70
Views
142
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Rsp5 Ubiquitin-Protein Ligase Mediates DNA Damage-Induced Degradation of the Large Subunit of RNA Polymerase II in Saccharomyces cerevisiae

, , , &
Pages 6972-6979 | Received 26 Apr 1999, Accepted 01 Jul 1999, Published online: 28 Mar 2023

REFERENCES

  • Beaudenon, S. L., and J. M. Huibregtse. Unpublished results.
  • Bedford, M. T., D. C. Chan, and J. Leder 1997. FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands. EMBO J. 16:2376–2383.
  • Bedford, M. T., R. Reed, and J. Leder 1998. WW domain-mediated interactions reveal a spliceosome-associated protein that binds a third class of proline-rich motif: the proline glycine and methionine-rich motif. Proc. Natl. Acad. Sci. USA 95:10602–10607.
  • Bregman, D. B., R. Halaban, A. J. van Gool, K. A. Henning, E. C. Friedberg, and J. Warren 1996. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad. Sci. USA 93:11586–11590.
  • Chen, H. I., and J. Sudol 1995. The WW domain of YES-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. USA 92:7819–7823.
  • de la Fuente, N., A. M. Maldonado, and J. Portillo 1997. Glucose activation of the yeast plasma membrane H+-ATPase requires the ubiquitin-proteasome proteolytic pathway. FEBS Lett. 411:308–312.
  • DeMarini, D. J., F. R. Papa, S. Swaminathan, D. Ursic, T. P. Rasmussen, M. R. Culbertson, and J. Hochstrasser 1995. The yeast SEN3 gene encodes a regulatory subunit of the 26S proteasome complex required for ubiquitin-dependent protein degradation in vivo. Mol. Cell. Biol. 15:6311–6321.
  • Ermekova, K. S., N. Zambrano, H. Linn, G. Minopoli, F. Gertler, T. Russo, and J. Sudol 1997. The WW domain of neural protein FE65 interacts with proline-rich motifs in Mena, the mammalian homolog of Drosophila enabled. J. Biol. Chem. 272:32869–32877.
  • Freedman, D. A., and J. Levine 1998. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell. Biol. 18:7288–7293.
  • Galan, J. M., V. Moreau, B. Andre, C. Volland, and J. Haguenauer-Tsapis 1996. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J. Biol. Chem. 271:10946–10952.
  • Hanawalt, P. C. 1994. Transcription-coupled repair and human disease. Science 266:1957–1958.
  • Harlow, E., D. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hatakeyama, S., J. P. Jensen, and J. Weissman 1997. Subcellular localization and ubiquitin-conjugating enzyme (E2) interactions of mammalian HECT family ubiquitin protein ligases. J. Biol. Chem. 272:15085–15092.
  • Hein, C., J.-Y. Springael, C. Volland, R. Haguenauer-Tsapis, and J. André 1995. NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol. 18:77–87.
  • Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30:405–439.
  • Hoeijmakers, J. H. 1993. Nucleotide excision repair. II. From yeast to mammals. Trends Genet. 9:211–217.
  • Huibregtse, J. M., C. G. Maki, P. M. Howley 1997. Ubiquitination of the p53 tumor suppressor, p. 323–343. In J.-M. Peters, J. R. Harris, D. Finley (ed.), Ubiquitin and the biology of the cell. Plenum, New York, N.Y.
  • Huibregtse, J. M., M. Scheffner, S. Beaudenon, and J. Howley 1995. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 92:2563–2567.
  • Huibregtse, J. M., J. C. Yang, and J. Beaudenon 1997. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 94:3656–3661.
  • Imhof, M. O., and J. McDonnell 1996. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol. Cell. Biol. 16:2594–2605.
  • Johnson, P. R., R. Swanson, L. Rakhilina, and J. Hochstrasser 1998. Degradation signal masking by heterodimerization of MATalpha2 and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell 94:217–227.
  • Linn, H., K. S. Ermekova, S. Rentschler, A. B. Sparks, B. K. Kay, and J. Sudol 1997. Using molecular repertoires to identify high-affinity peptide ligands of the WW domain of human and mouse YAP. Biol. Chem. 378:531–537.
  • Lu, P.-J., X. Z. Zhou, M. Shen, and J. Lu 1999. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283:1325–1328.
  • Medintz, I., H. Jiang, and J. Michels 1998. The role of ubiquitin conjugation in glucose-induced proteolysis of Saccharomyces maltose permease. J. Biol. Chem. 273:34454–34462.
  • Mellon, I., G. Spivak, and J. Hanawalt 1987. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51:241–249.
  • Myers, L. C., C. M. Gustafsson, D. A. Bushnell, M. Lui, H. Erdjument-Bromage, P. Tempst, and J. Kornberg 1998. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev. 12:45–54.
  • Nguyen, J. T., C. W. Turck, F. E. Cohen, R. N. Zuckermann, and J. Lim 1998. Exploiting the basis of proline recognition by SH3 and WW domains: design of N-substituted inhibitors. Science 282:2088–2092.
  • Nguyen, V. T., F. Giannoni, M.-F. Dubois, S.-J. Seo, M. Vigneron, C. Kedinger, and J. Bensaude 1996. In vivo degradation of RNA polymerase II largest subunit triggered by α-amanitin. Nucleic Acids Res. 24:2924–2929.
  • Peters, J.-M. 1998. SCF and APC: the yin and yang of cell cycle regulated proteolysis. Curr. Opin. Cell Biol. 10:759–768.
  • Prakash, S., P. Sung, and J. Prakash 1993. DNA repair genes and proteins of Saccharomyces cerevisiae. Annu. Rev. Genet. 27:33–70.
  • Ratner, J. N., B. Balasubramanian, J. Corden, S. L. Warren, and J. Bregman 1998. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273:5184–5189.
  • Rizo, J., and J. Sudhof 1998. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273:15879–15882.
  • Saleh, A., M. Collart, J. A. Martens, J. Genereaux, S. Allard, J. Cote, and J. Brandl 1998. TOM1p, a yeast hect-domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes. J. Mol. Biol. 282:933–946.
  • Scheffner, M., U. Nuber, and J. Huibregtse 1995. Protein ubiquitination involving an E1-E2-E3 enzyme thioester cascade. Nature 373:81–83.
  • Scheffner, M., S. Smith, S. Jentsch 1997. The ubiquitin-conjugation system, p. 65–98. In J.-M. Peters, J. R. Harris, D. Finley (ed.), Ubiquitin and the biology of the cell. Plenum, New York, N.Y.
  • Selby, C. P., and J. Sancar 1995. Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties. J. Biol. Chem. 270:4882–4889.
  • Silver, P. A., A. Chiang, and J. Sadler 1988. Mutations that alter both localization and production of a yeast nuclear protein. Genes Dev. 2:707–717.
  • Sterner, D. E., P. A. Grant, S. M. Roberts, L. J. Duggan, R. Belotserkovskaya, L. A. Pacella, F. Winston, J. L. Workman, and J. Berger 1999. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19:86–98.
  • Tomoda, K., Y. Kubota, and J. Kato 1999. Degradation of the cyclin-dependent-kinase inhibitor p27kip1 is instigated by Jab1. Nature 398:160–165.
  • Wang, G., J. Yang, and J. Huibregtse 1999. Functional domains of the Rsp5 ubiquitin-protein ligase. Mol. Cell. Biol. 19:342–352.
  • Wang, G., and J. M. Huibregtse. Unpublished results.
  • Winston, F., et al. Unpublished results.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.