10
Views
62
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Target Specificities of Drosophila Enhancer of split Basic Helix-Loop-Helix Proteins

, &
Pages 4600-4610 | Received 21 Sep 1998, Accepted 07 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Alifragis, P., G. Poortinga, S. M. Parkhurst, and J. Delidakis 1997. A network of interacting transcriptional regulators involved in Drosophila neural fate specification revealed by the yeast two-hybrid system. Proc. Natl. Acad. Sci. USA 94:13099–13104.
  • Artavanis-Tsakonas, S., K. Matsuno, and J. Fortini 1995. Notch signalling. Science 268:225–232.
  • Bailey, A. M., and J. Posakony 1995. Suppressor of Hairless directly activates transcription of the Enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 9:2609–2622.
  • Barolo, S., and J. Levine 1997. Hairy mediates dominant repression in the Drosophila embryo. EMBO J. 16:2883–2891.
  • Blackwell, T. K., J. Huang, A. Ma, L. Kretzner, F. W. Alt, R. N. Eisenman, and J. Weintraub 1993. Binding of Myc proteins to canonical and noncanonical DNA sequences. Mol. Cell. Biol. 13:5216–5224.
  • Blackwell, T. K., L. Kretzner, E. M. Blackwood, R. N. Eisenman, and J. Weintraub 1990. Sequence-specific DNA binding by the c-Myc protein. Science 25:1149–1151.
  • Brand, A., and J. Perrimon 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415.
  • Cabrera, C. V., and J. Alonso 1991. Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. EMBO J. 10:2965–2973.
  • Cubas, P., J. F. de Celis, S. Campuzano, and J. Modolell 1991. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing discs. Genes Dev. 5:996–1008.
  • Dang, C. V., C. Dolde, M. L. Gillison, and J. Kato 1992. Discrimination between related DNA sites by a single amino acid residue of Myc-related basic-helix-loop-helix proteins. Proc. Natl. Acad. Sci. USA 89:599–602.
  • de Celis, J. F., S. Bray, and J. Garcia-Bellido 1997. Notch signalling regulates veinlet expression and establishes boundaries between veins and interveins in the Drosophila wing. Development 124:1919–1928.
  • de Celis, J. F., J. de Celis, P. Ligoxygakis, A. Preiss, C. Delidakis, and J. Bray 1996. Functional relationships between Notch, Su(H) and the bHLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activities during imaginal development. Development 122:2719–2728.
  • de la Pompa, J. L., A. Wakeham, K. M. Correia, E. Samper, S. Brown, R. J. Aguilera, T. Nakano, T. Honjo, T. W. mak, J. Rossant, and J. Conlon 1997. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124:1139–1148.
  • Delidakis, C., and J. Artavanis-Tsakonas 1992. The Enhancer of split [E(spl)] locus of Drosophila encodes seven independent helix-loop-helix proteins. Proc. Natl. Acad. Sci. USA 89:8731–8735.
  • Delidakis, C., A. Preiss, D. A. Hartley, and J. Artavanis-Tsakonas 1991. Two genetically and molecularly distinct functions involved in early neurogenesis reside within the Enhancer of split locus of Drosophila melanogaster. Genetics 129:803–823.
  • de Pablos, B., E. Madueno, and J. Modolell. 10 June 1999, posting date. Sequencing the distal X chromosome of Drosophila melanogaster. [On line.] http://www.ebi.ac.uk [3 May 1999, last date accessed.]
  • Ellenberger, T., D. Fass, M. Arnaud, and J. Harrison 1994. Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev. 8:970–980.
  • Ferre-D’Amare, A. R., G. C. Pendergast, E. B. Ziff, and J. Burley 1993. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45.
  • Fisher, A., and J. Caudy 1998. The function of hairy-related bHLH repressor proteins in cell fate decisions. Bioessays 20:298–306.
  • Fisher, A. L., S. Ohshako, and J. Caudy 1996. The WRPW motif of the Hairy-related basic helix-loop-helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol. Cell. Biol. 16:2670–2677.
  • Fisher, F., D. H. Crouch, P. Jayaraman, W. Clark, D. A. F. Gillespie, and J. Goding 1993. Transcription activation by Myc and Max: flanking sequences target activation to a subset of CACGTG motifs in vivo. EMBO J. 12:5075–5082.
  • Giebel, B., and J. Campos-Ortega 1997. Functional dissection of the Drosophila Enhancer of split protein, a suppressor of neurogenesis. Proc. Natl. Acad. Sci. USA 94:6250–6254.
  • Gogos, J. A., T. Hsu, J. Bolton, and J. Kafatos 1992. Sequence discrimination by alternatively spliced isoforms of a DNA binding zinc finger domain. Science 257:1951–1955.
  • Gomez-Skarmeta, J. L., R. D. del Corrall, E. de la Calle-Mustienes, D. Ferres-Marco, and J. Modolell 1996. araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85:95–105.
  • Greenwald, I. 1998. LIN-12/Notch signalling: lessons from worms and flies. Genes Dev. 12:1751–1762.
  • Halazonetis, T. D., and J. Kandil 1991. Determination of the c-MYC DNA-binding site. Proc. Natl. Acad. Sci. USA 88:6162–6166.
  • Heitzler, P., M. Bourouis, L. Ruel, C. Carteret, and J. Simpson 1996. Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development 122:161–171.
  • Hinz, U., B. Giebel, and J. Campos-Ortega 1994. The basic helix-loop-helix domain of Drosophila Lethal of scute protein is sufficient for proneural function and activates neurogenic genes. Cell 76:77–87.
  • Hiromi, Y., and J. Gehring 1987. Regulation and function of the Drosophila segmentation gene fushi turazu. Cell 50:963–974.
  • Jan, Y. N., and J. Jan 1993. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75:827–830.
  • Jarman, A. P., M. Brand, L. Y. Jan, and J. Jan 1993. The regulation and function of the helix-loop-helix gene, asense, in Drosophila neural precursors. Development 119:19–29.
  • Jarriault, S., C. Brou, F. Logeat, E. H. Schroeter, R. Kopan, and J. Israel 1995. Signalling downstream of activated mammalian Notch. Nature 377:355–358.
  • Jennings, B., J. de Celis, C. Delidakis, A. Preiss, and J. Bray 1995. Role of Notch and achaete-scute complex in the expression of Enhancer of split bHLH proteins. Development 121:3745–3752.
  • Jennings, B., A. Preiss, C. Delidakis, and J. Bray 1994. The Notch signalling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo. Development 120:3537–3548.
  • Jimenez, G., and J. Ish-Horowicz 1997. A chimeric Enhancer-of-split transcriptional activator drives neural development and achaete-scute expression. Mol. Cell. Biol. 17:4355–4362.
  • Klambt, C., E. Knust, K. Tietze, and J. Campos-Ortega 1989. Closely related transcripts encoded by the neurogenic gene complex Enhancer of split of Drosophila melanogaster. EMBO J. 8:203–210.
  • Knust, E., H. Schrons, F. Grawe, and J. Campos-Ortega 1992. Seven genes of the Enhancer of split complex of Drosophila melanogaster encode helix-loop-helix proteins. Genetics 132:505–518.
  • Lecourtois, M., and J. Schweisguth 1995. The neurogenic Suppressor of Hairless DNA-binding protein mediates the transcriptional activation of the Enhancer of split Complex genes by Notch signalling. Genes Dev. 9:2598–2608.
  • Lee, J. E. 1997. Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol. 7:13–20.
  • Ligoxygakis, P., S. Y. Yu, C. Delidakis, and J. Baker 1998. A subset of Notch functions during Drosophila eye development require Su(H) and the E(spl) gene Complex. Development 125:2893–2900.
  • Martin-Bermudo, M. D., A. Carmena, and J. Jimenez 1995. Neurogenic genes control gene expression at the transcriptional level in early neurogenesis and in mesectoderm specification. Development 121:219–224.
  • Martin-Bermudo, M. D., C. Martinez, I. Rodriguez, and J. Jimenez 1991. Distribution and function of the lethal of scute gene product during early neurogenesis in Drosophila. Development 113:445–454.
  • Martinez, C., J. Modollel, and J. Garrell 1993. Regulation of the proneural gene achaete by helix-loop-helix proteins. Mol. Cell. Biol. 13:3514–3521.
  • Muller, M. V., E. Weizsacker, and J. Campos-Ortega 1996. Expression domains of a zebrafish homologue of the Drosophila pair-rule gene hairy correspond to primordia of alternating somites. Development 122:2071–2078.
  • Murre, C., P. Schonleber McCaw, and J. Baltimore 1989. A new DNA binding and dimerization motif in Immunoglobulin Enhancer Binding, daughterless, MyoD, and myc proteins. Cell 56:777–783.
  • Murre, C., P. Schonleber McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Wentraub, and J. Baltimore 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.
  • Nakao, K., and J. Campos-Ortega 1996. Persistent expression of genes of the Enhancer of split complex suppresses neural development in Drosophila. Neuron 16:275–286.
  • Oellers, N., M. Dehio, and J. Knust 1994. bHLH proteins encoded by the Enhancer of split complex of Drosophila negatively interfere with transcriptional activation mediated by proneural genes. Mol. Gen. Genet. 244:465–473.
  • Ohsako, S., J. Hyer, G. Panganiban, I. Oliver, and J. Caudy 1994. Hairy functions as a DNA-binding helix-loop-helix repressor of Drosophila sensory organ formation. Genes Dev. 8:2743–2755.
  • Parkhurst, S. M. 1998. Groucho: making its Marx as a transcriptional co-repressor. Trends Genet. 14:130–132.
  • Paroush, Z., R. L. Finley, T. Kidd, M. Wainwright, P. W. Ingham, R. Brent, and J. Ish-Horowicz 1994. Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with Hairy-related bHLH proteins. Cell 79:805–815.
  • Quandt, K., K. Frech, H. Karas, E. Wingender, and J. Werner 1995. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23:4878–4884.
  • Rubin, G. M., and J. Spradling 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353.
  • Ruiz-Gomez, M., and J. Ghysen 1993. The expression and role of a proneural gene, achaete, in the development of the larval nervous system of Drosophila. EMBO J. 12:1121–1130.
  • Sasai, S., R. Kageyama, Y. Tagawa, R. Shigemoto, and J. Nakanishi 1992. Two mammalian helix loop helix factors structurally related to the Drosophila hairy and Enhancer of split. Genes Dev. 6:2620–2634.
  • Schrons, H., E. Knust, and J. Campos-Ortega 1992. The Enhancer of split complex and adjacent genes in the 96F region of Drosophila melanogaster are required for segregation of neural and epidermal progenitor cells. Genetics 132:481–503.
  • Shimizu, T., A. Toumoto, K. Ihara, M. Shimizu, Y. Kyogoku, N. Ogawa, Y. Oshima, and J. Hakoshima 1997. Crystal structure of PHO4 bHLH domain-DNA complex: flanking base recognition. EMBO J. 16:4689–4697.
  • Singson, A., M. W. Leviten, A. G. Bang, H. H. Xuequn, and J. Posakony 1994. Direct downstream targets of proneural activators in the imaginal disc include genes involved with lateral inhibitory signalling. Genes Dev. 8:2058–2071.
  • Skeath, J., and J. Carroll 1992. Regulation of proneural gene expression and cell fate during neuroblast segregation in the Drosophila embryo. Development 114:939–946.
  • Sparrow, D. B., W. Jen, S. Kotecha, N. Towers, C. Kintner, and J. Mohun 1998. Thylacine 1 is expressed segmentally within the paraxial mesoderm of the Xenopus embryo and interacts with the Notch pathway. Development 125:2041–2051.
  • Speicher, S. A., U. Thomas, U. Hinz, and J. Knust 1994. The Serrate locus of Drosophila and its role in morphogenesis of the wing imaginal disc: control of cell proliferation. Development 120:535–544.
  • Takebayashi, K., C. Akazawa, S. Nakanishi, and J. Kageyama 1995. Structure and promoter analysis of the gene encoding the mouse helix-loop-helix factor Hes-5. Identification of the neural precursor cell-specific promoter element. J. Biol. Chem. 270:1342–1349.
  • Tata, F., and J. Hartley 1995. Inhibition of cell fate in Drosophila by Enhancer of split genes. Mech. Dev. 51:305–315.
  • Thomas, U., F. Jonsson, S. A. Speicher, and J. Knust 1995. Phenotypic and molecular characterisation of SerD, a dominant allele of the Drosophila gene Serrate. Genetics 139:3431–3440.
  • Tietze, K., N. Oellers, and J. Knust 1992. Enhancer of splitD, a dominant mutation of Drosophila, and it’s use in the study of functional domains of a helix-loop-helix protein. Proc. Natl. Acad. Sci. USA 89:6152–6156.
  • Uv, A., E. J. Harrison, and J. Bray 1997. Tissue-specific splicing and functions of the Drosophila transcription factor Grainyhead. Mol. Cell. Biol. 17:6727–6735.
  • Van Doren, M., A. M. Bailey, J. Esnayra, K. Ede, and J. Posakony 1994. Negative regulation of proneural gene activity: Hairy is a direct repressor of achaete. Genes Dev. 8:2729–2742.
  • Van Doren, M., H. M. Ellis, and J. Posakony 1991. The Drosophila extramacrochaetae protein antagonizes sequence specific DNA binding by Daughterless/Achaete-Scute protein complexes. Development 113:245–255.
  • Van Doren, M., P. A. Powell, D. Pasternak, A. Singson, and J. Posakony 1992. Spatial regulation of proneural gene activity: auto- and cross-activation of achaete is antagonized by extramacrochaetae. Genes Dev. 6:2592–2605.
  • Villares, R., and J. Cabrera 1987. The achaete-scute gene complex of D. melanogaster conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell 50:415–424.
  • Weintraub, H., R. Davis, S. Tapscott, M. Thayer, M. Krause, R. Benezra, T. K. Blackwell, D. Turner, R. Rupp, S. Hollenberg, Y. Zhuang, and J. Lassar 1991. The myoD Gene family: nodal point during specification of the muscle lineage. Science 251:761–766.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.