52
Views
533
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Activation of Phosphatidylinositol 3-Kinase in Response to Interleukin-1 Leads to Phosphorylation and Activation of the NF-κB p65/RelA Subunit

, &
Pages 4798-4805 | Received 16 Nov 1998, Accepted 05 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Baeuerle, P. A., and J. Henkel 1994. Function and activation of NF κB in the immune system. Annu. Rev. Immunol. 12:141–179.
  • Ballard, D. W., E. P. Dixon, N. J. Peffer, H. Bogerd, S. Doerre, and J. Greene 1992. The p65 kD DNA binding subunit of the human NFκB complex functions as a potent transcriptional activator and a target for repression by the v-Rel oncoprotein. Proc. Natl. Acad. Sci. USA 89:1875–1879.
  • Barnes, P. J., and J. Karin 1997. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336:1066–1071.
  • Basu, S., K. R. Rosenzweig, M. Youmell, and J. Price 1998. The DNA-dependent protein kinase participates in the activation of NFκB following DNA damage. Biochem. Biophys. Res. Commun. 247:79–83.
  • Beg, A. A., T. S. Finco, P. V. Nantermet, A. S. Baldwin Jr.. 1993. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκBα: a mechanism for NF-κB activation. Mol. Cell. Biol. 13:3301–3310.
  • Bergmann, M., L. Hart, M. Lindsay, P. J. Barnes, and J. Newton 1998. IκBα degradation and nuclear factor-B DNA binding are insufficient for interleukin-1β and tumor necrosis factor-α-induced B-dependent transcription. J. Biol. Chem. 273:6607–6610.
  • Bird, T. A., K. Schooley, S. K. Dower, H. Hagen, and J. Virca 1997. Activation of nuclear transcription factor NFκB by interleukin-1 is accompanied by casein kinase II-mediated phosphorylation of the p65 subunit. J. Biol. Chem. 272:32606–32612.
  • Blair, W. S., H. P. Bogerd, S. J. Madore, and J. Cullen 1994. Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol. Cell. Biol. 14:7226–7234.
  • Bondeva, T., L. Pirola, G. Bulgarelli-Leva, I. Rubio, R. Wetzker, and J. Wymann 1998. Bifurcation of lipid and protein kinase signals of PI3K gamma to the protein kinases PKB and MAPK. Science 282:293–296.
  • Burgering, B. M., and J. Coffer 1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602.
  • Carpenter, C. L., and J. Cantley 1996. Phosphoinositide kinases. Curr. Opin. Cell Biol. 8:153–157.
  • Datta, K., T. F. Franke, T. O. Chan, A. Makris, S.-I. Yang, D. R. Kaplan, D. K. Morrison, E. A. Golemis, and J. Tsichlis 1995. AH/PH domain-mediated interaction between Akt molecules and its potential role in Akt regulation. Mol. Cell. Biol. 15:2304–2310.
  • Diaz-Meco, M. T., I. Dominguez, L. Sanz, P. Dent, J. Lozano, M. M. Municio, E. Berra, R. T. Hay, T. W. Sturgill, and J. Moscat 1994. Zeta PKC induces phosphorylation and inactivation of IκB-alpha in vitro. EMBO J. 13:2842–2848.
  • Dinarello, C. A. 1996. Biologic basis for interleukin-1 in disease. Blood 87:2095–2147.
  • Genot, E. M., P. J. Parker, and J. Cantrell 1995. Analysis of the role of protein kinase C-alpha, -epsilon, and -zeta in T cell activation. J. Biol. Chem. 270:9833–9839.
  • Gerritsen, M. E., A. J. Williams, A. S. Neish, S. Moore, Y. Shi, and J. Collins 1997. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 94:2927–2932.
  • Greenfeder, S. A., P. Nunes, L. Kwee, M. Labow, R. A. Chizzonite, and J. Ju 1995. Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J. Biol. Chem. 270:13757–13765.
  • Huang, J., X. Gao, S. Li, and J. Cao 1997. Recruitment of IRAK to the interleukin-1 receptor complex requires interleukin-1 receptor accessory protein. Proc. Natl. Acad. Sci. USA 94:12829–12832.
  • Hunter, T. 1995. When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 83:1–4.
  • Janosch, P., M. Schellerer, T. Seitz, P. Reim, M. Eulitz, M. Brielmeier, W. Kolch, J. M. Sedivy, and J. Mischak 1996. Characterization of IκB kinases. I κB-alpha is not phosphorylated by Raf-1 or protein kinase C isozymes, but is a casein kinase II substrate. J. Biol. Chem. 271:13868–13874.
  • Kaelin, W. G. Jr., D. C. Pallas, J. A. DeCaprio, F. J. Kaye, and J. Livingston 1991. Identification of cellular proteins that can interact specifically with the T/E1A-binding region of the retinoblastoma gene product. Cell 64:521–532.
  • Korherr, C., R. Hofmeister, H. Wesche, and J. Falk 1997. A critical role for interleukin-1 receptor accessory protein in interleukin-1 signaling. Eur. J. Immunol. 27:262–267.
  • Kunsch, C., R. K. Lang, C. A. Rosen, and J. Shannon 1994. Synergistic transcriptional activation of IL-8 gene by NF-κB p65 and NF-IL6. Immunology 153:153–164.
  • Kunsch, C., and J. Rosen 1993. NF-κB subunit-specific regulation of the interleukin-8 promoter. Mol. Cell. Biol. 13:6137–6146.
  • Liou, H. C., and J. Baltimore 1993. Regulation of NF-κB/rel transcription factor and I kappa B inhibitor system. Curr. Opin. Cell Biol. 5:477–487.
  • Lozano, J., E. Berra, M. M. Municio, M. T. Diaz-Meco, I. Dominguez, L. Sanz, and J. Moscat 1994. Protein kinase C zeta isoform is critical for κB-dependent promoter activation by sphingomyelinase. J. Biol. Chem. 269:19200–19202.
  • Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. Li, D. B. Young, M. Barbosa, M. Mann, A. Manning, and J. Rao 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866.
  • Moore, P. A., S. M. Ruben, and J. Rosen 1993. Conservation of transcriptional activation functions of the NF-κB p50 and p65 subunits in mammalian cells and Saccharomyces cerevisiae. Mol. Cell. Biol. 13:1666–1674.
  • Naumann, M., and J. Scheidereit 1994. Activation of NF-κB in vivo is regulated by multiple phosphorylations. EMBO J. 13:4597–4607.
  • O’Neill, L. A. J. 1995. Towards an understanding of the signal transduction pathways for interleukin 1. Biochim. Biophys. Acta 1266:31–44.
  • O’Neill, L. A. J. 1997. Molecular mechanisms underlying the actions of the pro-inflammatory cytokine interleukin 1. Biochem. Soc. Trans. 25:295–302.
  • Pap, M., and J. Cooper 1998. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. J. Biol. Chem. 273:19929–19932.
  • Perkins, N. D., L. K. Felzien, J. C. Betts, K. Leung, D. H. Beach, and J. Nabel 1997. Regulation of NF-κB by cyclin-dependent kinases associated with the p300 coactivator. Science 275:523–527.
  • Reddy, S. A., J. H. Huang, and J. Liao 1997. Phosphatidylinositol 3-kinase in interleukin 1 signaling. J. Biol. Chem. 272:29167–29173.
  • Reif, K., B. M. Burgering, and J. Cantrell 1997. Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J. Biol. Chem. 272:14426–14433.
  • Royal, I., and J. Park 1995. Hepatocyte growth factor-induced scatter of Madin-Darby canine kidney cells requires phosphatidylinositol 3-kinase. J. Biol. Chem. 270:27780–27787.
  • Schmitz, M. L., and J. Baeuerle 1991. The p65 subunit is responsible for the strong transcription activating potential of NF κB. EMBO J. 10:3805–3817.
  • Schmitz, M. L., M. A. dos Santos Silva, and J. Baeuerle 1995. Transactivation domain 2 (TA2) of p65 NF κB. J. Biol. Chem. 270:15576–15584.
  • Schutze, S., K. Potthoff, T. Machleidt, D. Berkovic, K. Wiegmann, and J. Kronke 1992. TNF activated NF κB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71:765–776.
  • Seiple, K. O., O. Georgiev, and J. Schaffner 1992. Different activation domains stimulate transcription from remote (‘enhancer’) and proximal (‘promoter’) positions. EMBO J. 11:4961–4968.
  • Siebenlist, U., G. Franzoso, and J. Brown 1994. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 10:405–455.
  • Stein, B., A. S. Baldwin Jr.. 1993. Distinct mechanisms for regulation of the interleukin-8 gene involve synergism and cooperativity between C/EBP and NF-κB. Mol. Cell. Biol. 13:7191–7198.
  • Thanos, D., and J. Maniatis 1995. NF-κB: a lesson in family values. Cell 80:529–532.
  • Toker, A., M. Meyer, K. K. Reddy, J. R. Falck, R. Aneja, S. Aneja, A. Parra, D. J. Burns, L. M. Ballas, and J. Cantley 1994. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J. Biol. Chem. 269:32358–32367.
  • Vander Berghe, W., S. Plaisance, E. Boone, K. De Bosscher, M. L. Schmitz, W. Fiers, and J. Haegeman 1998. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor κB p65 transactivation mediated by tumor necrosis factor. J. Biol. Chem. 273:3285–3290.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. Van Antwerp, and J. Miyamoto 1995. Rel/NF κB/I κB family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735.
  • Wang, D., and J. Baldwin 1998. Activation of nuclear factor κB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529. J. Biol. Chem. 273:29411–29416.
  • Welch, P. J., and J. Wang 1993. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75:779–790.
  • Wesche, H., C. Korherr, M. Kracht, W. Falk, K. Resch, and J. Martin 1997. The interleukin-1 receptor accessory protein (IL-1RAcP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP kinases). J. Biol. Chem. 272:7727–7731.
  • Zhong, H., H. Suyang, H. Erdjument-Bromage, P. Tempst, and J. Ghosh 1997. The transcriptional activity of NF κB is regulated by the IκB-associated PKA subunit through a cyclic AMP-independent mechanism. Cell 89:413–424.
  • Zhong, H., R. E. Voll, and J. Ghosh 1998. Phosphorylation of NF κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1:661–671.
  • Zumbansen, M., and J. Stoffel 1997. Tumor necrosis factor alpha activates NF κB in acid sphingomyelinase-deficient mouse embryonic fibroblasts. J. Biol. Chem. 272:10904–10909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.