33
Views
45
CrossRef citations to date
0
Altmetric
Gene Expression

A Novel Genetic Screen for snRNP Assembly Factors in Yeast Identifies a Conserved Protein, Sad1p, Also Required for Pre-mRNA Splicing

, &
Pages 2008-2020 | Received 12 Jun 1998, Accepted 23 Nov 1998, Published online: 27 Mar 2023

REFERENCES

  • Anthony, J. G., E. M. Weidenhammer, and J. Woolford 1997. The yeast Prp3 protein is a U4/U6 snRNP protein necessary for integrity of the U4/U6 snRNP and the U4/U6.U5 tri-snRNP. RNA 3:1143–1152.
  • Banroques, J., and J. Abelson 1989. PRP4: a protein of the yeast U4/U6 small nuclear ribonucleoprotein particle. Mol. Cell. Biol. 9:3710–3719.
  • Berges, T., E. Petfalski, D. Tollervey, and J. Hurt 1994. Synthetic lethality with fibrillarin identifies NOP77p, a nucleolar protein required for pre-rRNA processing and modification. EMBO J. 13:3136–3148.
  • Blanton, S., A. Srinivasan, and J. Rymond 1992. PRP38 encodes a yeast protein required for pre-mRNA splicing and maintenance of stable U6 small nuclear RNA levels. Mol. Cell. Biol. 12:3939–3947.
  • Bordonne, R., and J. Tarassov 1996. The yeast SME1 gene encodes the homologue of the human E core protein. Gene 176:111–117.
  • Brow, D. A., and J. Guthrie 1988. Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature 334:213–218.
  • Brow, D. A., and J. Guthrie 1990. Transcription of a yeast U6 snRNA gene requires a polymerase III promoter element in a novel position. Genes Dev. 4:1345–1356.
  • Chanfreau, G., S. A. Elela, M. J. Ares, and J. Guthrie 1997. Alternative 3′-end processing of U5 snRNA by RNase III. Genes Dev. 11:2741–2751.
  • Cheng, S. C., and J. Abelson 1987. Spliceosome assembly in yeast. Genes Dev. 1:1014–1027.
  • Cheng, Y., J. Dahlberg, and J. Lund 1995. Diverse effects of the guanine nucleotide exchange factor RCC1 on RNA transport. Science 267:1807–1810.
  • Cooper, M., L. H. Johnston, and J. Beggs 1995. Identification and characterisation of Uss1p (Sdb23p): a novel U6 snRNA-associated protein with significant similarity to core proteins of small nuclear ribonucleoproteins. EMBO J. 14:2066–2075.
  • Doye, V., R. Wepf, and J. Hurt 1994. A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution. EMBO J. 13:6062–6075.
  • Fischer, U., Q. Liu, and J. Dreyfuss 1997. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90:1023–1029.
  • Fornerod, M., M. Ohno, M. Yoshida, and I. W. Mattaj. 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 1051–1060.
  • Frank, D., B. Patterson, and J. Guthrie 1992. Synthetic lethal mutations suggest interactions between U5 small nuclear RNA and four proteins required for the second step of splicing. Mol. Cell. Biol. 12:5197–5205.
  • Ghetti, A., M. Company, and J. Abelson 1995. Specificity of Prp24 binding to RNA: a role for Prp24 in the dynamic interaction of U4 and U6 snRNAs. RNA 1:132–145.
  • Görlich, D., R. Kraft, S. Kostka, F. Vogel, E. Hartmann, R. A. Laskey, I. W. Mattaj, and J. Izaurralde 1996. Importin provides a link between nuclear protein import and U snRNA export. Cell 87:21–32.
  • Grandi, P., V. Doye, and J. Hurt 1993. Purification of NSP1 reveals complex formation with ‘GLFG’ nucleoporins and a novel nuclear pore protein NIC96. EMBO J. 12:3061–3071.
  • Gu, Z., R. P. Moerschell, F. Sherman, and J. Goldfarb 1992. NIP1, a gene required for nuclear transport in yeast. Proc. Natl. Acad. Sci. USA 89:10355–10359.
  • Guthrie, C., and J. Patterson 1988. Spliceosomal snRNAs. Annu. Rev. Genet. 22:387–419.
  • Hackl, W., U. Fischer, and J. Lührmann 1994. A 69-kD protein that associates reversibly with the Sm core domain of several spliceosomal snRNP species. J. Cell Biol. 124:261–272.
  • Henriquez, R., G. Blobel, and J. Aris 1990. Isolation and sequencing of NOP1. A yeast gene encoding a nucleolar protein homologous to a human autoimmune antigen. J. Biol. Chem. 265:2209–2215.
  • Hu, J., D. Xu, K. Schappert, Y. Xu, and J. Friesen 1995. Mutational analysis of Saccharomyces cerevisiae U4 small nuclear RNA identifies functionally important domains. Mol. Cell. Biol. 15:1274–1285.
  • Izaurralde, E., J. Lewis, C. Gamberi, A. Jarmolowski, C. McGuigan, and J. Mattaj 1995. A cap binding protein complexes mediates U snRNA nuclear export. Nature 376:709–712.
  • Jarmolowski, A., W. C. Boelens, E. Izaurralde, and J. Mattaj 1994. Nuclear export of different classes of RNA is mediated by specific factors. J. Cell Biol. 124:627–635.
  • Kambach, C., and J. Mattaj 1992. Intracellular distribution of the U1A protein depends on active transport and nuclear binding to U1 snRNA. J. Cell Biol. 118:11–21.
  • Kambach, C., and J. Mattaj 1994. Nuclear transport of the U2 snRNP-specific U2B" protein is mediated by both direct and indirect signalling mechanisms. J. Cell Sci. 107:1807–1816.
  • Kandels-Lewis, S., and J. Séraphin 1993. Role of U6 snRNA in 5′ splice site selection. Science 262:2035–2039.
  • Legrain, P., and J. Choulika 1990. The molecular characterization of PRP6 and PRP9 yeast genes reveals a new cysteine/histidine motif common to several splicing factors. EMBO J. 9:2775–2781.
  • Legrain, P., and J. Rosbash 1989. Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 57:573–583.
  • Liu, Q., U. Fischer, F. Wang, and J. Dreyfuss 1997. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90:1013–1021.
  • Lührmann, R., B. Kastner, and J. Bach 1990. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. Biochem. Biophys. Acta 1087:265–292.
  • Lund, E., and J. Dahlberg 1992. 2′-, 3′-cyclic phosphates and non-templated nucleotides at the 3′ end of spliceosomal U6 small nuclear RNAs. Science 255:327.
  • Luukkonen, B. G. M. Personal communication.
  • Lygerou, Z., C. Conesa, P. Lesage, R. Swanson, A. Ruet, M. Carlon, A. Sentenac, and J. Séraphin 1994. The yeast BDF1 gene encodes a transcription factor involved in the expression of a broad class of genes including snRNAs. Nucleic Acids Res. 22:5332–5340.
  • Lygerou, Z., P. Mitchell, E. Petfalski, B. Séraphin, and J. Tollervey 1994. The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev. 8:1423–1433.
  • Maddock, J. R., J. Roy, and J. Woolford 1996. Six novel genes necessary for pre-mRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res. 24:1037–1044.
  • Madhani, H. D., and J. Guthrie 1994. Dynamic RNA-RNA interactions in the spliceosome. Annu. Rev. Genet. 28:1–26.
  • Marshallsay, C., and J. Lührmann 1994. In vitro nuclear import of snRNPs: cytosolic factors mediate m3G-cap dependence of U1 and U2 snRNP transport. EMBO J. 13:222–231.
  • Mattaj, I., W. Boelens, E. Izaurralde, A. Jarmolowski, and J. Kambach 1993. Nucleocytoplasmic transport and snRNP assembly. Mol. Biol. Rep. 18:79–83.
  • Mattaj, I. W., D. Tollervey, and J. Séraphin 1993. Small nuclear RNAs in messenger RNA and ribosomal RNA processing. FASEB J. 7:47–53.
  • Moenne, A., S. Camier, G. Anderson, F. Margottin, J. Beggs, and J. Sentenac 1990. The U6 gene of Saccharomyces cerevisiae is transcribed by RNA polymerase C (III) in vivo and in vitro. EMBO J. 9:271–277.
  • Murakami, Y., M. Naitou, H. Hagiwara, T. Shibata, M. Ozawa, S. Sasanuma, M. Sasanuma, Y. Tsuchiya, E. Soeda, and J. Yokoyama 1995. Analysis of the nucleotide sequence of chromosome VI from Saccharomyces cerevisiae. Nat. Genet. 10:261–268.
  • Nehrbass, U., E. Fabre, S. Dihlmann, W. Herth, and J. Hurt 1993. Analysis of nucleo-cytoplasmic transport in a thermosensitive mutant of nuclear pore protein NSP1. Eur. J. Cell. Biol. 62:1–12.
  • Neubauer, G., A. Gottschalk, P. Fabrizio, B. Seraphin, R. Luhrmann, and J. Mann 1997. Identification of the proteins of the yeast U1 small nuclear ribonucleoprotein complex by mass spectrometry. Proc. Natl. Acad. Sci. USA 94:385–390.
  • Neuman, D. V. H., and J. Dahlberg 1990. Nucleocytoplasmic transport and processing of small nuclear RNA. Mol. Cell. Biol. 10:3365–3375.
  • Newman, A. 1994. Analysis of pre-mRNA splicing in yeast RNA processing: a practical approach In S. J. Higgins, B. D. Hames (ed.), I:179–195 IRL Press, Oxford, United Kingdom.
  • Noble, S. M., and J. Guthrie 1996. Transcriptional pulse-chase analysis reveals a role for a novel snRNP-associated protein in the manufacture of spliceosomal snRNPs. EMBO J. 15:4368–4379.
  • Palacios, I., K. Weis, C. Klebe, I. W. Mattaj, and J. Dingwall 1996. RAN/TC4 mutants identify a common requirement for snRNP and protein import. J. Cell Biol. 133:485–494.
  • Plessel, G., U. Fischer, and J. Lührmann 1994. m3G cap hypermethylation of U1 small nuclear ribonucleoprotein (snRNP) in vitro: evidence that the U1 small nuclear RNA-(guanosine-N2)-methyltransferase is a non-snRNP cytoplasmic protein that requires a binding site on the Sm core domain. Mol. Cell. Biol. 14:4160–4172.
  • Raghunathan, P. L., and J. Guthrie 1998. A spliceosomal recycling factor that reanneals U4 and U6 small nuclear ribonucleoprotein particles. Science 279:857–860.
  • Roy, J., B. Zheng, B. Rymond, and J. Woolford 1995. Structurally related but functionally distinct yeast Sm D core small nuclear ribonucleoprotein particle proteins. Mol. Cell. Biol. 15:445–455.
  • Rymond, B. C. 1993. Convergent transcripts of the yeast PRP38-SMD1 locus encode two essential splicing factors, including the D1 core polypeptide of small nuclear ribonucleoprotein particles. Proc. Natl. Acad. Sci. USA 90:848–852.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schwer, B., and J. Shuman 1996. Conditional inactivation of mRNA capping enzyme affects yeast pre-mRNA splicing in vivo. RNA 2:574–583.
  • Séraphin, B. 1995. Sm and Sm-like proteins belong to a large family: identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs. EMBO J. 14:2089–2098.
  • Séraphin, B., L. Kretzner, and J. Rosbash 1988. A U1 snRNA: pre mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5′ cleavage site. EMBO J. 7:2533–2538.
  • Séraphin, B., and J. Rosbash 1989. Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosomal assembly and splicing. Cell 59:349–358.
  • Shannon, K. W., and J. Guthrie 1991. Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs. Genes Dev. 5:773–785.
  • Shimba, S., and J. Reddy 1994. Purification of human U6 small nuclear RNA capping enzyme. Evidence for a common capping enzyme for gamma-monomethyl-capped small RNAs. J. Biol. Chem. 269:12419–12423.
  • Stutz, F., X. C. Liao, and J. Rosbash 1993. U1 small nuclear ribonucleoprotein particle-protein interactions are revealed in Saccharomyces cerevisiae by in vivo competition assays. Mol. Cell. Biol. 13:2126–2133.
  • Tang, J., N. Abovich, M. L. Fleming, B. Seraphin, and J. Rosbash 1997. Identification and characterization of a yeast homolog of U1 snRNP-specific protein C. EMBO J. 16:4082–4091.
  • Tarn, W. Y., C. H. Hsu, K. T. Huang, H. R. Chen, H. Y. Kao, K. R. Lee, and J. Cheng 1994. Functional association of essential splicing factor(s) with PRP19 in a protein complex. EMBO J. 13:2421–2431.
  • Tarn, W. Y., K. R. Lee, and J. Cheng 1993. The yeast PRP19 protein is not tightly associated with small nuclear RNAs but appears to associate with the spliceosome after binding of U2 to the pre-mRNA and prior to formation of the functional spliceosome. Mol. Cell. Biol. 13:1883–1891.
  • Teem, J. L., and J. Rosbash 1983. Expression of a β-galactosidase gene containing the ribosomal protein 51 intron is sensitive to the rna2 mutation of yeast. Proc. Natl. Acad. Sci. USA 80:4403–4407.
  • Tollervey, D., H. Lehtonen, R. Jansen, H. Kern, and J. Hurt 1993. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443–457.
  • Vankan, P., C. McGuigan, and J. Mattaj 1990. Domains of U4 and U6 snRNAs required for snRNP assembly and splicing complementation in Xenopus oocytes. EMBO J. 9:3397–3404.
  • Vijayraghavan, U., M. Company, and J. Abelson 1989. Isolation and characterization of pre-mRNA splicing mutants of Saccharomyces cerevisiae. Genes Dev. 3:1206–1216.
  • Vijayraghavan, U., R. Parker, J. Tamm, Y. Iimura, J. Rossi, J. Abelson, and J. Guthrie 1986. Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J. 5:1683–1295.
  • Wersig, C., and J. Bindereif 1992. Reconstitution of functional mammalian U4 small nuclear ribonucleoprotein: Sm protein binding is not essential for splicing in vitro. Mol. Cell. Biol. 12:1460–1468.
  • Will, C., and J. Lührmann 1997. Protein functions in pre-mRNA splicing. Curr. Opin. Cell Biol. 9:320–328.
  • Will, C. L., S.-E. Behrens, and J. Lührmann 1993. Protein composition of mammalian spliceosomal snRNPs. Mol. Biol. Rep. 18:121–126.
  • Wise, J. A., D. Tollervey, D. Maloney, H. Swerdlow, E. J. Dunn, and J. Guthrie 1983. Yeast contains small nuclear RNAs encoded by single copy genes. Cell 35:743–751.
  • Xie, J., K. Beickman, E. Otte, and J. Rymond 1998. Progression through the spliceosome cycle requires Prp38p function for U4/U6 snRNA dissociation. EMBO J. 17:2938–2946.
  • Yang, H., M. L. Moss, E. Lund, and J. Dahlberg 1992. Nuclear processing of the 3′-terminal nucleotides of pre-U1 RNA in Xenopus. Mol. Cell. Biol. 12:1553–1560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.