baumann, P., F. E. Benson, and J. West 1996. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87:757–766.
  • Baumann, P., and J. West 1998. Role of the human Rad51 protein in homologous recombination and double-stranded break repair. Trends Biochem. Sci. 23:247–251.
  • Bedale, W. A., and J. Cox 1996. Evidence for the coupling of ATP hydrolysis to the final (extension) phase of recA protein-mediated DNA strand exchange. J. Biol. Chem. 271:5725–5732.
  • Benson, F. E., A. Stasiak, and J. West 1994. Purification and characterization of the human Rad51 protein, an analogue of E. coli recA. EMBO J. 13:5764–5771.
  • Bezzubova, O., A. Silbergleit, Y. Yamaguchi-Iwai, S. Takeda, and J. Buerstedde 1997. Reduced X-ray resistance and homologous recombination frequencies in a RAD54−/− mutant of the chicken DT40 cell line. Cell 89:185–193.
  • Bishop, D. K., U. Ear, A. Bhattacharyya, C. Calderone, M. Beckett, R. R. Weichselbaum, and J. Shinohara 1998. Xrcc3 is required for assembly of Rad51 complexes in vivo. J. Biol. Chem. 273:21482–21488.
  • Brendel, V., L. Brocchieri, S. J. Sandler, A. J. Clark, and J. Karlin 1997. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol. 44:528–541.
  • Chanet, R., M. Heude, A. Adjiri, L. Maloisel, and J. Fabre 1996. Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol. Cell. Biol. 16:4782–4789.
  • Cox, M. M. 1994. Why does RecA protein hydrolyse ATP? Trends Biochem. Sci. 19:217–222.
  • Donovan, J. W., G. T. Milne, and J. Weaver 1994. Homotypic and heterotypic protein associations control Rad51 function in double-strand break repair. Genes Dev. 8:2552–2562.
  • Gupta, R. C., L. R. Bazemore, E. I. Golub, and J. Radding 1997. Activities of human recombination protein Rad51. Proc. Natl. Acad. Sci. USA 94:463–468.
  • Gupta, R. C., E. Folta-Stogniew, and J. Radding 1999. Human Rad51 protein can form homologous joints in the absence of net strand exchange. J. Biol. Chem. 274:1248–1256.
  • Haaf, T., E. I. Golub, G. Reddy, C. M. Radding, and J. Ward 1995. Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc. Natl. Acad. Sci. USA 92:2298–2302.
  • Haaf, T., E. Raderschall, G. Reddy, D. C. Ward, C. M. Radding, and J. Golub 1999. Sequestration of mammalian Rad51-recombination protein into micronuclei. J. Cell Biol. 144:11–20.
  • Konola, J. T., K. M. Logan, and J. Knight 1994. Functional characterization of residues in the P-loop motif of the RecA protein ATP-binding site. J. Mol. Biol. 237:20–34.
  • Kowalczykowski, S. C., and J. Eggleston 1994. Homologous pairing and DNA strand-exchange proteins. Annu. Rev. Biochem. 63:991–1043.
  • Kowalczykowski, S. C., and J. Krupp 1995. DNA strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transfer in protein-promoted nucleic acid transactions. Proc. Natl. Acad. Sci. USA 92:3478–3482.
  • Kurosaki, T., M. Takata, Y. Yamanashi, T. Inazu, T. Taniguchi, T. Yamamoto, and J. Yamamura 1994. Syk activation by the Src-family tyrosine kinase in the B-cell receptor signaling. J. Exp. Med. 179:1725–1729.
  • Lim, D.-S., and J. Hasty 1996. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16:7133–7143.
  • Liu, N., J. E. Lamerdin, R. S. Tebbs, D. Schild, J. D. Tucker, M. R. Shen, K. W. Brookman, M. J. Siciliano, C. A. Walter, W. Fan, L. S. Narayana, Z. Q. Zhou, A. W. Adamson, K. J. Sorensen, D. J. Chen, N. J. Jones, and J. Thompson 1998. Xrcc2 and Xrcc3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol. Cell 1:783–793.
  • Logan, K. M., and J. Knight 1993. Mutagenesis of the P-loop motif in the ATP-binding site of the RecA protein from Escherichia coli. J. Mol. Biol. 232:1048–1059.
  • MacFarland, K. J., Q. Shan, R. B. Inman, and J. Cox 1997. RecA as a motor protein. J. Biol. Chem. 272:17675–17685.
  • Menetski, J. P., D. G. Bear, and J. Kowalczykowski 1990. Stable DNA heteroduplex formation catalyzed by the Escherichia coli recA protein in the absence of ATP hydrolysis. Proc. Natl. Acad. Sci. USA 87:21–25.
  • Menetski, J. P., and J. Kowalczykowski 1985. Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J. Mol. Biol. 181:281–295.
  • Michel, B., S. D. Ehrlich, and J. Uzest 1997. DNA double-strand breaks caused by replication arrest. EMBO J. 16:430–438.
  • Milne, G. T., and J. Weaver 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7:1755–1765.
  • Namsaraev, E. A., and J. Berg 1998. Binding of Rad51p to DNA. J. Biol. Chem. 273:6177–6182.
  • Ogawa, T., X. Yu, A. Shinohara, and J. Egelman 1993. Similarity of the yeast Rad51 filament to the bacterial recA filament. Science 259:1896–1899.
  • Rehrauer, W. M., and J. Kowalczykowski 1993. Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli RecA protein attenuates NTP hydrolysis but not joint molecule formation. J. Biol. Chem. 268:1292–1297.
  • Roca, A. I., and J. Cox 1990. The RecA protein: structure and function. Crit. Rev. Biochem. Mol. Biol. 25:415–456.
  • Seigneur, M., V. Bidnenko, S. D. Ehrlich, and J. Michel 1998. RuvAB acts at arrested replication forks. Cell 95:419–430.
  • Shan, Q., M. M. Cox, and J. Inman 1996. DNA strand exchange promoted by RecA K72R. J. Biol. Chem. 271:5712–5724.
  • Shinohara, A., H. Ogawa, Y. Matsuda, N. Ushio, K. Ikeo, and J. Ogawa 1993. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat. Genet. 4:239–243.
  • Shinohara, A., H. Ogawa, and J. Ogawa 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470.
  • Shinohara, A., and J. Ogawa 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391:404–407.
  • Sonoda, E., M. S. Sasaki, J.-M. Buerstedde, O. Bezzubova, A. Shinohara, H. Ogawa, M. Takata, Y. Yamaguchi-Iwai, and J. Takeda 1998. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J. 17:598–608.
  • Sonoda, E., M. S. Sasaki, C. Morrison, Y. Yamaguchi-Iwai, M. Takata, and J. Takeda 1999. Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol. Cell. Biol. 19:5166–5169.
  • Story, R. M., D. K. Bishop, N. Kleckner, and J. Steitz 1993. Structural relationship of bacterial recA proteins to recombination proteins from bacteriophage T4 and yeast. Science 259:1892–1896.
  • Story, R. M., and J. Steitz 1992. Structure of the recA-protein-ADP complex. Nature 355:374–376.
  • Story, R. M., I. T. Weber, and J. Steitz 1992. The structure of the E. coli recA protein monomer and polymer. Nature 355:318–325.
  • Sung, P. 1994. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast Rad51 protein. Science 265:1241–1243.
  • Sung, P., and J. Robberson 1995. DNA strand exchange mediated by a Rad51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453–461.
  • Sung, P., and J. Stratton 1996. Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. J. Biol. Chem. 271:27983–27986.
  • Takata, M., H. Sabe, A. Hata, T. Inazu, Y. Homma, T. Nukada, H. Yamamura, and J. Kurosaki 1994. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 13:1341–1349.
  • Takata, M., M. S. Sasaki, E. Sonoda, C. Morrison, M. Hashimoto, H. Utsumi, Y. Yamaguchi-Iwai, A. Shinohara, and J. Takeda 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17:5497–5508.
  • Tashiro, S., N. Kotomura, A. Shinohara, K. Tanaka, K. Ueda, and J. Kamada 1996. S phase specific formation of the human Rad51 protein nuclear foci in lymphocytes. Oncogene 12:2165–2170.
  • Tsuzuki, T., Y. Fujii, K. Sakumi, Y. Tominaga, K. Nakao, M. Sekiguchi, A. Matsushiro, Y. Yoshimura, and J. Morita 1996. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. USA 93:6236–6240.
  • Walker, J. E., M. Saraste, M. J. Runswick, and J. Gay 1982. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–951.
  • Yamaguchi-Iwai, Y., E. Sonoda, J.-M. Buerstedde, O. Bezzubova, C. Morrison, M. Takata, A. Shinohara, and J. Takeda 1998. Homologous recombination, but not DNA repair, is reduced in vertebrate cells deficient in RAD52. Mol. Cell. Biol. 18:6430–6435.
  • Zou, H., and J. Rothstein 1997. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90:87–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.