12
Views
78
CrossRef citations to date
0
Altmetric
Gene Expression

Dominant Negative Murine Serum Response Factor: Alternative Splicing within the Activation Domain Inhibits Transactivation of Serum Response Factor Binding Targets

, , , &
Pages 4582-4591 | Received 30 Dec 1998, Accepted 09 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Annweiler, A., M. Muller-Immergluck, and J. Wirth 1992. Oct2 transactivation from a remote enhancer position requires a B-cell-restricted activity. Mol. Cell. Biol. 12:3107–3116.
  • Arsenian, S., B. Weinhold, M. Oelgeschlager, U. Ruther, and J. Nordheim 1998. Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J. 17:6289–6299.
  • Belaguli, N. S., L. A. Schildmeyer, and J. Schwartz 1997. Organization and myogenic restricted expression of the murine serum response factor gene. J. Biol. Chem. 272:18222–18231.
  • Belaguli, N. S., J. L. Sepulveda, V. Nigam, and R. J. Schwartz. Unpublished data.
  • Bickmore, W. A., K. Oghene, M. H. Little, A. Seawright, V. VanHeyningen, and J. Hastie 1992. Modulation of DNA binding specificity by alternative splicing of the Wilms tumor wt1 gene transcript. Science 257:235–238.
  • Chen, C.-Y., and J. Schwartz 1996. Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac α-actin gene transcription. Mol. Cell. Biol. 16:6372–6384.
  • Croissant, J. D., J. H. Kim, G. Eichele, L. Goering, J. Lough, R. Prywes, and J. Schwartz 1996. Avian serum response factor expression restricted primarily to muscle cell lineages is required for alpha-actin gene transcription. Dev. Biol. 177:250–264.
  • Das, G., and J. Herr 1993. Enhanced activation of the human histone H2B promoter by an Oct-1 variant generated by alternative splicing. J. Biol. Chem. 268:25026–25032.
  • Epstein, J. A., T. Glaser, J. Cai, L. Jepeal, D. S. Walton, and J. Mass 1994. Two independent and interactive DNA-binding subdomains of the Pax6 paired domain are regulated by alternative splicing. Genes Dev. 8:2022–2034.
  • Ernst, W. H., R. Janknecht, M. A. Cahill, and J. Nordheim 1995. Transcriptional repression mediated by the serum response factor. FEBS Lett. 357:45–49.
  • Foulkes, N. S., and J. Sassone-Corsi 1992. More is better: activators and repressors from the same gene. Cell 68:411–414.
  • Foulkes, N. S., B. Mellstrom, E. Benusiglio, and J. Sassone-Corsi 1992. Developmental switch of CREM function during spermatogenesis: from antagonist to activator. Nature 355:80–84.
  • Fujii, M., H. Tsuchiya, T. Chuhjo, T. Akizawa, and J. Seiki 1992. Interaction of HTLV-1 Tax1 with p67SRF causes the aberrant induction of cellular immediate early genes through CArG boxes. Genes Dev. 6:2066–2076.
  • Gadson, P. F. Jr., C. Rossignol, J. McCoy, and J. Rosenquist 1993. Expression of elastin, smooth muscle alpha-actin, and c-jun as a function of the embryonic lineage of vascular smooth muscle cells. In Vitro Cell Dev. Biol. Anim. 29A:773–781.
  • Gauthier-Rouviere, C., Q. Q. Cai, N. Lautredou, A. Fernandez, J. M. Blanchard, and J. Lamb 1993. Expression and purification of the DNA-binding domain of SRF: SRF-DM, a part of a DNA-binding protein which can act as a dominant negative mutant in vivo. Exp. Cell Res. 209:208–215.
  • Gauthier-Rouviere, C., M. Vandromme, D. Tuil, N. Lautredou, M. Morris, M. Soulez, A. Kahn, A. Fernandez, and J. Lamb 1996. Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts. Mol. Biol. Cell 7:719–729.
  • Gius, D., X. M. Cao, F. J. Rauscher, D. R. Cohen, T. Curran, and J. Sukhatme 1990. Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArG elements. Mol. Cell. Biol. 10:4243–4255.
  • Groisman, R., H. Masutani, M.-P. Leibovitch, P. Robin, I. Soudant, D. Trouche, and J. Harel-Bellan 1996. Physical interaction between the mitogen-responsive serum response factor and myogenic basic-helix-loop-helix proteins. J. Biol. Chem. 271:5258–5264.
  • Han, T.-H., and J. Prywes 1995. Regulatory role of MEF2D in serum induction of the c-jun promoter. Mol. Cell. Biol. 15:2907–2915.
  • Herrera, R. E., P. E. Shaw, and J. Nordheim 1989. Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature 340:68–70.
  • Hewitt, S. M., G. C. Fraizer, Y.-J. Wu, F. J. Rauscher III, and J. Saunders 1996. Differential function of Wilms’ tumor gene WT1 splice isoforms in transcriptional regulation. J. Biol. Chem. 271:8588–8592.
  • Johansen, F.-E., and J. Prywes 1993. Identification of transcriptional activation and inhibitory domains in serum response factor (SRF) by using GAL4-SRF constructs. Mol. Cell. Biol. 18:4640–4647.
  • Jollot, V., M. Demma, and J. Prywes 1995. Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor. Nature 373:632–635.
  • Kozmik, Z., R. Kurzbauer, P. Dorfler, and J. Busslinger 1993. Alternative splicing of Pax-8 gene transcripts is developmentally regulated and generates isoforms with different transactivation properties. Mol. Cell. Biol. 13:6024–6035.
  • Landerholm, T. E., X. R. Dong, J. Lu, N. S. Belaguli, R. J. Schwartz, and M. Majesky. A role for serum response factor in coronary smooth muscle differentiation from proepicardial cell. Development 126:2053–2062.
  • Lee, T.-C., Y. Shi, and J. Schwartz 1992. Displacement of BrdUrd-induced YY1 by serum response factor activates skeletal alpha-actin transcription in embryonic myoblasts. Proc. Natl. Acad. Sci. USA 89:9814–9818.
  • Leifer, D., D. Krainc, Y.-T. Yu, J. McDermott, R. E. Breitbart, J. Heng, R. L. Neve, B. Kosofsky, B. Nadal-Ginard, and J. Lipton 1992. MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex. Proc. Natl. Acad. Sci. USA 90:1546–1550.
  • Li, L., Z.-C. Liu, B. Mercer, P. Overbeek, and J. Olson 1997. Evidence for serum response factor-mediated regulatory networks governing SM22α transcription in smooth, skeletal, and cardiac muscle cells. Dev. Biol. 187:311–321.
  • Lillycrop, K. A., and J. Latchman 1992. Alternative splicing of the Oct-2 transcription factor is differentially regulated in B cells and neuronal cells and results in protein isoforms with opposite effects on the activity of octamer/TAATGARAT-containing promoters. J. Biol. Chem. 267:24960–24966.
  • Liu, S. H., J. T. Ma, A. Y. Yueh, S. P. Lees-Miller, C. W. Anderson, and J. Ng 1993. The carboxyl-terminal transactivation domain of human serum response factor contains DNA-activated protein kinase phosphorylation sites. J. Biol. Chem. 268:21147–21154.
  • Lopez, J. A. 1995. Developmental role of transcription factor isoforms generated by alternative splicing. Dev. Biol. 172:396–411.
  • Macneil, C., B. Ayres, A. C. Laverriere, and J. Burch 1997. Transcripts for functionally distinct isoforms of chicken GATA-5 are differentially expressed from alternative first exons. J. Biol. Chem. 272:8396–8401.
  • Martin, J. F., J. J. Schwarz, and J. Olson 1993. Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc. Natl. Acad. Sci. USA 90:5282–5286.
  • Martin, J. F., J. M. Miano, C. M. Hustad, N. G. Copeland, N. A. Jenkins, and J. Olson 1994. A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol. Cell. Biol. 14:1647–1656.
  • McDermott, J. C., M. C. Cordoso, Y.-T. Yu, V. Andres, D. Leifer, D. Krainc, S. A. Lipton, and J. Nadal-Ginard 1993. HMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol. Cell. Biol. 13:2564–2577.
  • Mohun, T. J., A. E. Chambers, N. Towers, and J. Taylor 1991. Expression of genes encoding the transcription factor SRF during early development of Xenopus laevis: identification of a CArG box-binding activity as SRF. EMBO J. 10:933–940.
  • Morris, A. E., B. Kloss, R. E. McChesney, C. Bancroft, and J. Chasin 1992. An alternatively spliced Pit-1 isoform altered in its ability to transactivate. Nucleic Acids Res. 20:1355–1361.
  • Morris, P. J., T. Theil, C. J. A. Ring, K. A. Lillycrop, T. Moroy, and J. Latchman 1994. The opposite and antagonistic effects of the closely related POU family transcription factors on the activity of a target promoter are dependent upon differences in the POU domain. Mol. Cell. Biol. 14:6907–6914.
  • Nornes, S., I. Mikkola, S. Krauss, M. Delghandi, M. Perander, and J. Johansen 1996. Zebrafish Pax9 encodes two proteins with distinct C-terminal transactivating domains of different potency negatively regulated by adjacent N-terminal sequences. J. Biol. Chem. 271:26914–26923.
  • Olson, E. N., M. Perry, and J. Schulz 1995. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev. Biol. 172:2–14.
  • Ornatsky, O. I., J. J. Andreucci, and J. McDermott 1997. A dominant-negative form of transcription factor MEF2 inhibits myogenesis. J. Biol. Chem. 272:33271–33278.
  • Owens, G. K. 1995. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev. 75:487–517.
  • Pellegrini, L., S. Tans, and J. Richmond 1995. Structure of serum response factor core bound to DNA. Nature 376:490–498.
  • Pollock, R., and J. Treisman 1991. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 5:2327–2341.
  • Reecy, J., N. S. Belaguli, R. J. Schwartz 1998. SRF/homeobox protein interactions, p. 273–290. In R. Harvey, N. Rosenthal (ed.), Heart development. Academic Press, San Diego, Calif.
  • Reichmann, J. L., and J. Meyerowitz 1997. MADS domain proteins in plant development J. Biol. Chem. 378:1079–1101.
  • Rivera, V. M., C. K. Miranti, R. P. Misra, D. D. Ginty, R.-H. Chen, J. Blenis, and J. Greenberg 1993. A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol. Cell. Biol. 13:6260–6273.
  • Ross, R. 1993. Atherosclerosis: a defence mechanism gone awry. Am. J. Pathol. 143:987–1002.
  • Ruzicka, D. L., and J. Schwartz 1988. Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. J. Cell Biol. 107:2575–2586.
  • Sartorelli, V., K. Webster, and J. Kedes 1990. Muscle-specific expression of the cardiac α-actin gene requires MyoD1, CArG-box binding factor, and SP1. Genes Dev. 4:1811–1822.
  • Schwarz-Sommer, Z., P. Huijser, W. Nacken, H. Seadler, and J. Sommer 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936.
  • Shore, P., and J. Sharrocks 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229:1–13.
  • Soulez, M., C. Gauthier-Rouviere, P. Chafey, D. Hentzen, M. Vandromme, N. Lautredou, N. Lamb, N. Kahn, and J. Tuil 1996. Growth and differentiation of C2 myogenic cells are dependent on serum response factor. Mol. Cell. Biol. 16:6065–6074.
  • Spencer, J. A., and J. Misra 1996. Expression of the serum response factor gene is regulated by serum response factor binding sites. J. Biol. Chem. 271:16535–16543.
  • Suzuki, E., K. M. Guo, M. Kolman, Y.-T. Yu, and J. Walsh 1995. Serum induction of MEF2/RSRF in vascular myocytes is mediated at the level of translation. Mol. Cell. Biol. 15:3415–3423.
  • Tanaka, T., K. Tanaka, S. Ogawa, M. Kurokawa, K. Mitani, J. Nishida, Y. Shibata, Y. Yazaki, and J. Hirai 1995. An acute myeloid leukemia gene, AML1, regulates hemopoietic myeloid cell differentiation and transcriptional activation antagonistically by two alternatively spliced forms. EMBO J. 14:341–350.
  • Topouzis, S., and J. Majesky 1996. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Dev. Biol. 178:430–445.
  • Treisman, R. 1995. Journey to the surface of the cell: Fos regulation and the SRE. EMBO J. 14:4905–4913.
  • Tsukamoto, K., Y. Nakamura, and J. Niikawa 1994. Isolation of two isoforms of the PAX3 gene transcripts and their tissue-specific alternative expression in human adult tissues. Hum. Genet. 93:270–274.
  • Vandromme, M., C. Gauthier-Rouviere, G. Carnac, N. Lamb, and J. Fernandez 1992. Serum response factor p67SRF is expressed and required during myogenic differentiation of both mouse C2 and rat L6 muscle cell lines. J. Cell Biol. 118:1489–1500.
  • Yin, J. C. P., J. S. Wallach, E. L. Wilder, J. Klingensmith, D. Dang, N. Perrimon, H. Zhou, T. Tully, and J. Quinn 1995. A Drosophila CREB/CREM homolog encodes multiple isoforms, including a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist. Mol. Cell. Biol. 15:5123–5130.
  • Yu, Y.-T., R. E. Breitbart, L. B. Smoot, Y. Lee, V. Mahdavi, and J. Nadal-Ginard 1992. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 6:1783–1798.
  • Zhu, H., A. L. Roy, R. G. Roeder, and J. Prywes 1991. Serum response factor affects preinitiation complex formation by TFIID in vitro. New Biol. 3:455–464.
  • Zhu, C., F.-E. Johansen, and J. Prywes 1997. Interaction of ATF6 and serum response factor. Mol. Cell. Biol. 17:4957–4966.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.