15
Views
96
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Postnatal Growth Failure, Short Life Span, and Early Onset of Cellular Senescence and Subsequent Immortalization in Mice Lacking the Xeroderma Pigmentosum Group G Gene

, , , , , , , , , & show all
Pages 2366-2372 | Received 05 Oct 1998, Accepted 11 Dec 1998, Published online: 27 Mar 2023

REFERENCES

  • Aboussekhra, A., and J. Wood 1994. Repair of UV-damaged DNA by mammalian cells and Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 4:212–220.
  • Brookman, K. W., J. E. Lamerdin, M. P. Thelen, M. Hwang, J. T. Reardon, A. Sancar, Z.-Q. Zhou, C. A. Walter, C. N. Parris, and J. Thompson 1996. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs. Mol. Cell. Biol. 16:6553–6562.
  • Broughton, B. C., A. F. Thompson, S. A. Harcourt, W. Vermeulen, J. H. J. Hoeijmakers, E. Botta, M. Stefanini, M. D. King, C. A. Weber, and J. Cole 1995. Molecular and cellular analysis of the DNA repair defect in a patient with xeroderma pigmentosum complementation group D who has the clinical features of xeroderma pigmentosum and Cockayne syndrome. Am. J. Hum. Genet. 56:167–174.
  • Cleaver, J. E., K. H. Kraemer 1995. Xeroderma pigmentosum and Cockayne syndrome, p. 4393–4419. In C. R. Scriver, A. L. Beaudet, W. S. Sly, D. Valle (ed.), The metabolic basis of inherited disease. McGraw-Hill Press, New York, N.Y.
  • Cloud, K. G., B. Shen, G. F. Strniste, and J. Park 1995. XPG protein has a structure-specific endonuclease activity. Mutat. Res. 347:55–60.
  • Cooper, P. K., T. Nouspikel, S. G. Clarkson, and J. Leadon 1997. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Science 275:990–993.
  • de Boer, J., I. Donker, J. de Wit, J. H. J. Hoeijmakers, and J. Weeda 1998. Disruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in preimplantation lethality. Cancer Res. 58:89–94.
  • de Boer, J., J. De Wit, H. Van Steeg, R. J. W. Berg, H. Morreau, P. Visser, A. R. Lehmann, M. Duran, J. H. J. Hoeijmaders, and J. Weeda 1998. A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol. Cell 1:981–990.
  • Demple, B., and J. Harrison 1994. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63:915–943.
  • de Vries, A., C. T. van Oostrom, F. M. Hofhuis, P. M. Dortant, R. J. Berg, F. R. de Gruijl, P. W. Wester, C. F. van Kreijl, P. J. Capel, H. van Steeg, and J. Verbeek 1995. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377:169–173.
  • Drapkin, R., J. T. Reardon, A. Ansarl, J. C. Huang, L. Zawel, K. Ahn, A. Sancar, and J. Reinberg 1994. Dual role of TFIIH in DNA excision repair and transcription by RNA polymerase II. Nature 368:769–772.
  • Finlay, C. A., P. W. Hinds, T.-H. Tan, D. Eliyahu, M. Oren, and J. Levine 1988. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol. Cell. Biol. 8:531–539.
  • Friedberg, E. C., G. C. Walker, W. Siede 1995. DNA repair and mutagenesis, p. 655–658 ASM Press, Washington, D.C.
  • Friedberg, E. C. 1996. Cockayne syndrome—a primary defect in DNA repair, transcription, both or neither? Bioessays 18:731–738.
  • Gubbay, J., N. Vivian, A. Economou, D. Jackson, P. Goodfellow, and J. Lovell-Badge 1992. Inverted repeat structure of the Sry locus in mice. Proc. Natl. Acad. Sci. USA 89:7953–7957.
  • Hamel, B. C. J., A. Raams, A. R. Shuitema-Dijkstra, P. Simons, I. Van der Burgt, N. G. J. Jaspers, and J. Kieijer 1996. Xeroderma pigmentosum-Cockayne syndrome complex: a further case. J. Med. Genet. 33:607–610.
  • Hanawalt, P. C. 1994. Transcription-coupled repair and human disease. Science 266:1957–1958.
  • Harada, Y.-N., Y. Matsuda, N. Shiomi, and J. Shiomi 1995. Complementary DNA sequence and chromosomal localization of xpg, the mouse counterpart of human repair gene XPG/ERCC5. Genomics 28:59–65.
  • Harrington, J. J., and J. Lieber 1994. Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair. Genes Dev. 8:1344–1355.
  • Harvey, D. M., and J. Levine 1991. p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblast. Genes Dev. 5:2375–2385.
  • Henning, K. A., L. Li, N. Iyer, L. D. McDaniel, M. S. Reagan, R. Legerski, R. A. Schultz, M. Stefanini, A. R. Lehmann, L. V. Mayne, and J. Friedberg 1995. The Cockayne syndrome group A encodes a WD-repeat protein which interacts with CSB protein and a subunit of RNA pol II transcription factor IIH. Cell 82:555–564.
  • Kaul, S. C., R. Wadhwa, T. Sugihara, K. Obuchi, Y. Komatsu, and J. Mitsui 1994. Identification of genetic events involved in early steps of immortalization of mouse fibroblasts. Biochim. Biophys. Acta 1201:389–396.
  • Legerski, R., and J. Peterson 1992. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature 359:70–73.
  • Lehmann, A. R. 1995. Nucleotide excision repair and the link with transcription. Trends Biochem. Sci. 20:402–405.
  • Ludwig, D. L., J. S. Mudgett, M. S. Park, A. V. Perez-Castro, and J. MacInnes 1996. Molecular cloning and structural analysis of the functional mouse genomic XPG gene. Mamm. Genome 7:644–649.
  • Matsunaga, T., D. Mu, C. H. Park, J. T. Reardon, and J. Sancar 1995. Human DNA repair excision nuclease: analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC 1 antibodies. J. Biol. Chem. 270:20862–20869.
  • Matsunaga, T., C. H. Park, T. Bessho, D. Mu, and J. Sancar 1996. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J. Biol. Chem. 271:11047–11050.
  • Mizuno, T., T. Matsunaga, M. Ihara, and J. Nikaido 1991. Establishment of a monoclonal antibody recognizing cyclobutane-type thymine dimers in DNA: a comparative study with 64M1 antibody specific for (6-4) photoproducts. Mutat. Res. 254:175–184.
  • Moriwaki, S.-I., M. Stefanini, A. R. Lehmann, J. H. J. Hoeijmakers, J. H. Robbins, I. Rapin, E. Botta, B. Tanganelli, W. Vermeulen, B. C. Broughton, and J. Kraemer 1996. DNA repair and ultraviolet mutagenesis in cells from a new patient with xeroderma pigmentosum group G and Cockayne syndrome resemble xeroderma pigmentosum cells. J. Investig. Dermatol. 107:647–653.
  • Mu, D., C. H. Park, T. Matunaga, D. S. Hsu, J. T. Reardon, and J. Sancar 1995. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270:2415–2418.
  • Mu, D., D. S. Hsu, and J. Sancar 1996. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271:8285–8294.
  • Nakane, H., S. Takeuchi, S. Yuba, M. Saijo, Y. Nakatsu, H. Murai, Y. Nakatsuru, T. Ishikawa, S. Hirota, Y. Kitamura, Y. Kato, Y. Tsunoda, H. Miyauchi, T. Horio, T. Tokunaga, T. Matsunaga, O. Nikaido, Y. Nishimune, Y. Okada, and J. Tanaka 1995. High incidence of ultraviolet-B- or chemical-carcinogen-induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature 377:165–168.
  • Nance, M. A., and J. Berry 1992. Cockayne syndrome: review of 140 cases. Am. J. Med. Genet. 42:68–84.
  • Nouspikel, T., P. Lalle, S. A. Leadon, P. K. Cooper, and J. Clarkson 1997. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implication for a second XPG function. Proc. Natl. Acad. Sci. USA 94:3116–3121.
  • O’Donovan, A., A. A. Davis, J. G. Moggs, S. C. West, and J. Wood 1994. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371:432–435.
  • O’Donovan, A., D. Scherly, S. G. Clarkson, and J. Wood 1994. Isolation of active recombinant XPG protein, a human DNA repair endonuclease. J. Biol. Chem. 269:15965–15968.
  • Sancar, A. 1996. DNA excision repair. Annu. Rev. Biochem. 65:43–81.
  • Satoh, M. S., and J. Hanawalt 1997. Competent transcription initiation by RNA polymerase II in cell-free extracts from xeroderma pigmentosum groups B and D in an optimized RNA transcription assay. Biochim. Biophys. Acta 1354:241–251.
  • Scherly, D., T. Nouspikel, J. Corlet, C. Ucla, A. Bairoch, and J. Clarkson 1993. Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2. Nature 363:182–185.
  • Shaeffer, L., R. Roy, S. Humbert, V. Moncollin, W. Vermeulen, J. H. J. Hoijmakers, P. Chambon, and J. Egly 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63.
  • Shiomi, T., Y.-N. Harada, T. Saite, N. Shiomi, Y. Okuno, and J. Yamaizumi 1994. An ERCC5 gene with homology to yeast RAD2 is involved in group G xeroderma pigmentosum. Mutat. Res. 314:167–175.
  • Sijbers, A. M., W. L. De Laat, R. R. Ariza, M. Biggerstaff, Y.-F. Wei, J. G. Moggs, K. C. Carter, B. K. Shell, E. Evans, M. C. De Jong, S. Rademakers, J. De Rooij, N. G. J. Jaspers, J. H. J. Hoeijmakers, and J. Wood 1996. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86:811–822.
  • Tanaka, K., I. Satokata, Z. Ogita, T. Uchida, and J. Okada 1989. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum. Proc. Natl. Acad. Sci. USA 86:5512–5516.
  • Troelstra, C., A. van Gool, J. de Wit, W. Vermeulen, D. Bootsma, and J. Hoeijmakers 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71:939–953.
  • Van der Horst, G. T. J., H. van Steeg, R. J. W. Berg, A. J. van Gool, J. de Wit, G. Weeda, H. Morreau, R. B. Beems, C. F. van Kreijl, F. R. de Gruijl, D. Bootsma, and J. Hoeijmakers 1997. Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell 89:425–435.
  • Vermeulen, W., J. Jaeken, N. G. Jaspers, D. Bootsma, and J. Hoeijmakers 1993. Xeroderma pigmentosum complementation group G associated with Cockayne syndrome. Am. J. Hum. Genet. 53:185–192.
  • Vermeulen, W., R. J. Scott, S. Rodgers, H. J. Muller, J. Cole, C. F. Arlett, W. J. Kleijer, D. Bootsma, J. H. J. Hoeijmakers, and J. Weeda 1994. Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3. Am. J. Hum. Genet. 54:191–200.
  • Weber, C. A., E. P. Salazar, S. A. Stewart, and J. Thompson 1988. Molecular cloning and biological characterization of a human gene, ERCC2, that corrects the nucleotide excision repair defect in CHO UV5 cells. Mol. Cell. Biol. 8:1137–1146.
  • Weeda, G., R. C. A. van Ham, R. Masurel, A. Westerveld, H. Odijk, J. de Wit, D. Bootsma, A. J. van der Eb, and J. Hoeijmakers 1990. Molecular cloning and biological characterization of the human excision repair gene ERCC-3. Mol. Cell. Biol. 10:2570–2581.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.