15
Views
55
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Physiological Requirement for Both SH2 Domains for Phospholipase C-γ1 Function and Interaction with Platelet-Derived Growth Factor Receptors

, , &
Pages 4961-4970 | Received 25 Jan 1999, Accepted 19 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Åhlén, K., A. Berg, F. Stiger, A. Tengholm, A. Siegbahn, E. Gylfe, R. K. Reed, and J. Rubin 1998. Cell interactions with collagen matrices in vivo and in vitro depend on phosphatidylinositol 3-kinase and free cytoplasmic calcium. Cell Adhesion Commun. 5:461–473.
  • Ahn, S. J., S. J. Han, H. J. Mor, J.-K. Chung, S. H. Hong, T. K. Park, and J. Kim 1998. Interaction of phospholipase Cγ1 via its COOH-terminal SRC homology 2 domain with synaptojanin. Biochem. Biophys. Res. Commun. 244:62–67.
  • Alimandi, M., M. A. Heidaran, J. S. Gutkind, J. Zhang, N. Ellmore, M. Valius, A. Kazlauskas, J. H. Pierce, and J. Li 1997. PLC-γ activation is required for PDGF-βR-mediated mitogenesis and monocytic differentiation of myeloid progenitor cells. Oncogene 15:585–593.
  • Anderson, D., C. A. Koch, L. Grey, C. Ellis, M. F. Moran, and J. Pawson 1990. Binding of SH2 domains of phospholipase Cγ1, GAP, and src to activated growth factor receptors. Science 250:979–982.
  • Arteaga, C. L., M. D. Johnson, G. Todderud, R. J. Coffey, G. Carpenter, and J. Page 1991. Elevated content of the tyrosine kinase substrate phospholipase C-γ1 in primary human breast carcinomas. Proc. Natl. Acad. Sci. USA 88:10435–10439.
  • Bae, Y. S., L. G. Cantley, C.-S. Chen, S.-R. Kim, K.-S. Kwon, and J. Rhee 1998. Activation of phospholipase C-γ by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 172:4465–4469.
  • Barker, S. A., K. K. Caldwell, J. R. Pfeiffer, and J. Wilson 1998. Wortmannin-sensitive phosphorylation, translocation, and activation of PLCγ1, but not PLCγ2, in antigen-stimulated RBL-2H3 mast cells. Mol. Biol. Cell 9:483–496.
  • BIAcore Inc. 1997. BIAevaluation version 3.0 software handbook. BIAcore Inc., Uppsala, Sweden.
  • Cohen, G. B., R. Ren, and J. Baltimore 1995. Modular binding domains in signal transduction proteins. Cell 80:237–248.
  • Falasca, M., S. K. Logan, V. P. Lehot, G. Baccante, M. A. Lemmon, and J. Schlessinger 1998. Activation of phospholipase Cγ by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 17:414–422.
  • Finco, T. S., T. Kadlececk, W. Zhang, L. E. Samelson, and J. Weiss 1998. LAT is required for TCR-mediated activation of PLC-γ1 and the Ras pathway. Immunity 9:617–628.
  • Fluckiger, A.-C., Z. Li, R. M. Kato, M. I. Wahl, H. D. Ochs, R. Longnecker, J.-P. Kinet, W. N. Witte, A. M. Scharenberg, and J. Rawlings 1998. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 17:1973–1985.
  • Frangioni, J. V., and J. Neel 1993. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal. Biochem. 210:179–187.
  • Fu, C., and J. Chan 1997. Identification of two tyrosine phosphoproteins, pp70 and pp68, which interact with phospholipase Cγ, Grb2, and Vav after B cell antigen receptor activation. J. Biol. Chem. 272:27362–27368.
  • Fukazawa, T., K. A. Reedquist, G. Panchamoorthy, S. Soltoff, T. Trub, B. Druker, L. Cantley, S. E. Shoelson, and J. Band 1995. T cell activation-dependent association between the p85 subunit of the phosphatidylinositol 3-kinase and Grb2/phospholipase C-γ1-binding phosphotyrosyl protein pp36/38. J. Biol. Chem. 270:20177–20182.
  • Goldschmidt-Clermont, H. J., J. W. Kim, L. M. Machesky, S. G. Rhee, and J. Pollard 1991. Regulation of phospholipase C-γ1 by profilin and tyrosine phosphorylation. Science 251:1231–1233.
  • Hall, H., E. J. Williams, S. E. Moore, F. S. Walsh, A. Prochiantz, and J. Doherty 1996. Inhibition of FGF-stimulated phosphatidylinositol hydrolysis and neurite outgrowth by a cell-membrane permeable phosphopeptide. Curr. Biol. 6:580–587.
  • Hess, J. A., Q.-S. Ji, G. Carpenter, and J. Exton 1998. Analysis of platelet-derived growth factor-induced phospholipase D activation in mouse embryo fibroblasts lacking phospholipase C-γ1. Biol. Chem. 273:20517–20524.
  • Hill, T. D., N. M. Dean, L. J. Mordan, A. F. Lau, M. Y. Kanemitsu, and J. Boynton 1990. PDGF-induced activation of phospholipase C is not required for induction of DNA synthesis. Science 248:1660–1663.
  • Homma, M. K., M. Yamasaki, S. Ohmi, and J. Homma 1997. Inhibition of phosphoinositide hydrolysis and cell growth of Swiss 3T3 cells by myristoylated phospholipase C inhibitor peptides. Biochem. 122:738–742.
  • Hwang, S. C., D.-Y. Jhon, Y. S. Bae, J. H. Kim, and J. Rhee 1996. Activation of phospholipase C-γ1 by the concerted action of tau proteins and arachidonic acid. J. Biol. Chem. 271:18342–18349.
  • Jenkins, S. M., and J. Johnson 1998. Tau complexes with phospholipase C-γ in situ. Neuroreport 9:67–71.
  • Ji, Q.-S., G. E. Winnier, K. D. Niswender, D. Horstman, R. Wisdom, M. A. Magnuson, and J. Carpenter 1997. Essential role of the tyrosine kinase substrate phospholipase C-γ1 in mammalian growth and development. Proc. Natl. Acad. Sci. USA 94:2999–3003.
  • Ji, Q.-S., S. Ermini, J. Baulida, F.-L. Sun, and J. Carpenter 1998. Epidermal growth factor signaling and mitogenesis in Plcg1 null mouse embryonic fibroblasts. Mol. Biol. Cell 9:749–757.
  • Jones, G. A., and J. Carpenter 1993. The regulation of phospholipase C-γ1 by phosphatidic acid. Assessment of kinetic parameters. J. Biol. Chem. 268:20845–20850.
  • Kamat, A., and J. Carpenter 1997. Phospholipase C-γ1: regulation of enzyme function and role in growth factor-dependent signal transduction. Cytokine Growth Factor Rev. 8:109–117.
  • Kashishian, A., and J. Cooper 1993. Phosphorylation sites at the C-terminus of the platelet-derived growth factor receptor bind phospholipase Cγ1. Mol. Biol. Cell 4:49–57.
  • Kim, H. K., J. W. Kim, A. Zilberstein, B. Margolis, J. G. Kim, J. Schlessinger, and J. Rhee 1991. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ1 phosphorylation on tyrosine residues 783 and 1254. Cell 65:435–441.
  • Kobayashi, S., J. Nishimura, and J. Kanaide 1994. Cytosolic Ca2+ transients are not required for platelet-derived growth factor to induce cell cycle progression of vascular smooth muscle cells in primary culture. Actions of tyrosine kinase. J. Biol. Chem. 269:9011–9018.
  • Kumjian, D. A., A. Barnstein, S. G. Rhee, and J. Daniel 1991. Phospholipase Cγ complexes with ligand-activated platelet-derived growth factor receptors. An intermediate implicated in phospholipase activation. J. Biol. Chem. 266:3973–3980.
  • Ladbury, J. E., M. A. Lemmon, M. Zhou, J. Green, M. C. Botfield, and J. Schlessinger 1995. Measurement of the binding of tyrosyl phosphopeptides to SH2 domains: a reappraisal. Proc. Natl. Acad. Sci. USA 92:3199–3203.
  • Larose, L., G. Gish, S. Shoelson, and J. Pawson 1993. Identification of residues in the β platelet-derived growth factor receptor that confer specificity for binding to phospholipase C-γ1. Oncogene 8:2493–2499.
  • Lu, P.-J., W. R. Shieh, S. G. Rhee, H. L. Yin, and J. Chen 1996. Lipid products of phosphoinositide 3-kinase bind human profilin with high affinity. Biochemistry 35:14027–14034.
  • Maa, M.-C., T.-H. Leu, B. J. Trandel, J.-H. Chang, and J. Parsons 1994. A protein that is highly related to GTPase-activating protein-associated p62 complexes with phospholipase Cγ. Mol. Cell. Biol. 14:5466–5473.
  • Marengere, I. E. M., and J. Pawson 1992. Identification of residues in GTPase activating protein Src homology 2 domains that control binding to tyrosine phosphorylated growth factor receptors and p62. J. Biol. Chem. 267:22779–22786.
  • Mayer, B. J., P. K. Jackson, R. A. Van Etten, and J. Baltimore 1992. Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo. Mol. Cell. Biol. 12:609–618.
  • Mohammadi, M., C. A. Dionne, W. Li, N. Li, T. Spivak, A. M. Honegger, M. Jaye, and J. Schlessinger 1992. Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358:681–684.
  • Motto, D. G., M. A. Musci, S. E. Ross, and J. Koretzky 1996. Tyrosine phosphorylation of Grb2-associated proteins correlates with phospholipase Cγ1 activation in T cells. Mol. Cell. Biol. 16:2823–2829.
  • Nebigil, C. G. 1997. Suppression of phospholipase C β, γ, and δ families alters cell growth and phosphatidylinositol 4,5-bisphosphate levels. Biochemistry 36:15949–15958.
  • Nishibe, S., M. I. Wahl, S. M. T. Hernández-Sotomayor, N. K. Tonks, S. G. Rhee, and J. Carpenter 1990. Increase of the catalytic activity of phospholipase C-γ1 by tyrosine phosphorylation. Science 250:1253–1256.
  • Noh, D.-Y., S. H. Shin, and J. Rhee 1995. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim. Biophys. Acta 1242:99–114.
  • Panayotou, A. 1998. Surface plasmon resonance. Measuring protein interactions in real time. Methods Mol. Biol. 88:1–10.
  • Pascal, S. M., A. U. Singer, G. Gish, Y. Yamazaki, S. E. Shoelson, T. Pawson, L. E. Kay, and J. Forman-Kay 1994. Nuclear magnetic resonance structure of an SH2 domain of phospholipase C-γ1 complexed with a high affinity binding peptide. Cell 77:461–472.
  • Pei, Z., L. Yang, and J. Williamson 1996. Phospholipase C-γ1 binds to actin-cytoskeleton via its C-terminal SH2 domain in vitro. Biochem. Biophys. Res. Commun. 228:802–806.
  • Peters, K. G., J. Marie, E. Wilson, H. E. Ives, J. Escobedo, M. Del Rosario, D. Mirda, and J. Williams 1992. Point mutation of an FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 358:678–681.
  • Rameh, L. E., C.-S. Chen, and J. Cantley 1995. Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI 3-kinase association with tyrosine-phosphorylated proteins. Cell 83:821–830.
  • Rameh, L. E., S. G. Rhee, K. Spokes, A. Kazlauskas, L. C. Cantley, and J. Cantley 1998. Phosphoinositide 3-kinase regulates phospholipase Cγ-mediated calcium signaling. J. Biol. Chem. 273:23750–23757.
  • Richard, S., D. Yu, K. J. Blumer, D. Hausladen, M. W. Olszowy, P. A. Connelly, and J. Shaw 1995. Association of p62, a multifunctional SH2- and SH3-domain-binding protein, with src family tyrosine kinases, Grb2, and phospholipase Cγ-1. Mol. Cell. Biol. 15:186–197.
  • Roche, S., J. McGlade, M. Jones, G. D. Gish, T. Pawson, and J. Courtneidge 1996. Requirement of phospholipase Cγ, the tyrosine phosphatase Syp and the adaptor proteins Shc and Nck for PDGF-induced DNA synthesis: evidence for Ras-independent pathways. EMBO J. 15:4940–4948.
  • Rönnstrand, L., S. Mori, A.-K. Arridsson, A. Eriksson, C. Wernstedt, U. Hellman, L. Claesson-Welsh, and J. Heldin 1992. Identification of two C-terminal autophosphorylation sites in the PDGF β-receptor: involvement in the interaction with phospholipase C-γ. EMBO J. 11:3911–3919.
  • Scharenberg, A. M., O. El-Hillal, D. A. Fruman, L. O. Beitz, Z. Li, S. Lin, I. Gout, L. C. Cantley, D. J. Rawlings, and J. Kinet 1998. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 17:1961–1972.
  • Sieh, M., A. Batzer, J. Schlessinger, and J. Weiss 1994. GRB2 and phospholipase C-γ1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol. Cell. Biol. 14:4435–4442.
  • Songyang, Z., S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, B. G. Neel, R. B. Birge, J. E. Fajardo, M. M. Chou, H. Hanafusa, B. Schaffhausen, and J. Cantley 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778.
  • Spivak-Kroizman, T., M. Mohammadi, P. Hu, M. Jaye, J. Schlessinger, and J. Lax 1994. Point mutation in the fibroblast growth factor receptor eliminates phosphatidylinositol hydrolysis without affecting neuronal differentiation of PC12 cells. J. Biol. Chem. 269:14419–14423.
  • Stoica, B., K. E. DeBell, L. Graham, B. L. Rellahan, M. A. Alava, J. Laborda, and J. Bonvini 1998. The amino-terminal Src homology 2 domain of phospholipase Cγ1 is essential for TCR-induced tyrosine phosphorylation of phospholipase Cγ1. J. Immunol. 160:1059–1066.
  • Thackeray, J. R., P. C. W. Gaines, P. Ebert, and J. Carlson 1998. small wing encodes a phospholipase C-γ that acts as a negative regulator of R7 development in Drosophila. Development 125:5033–5042.
  • Valius, M., C. Bazenet, and J. Kazlauskas 1993. Tyrosines 1021 and 1009 are phosphorylation sites in the carboxy terminus of the platelet-derived growth factor receptor β subunit and are required for binding of phospholipase Cγ and a 64-kilodalton protein, respectively. Mol. Cell. Biol. 13:133–143.
  • Vega, Q. C., C. Cochet, O. Filhol, C.-P. Chang, S. G. Rhee, and J. Gill 1992. A site of tyrosine phosphorylation in the C terminus of the epidermal growth factor receptor is required to activate phospholipase C. Mol. Cell. Biol. 12:128–135.
  • Wang, Z., S. Glück, L. Zhang, and J. Moran 1998. Requirement for phospholipase C-γ1 enzymatic activity in growth factor-induced mitogenesis. Mol. Cell. Biol. 18:590–597.
  • Zhang, W., R. P. Trible, and J. Samelson 1998. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9:239–246.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.