11
Views
51
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Functional Analysis of the SIN3-Histone Deacetylase RPD3-RbAp48-Histone H4 Connection in the Xenopus Oocyte

, , , &
Pages 5847-5860 | Received 23 Mar 1999, Accepted 02 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Alland, L., R. Muhle, H. Hou Jr., J. Potes, L. Chin, N. Schreiber-Agus, and J. De Pinho 1997. Role of NCoR and histone deacetylase in Sin3-mediated transcriptional and oncogenic repression. Nature 387:49–55.
  • Almouzni, G., and J. Wolffe 1993. Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo. Genes Dev. 7:2033–2047.
  • Almouzni, G., and J. Wolffe 1993. Nuclear assembly, structure, and function: the use of Xenopus in vitro systems. Exp. Cell Res. 205:1–15.
  • Almouzni, G., and J. Mechali 1988. Assembly of spaced chromatin by DNA synthesis in extracts from Xenopus eggs. EMBO J. 7:664–672.
  • Annunziato, A. T. 1995. Histone acetylation during chromatin replication and nucleosome assembly. Nucleus 1:31–58.
  • Arents, G., R. W. Burlingame, B. W. Wang, W. E. Love, and J. Moudrianakis 1991. The nucleosomal core histone octamer at 3.1Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88:10148–10152.
  • Ayer, D. E., Q. A. Lawrence, and J. Eisenman 1995. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767–776.
  • Ayer, D. E., C. D. Laherty, Q. A. Lawrence, A. P. Armstrong, and J. Eisenman 1996. Mad proteins contain a dominant transcription repression domain. Mol. Cell. Biol. 16:5772–5781.
  • Ayer, D. E., and J. Eisenman 1993. A switch from Myc-Max to Mad-Max accompanies monocyte/macrophage differentiation. Genes Dev. 7:2110–2119.
  • Brehm, A., E. A. Miska, D. J. McCance, J. L. Reid, A. J. Bannister, and J. Kouzarides 1998. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391:601–605.
  • Brownell, J. E., J. Zhou, T. Ranalli, R. Kobayashi, D. G. Edmondson, S. Y. Roth, and J. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851.
  • Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and J. Evans 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580.
  • Chen, J., T. Willingham, L. R. Margraf, N. Schreiber-Agus, R. A. De Pinho, and J. Nisen 1995. Effects of the MYC oncogene antagonist, MAD on proliferation, cell cycling and the malignant phenotype of human brain tumor cells. Nat. Med. 1:638–643.
  • Chrivia, J. C., R. P. Kwok, N. Lamb, M. Hagiwara, M. R. Montminy, and J. Goodman 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859.
  • Dimitrov, S., and J. Wolffe 1996. Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histone H1 and H1° from chromatin and the acquisition of transcriptional competence. EMBO J. 15:5897–5906.
  • Eckner, R., M. E. Ewen, D. Newsome, M. Gerdes, J. A. DeCaprio, J. B. Lawrence, and J. Livington 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-KD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 7:869–884.
  • Freeman, L., H. Kurumizaka, and J. Wolffe 1996. Functional assays for assembly of histones H3 and H4 into the chromatin of Xenopus embryos. Proc. Natl. Acad. Sci. USA 93:12780–12785.
  • Gaillard, P.-H. L., E. M.-D. Martini, P. D. Kaufman, B. Stillman, E. Moustacchi, and J. Almouzni 1996. Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor 1. Cell 86:887–896.
  • Georgakopoulos, T., and J. Thireos 1992. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11:4145–4152.
  • Georgel, P. T., T. Tsukiyama, and J. Wu 1997. Role of histone tails in nucleosome remodeling by Drosophila NURF. EMBO J. 16:4717–4726.
  • Gregory, P. D., and J. Horz 1998. Life with nucleosomes: chromatin remodelling in gene regulation. Curr. Opin. Cell Biol. 10:339–345.
  • Hassig, C. A., T. C. Fleischer, A. N. Billin, S. L. Schreiber, and J. Ayer 1997. Histone deacetylase activity is required for full transcriptional repression by mSin 3A. Cell 89:341–347.
  • Hassig, C. A., J. K. Tong, T. C. Fleischer, T. Owa, P. G. Grable, D. E. Ayer, and J. Schreiber 1998. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc. Natl. Acad. Sci. USA 95:3519–3524.
  • Heinzel, T., R. M. Laviusky, T. M. Mullen, M. Soderstrom, C. D. Laherty, J. T. Torchia, W.-M. Yang, C. Brard, S. G. Ngo, J. R. Davie, E. Seto, R. M. Eisenman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1997. N-CoR, mSIN3, and histone deacetylase in a complex required for repression by nuclear receptors and Mad. Nature 387:43–48.
  • Hurlin, P. J., C. Queva, P. J. Koskinen, E. Steingrimsson, D. E. Ayer, N. G. Copeland, N. A. Jenkins, and J. Eisenman 1996. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J. 15:2030–2040.
  • Imhof, A. Unpublished data.
  • Jones, P. L., G. J. C. Veenstra, P. A. Wade, D. Vermaak, S. U. Kass, N. Landsberger, J. Strouboulis, and J. Wolffe 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19:187–191.
  • Kadosh, D., and J. Struhl 1998. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev. 12:797–805.
  • Kamakaka, R. T., M. Bulger, P. D. Kaufman, B. Stillman, and J. Kadonaga 1996. Postreplicative chromatin assembly by Drosophila and human chromatin assembly factor I. Mol. Cell. Biol. 16:810–817.
  • Kamei, Y., L. Xu, T. Heinzel, J. Torchia, R. Kurokama, B. Gloss, S.-C. Lin, R. A. Heyman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414.
  • Kasten, M. M., and J. Stillman 1997. Identification of the Saccharomyces cerevisiae STB1-STB5 encoding Sin3p binding proteins. Mol. Gen. Genet. 256:376–386.
  • Kasten, M. M., S. Dorland, and J. Stillman 1997. A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol. Cell. Biol. 17:4852–4858.
  • Kasten, M. M., D. E. Ayer, and J. Stillman 1996. SIN3 dependent transcriptional repression by interaction with the Mad1 DNA binding protein. Mol. Cell. Biol. 16:4215–4221.
  • Kaufman, P. D., R. Kobayashi, and J. Stillman 1997. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-1. Genes Dev. 11:345–357.
  • Laherty, C. D., W. M. Yang, J. M. Sun, J. R. Davie, E. Seto, and J. Eisenman 1997. Histone deacetylase associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89:349–356.
  • Laherty, C. D., A. N. Billin, R. M. Lavinsky, G. S. Yochum, A. C. Bush, J. M. Sun, T. M. Mullen, J. R. Davie, D. W. Rose, C. K. Glass, M. G. Rosenfeld, D. E. Ayer, and J. Eisenman 1998. SAP30, a component of the mSin3 corepressor complex involved in N-CoR mediated repression by specific transcription factors. Mol. Cell 2:33–42.
  • Lee, H. H., and J. Archer 1994. Nucleosome-mediated disruption of transcription factor-chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vitro. Mol. Cell. Biol. 14:32–41.
  • Leipe, D. D., and J. Landsman 1997. Histone deacetylases, acetoin utilization proteins and acetylpolyamine amidohydrolases are members of an ancient protein superfamily. Nucleic Acids Res. 25:3693–3697.
  • Li, Q., M. Herrler, N. Landsberger, N. Kaludov, V. V. Ogryzyko, Y. Nakatani, and J. Wolffe 1998. Xenopus NF-Y presents chromatin to potentiate p300 and acetylation responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J. 17:6300–6315.
  • Luger, K., T. J. Rechsteiner, A. J. Flaus, M. M. Y. Wayne, and J. Richmond 1997. Characterization of nucleosome core particles containing histone proteins made in bacteria. J. Mol. Biol. 272:301–311.
  • Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent, and J. Richmond 1997. X-ray structure of the nucleosome core particle at 2.8Å resolution. Nature 389:251–259.
  • Lusser, A., G. Brosch, A. Loidl, H. Haas, and J. Loidl 1997. Identification of maize histone deacetylase HD2 as an acidic nucleolar phosphoprotein. Science 277:88–91.
  • Magnaghi-Jaulin, L., R. Groisman, I. Naguibneva, P. Robin, S. Lorain, J. P. Villain, F. Troalen, D. Trouche, and J. Harel-Bellan 1998. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391:601–605.
  • Martinez-Balbas, M. A., T. Tsukiyama, D. Gdula, and J. Wu 1998. Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc. Natl. Acad. Sci. USA 95:132–137.
  • Mizzen, C. A., and J. Allis 1998. Linking histone acetylation to transcriptional regulation. Cell. Mol. Life Sci. 54:6–20.
  • Nagy, L., H. Y. Kao, D. Chakravarti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. L. Schreiber, and J. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380.
  • Nan, X., H. H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner, R. N. Eisenman, and J. Bird 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389.
  • Neuwald, A. F., and J. Landsman 1997. GCN5-related histone N-acetyltransferases belong to a superfamily that includes the yeast SPT10 protein. Trends Biochem. Sci. 22:154–155.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Onate, S. A., S. Y. Tsai, M.-J. Tsai, and J. O’Malley 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357.
  • Parthun, M. R., J. Widom, and J. Gottschling 1996. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin assembly and histone metabolism. Cell 87:85–94.
  • Pennetta, G., and J. Pauli 1998. The Drosophila SIN3 gene encodes a widely distributed transcription factor essential for embryonic viability. Dev. Genes Evol. 208:531–536.
  • Qian, Y. W., Y.-C. J. Wang, R. E. J. Hollingsworth, D. Jones, N. Ling, and J. Lee 1993. A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature 364:648–652.
  • Qian, Y. W., and J. Lee 1995. Dual retinoblastoma-binding proteins with properties related to a negative regulator of Ras in yeast. J. Biol. Chem. 270:25507–25513.
  • Rao, G., L. Alland, P. Guida, N. Schreiber-Agus, L. Chin, K. Chen, J. M. Rochelle, M. F. Seldin, A. I. Skoultchi, and J. De Pinho 1995. Mouse SIN3A interacts with and can functionally substitute for the amino-terminal repression of the Myc antagonist Mxi1. Oncogene 12:1165–1172.
  • Roussel, M. F., R. A. Ashmun, C. J. Sherr, R. N. Eisenman, and J. Ayer 1996. Inhibition of cell proliferation by the Mad1 transcriptional repressor. Mol. Cell. Biol. 16:2796–2801.
  • Rundlett, S. E., A. A. Carmen, R. Kobayashi, S. Bavykin, B. M. Turner, and J. Grunstein 1996. HDA1 and RPD3 are members of distinct histone deacetylase complexes that regulate silencing and transcription. Proc. Natl. Acad. Sci. USA 93:14503–14508.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shimamura, A., and J. Worcel 1989. The assembly of regularly spaced nucleosomes in the Xenopus oocyte S150 extract is accompanied by deacetylation of histone H4. J. Biol. Chem. 264:14524–14530.
  • Smith, S., and J. Stillman 1989. Purification and characterization of CAF1, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25.
  • Sommer, A., S. Hilfenhaus, A. Menkel, E. Kremmer, C. Siser, P. Loidl, and J. Luscher 1997. Cell growth inhibition by the Mad/Max complex through recruitment of histone deacetylase activity. Curr. Biol. 7:357–365.
  • Sondek, J., A. Bohm, D. G. Lambright, H. E. Hamm, and J. Sigler 1996. Crystal structure of a G-protein β γ dimer at 2.1A resolution. Nature 379:369–374 (Erratum, 379:847.)
  • Spencer, T. E., G. Jenster, M. M. Bercin, C. D. Allis, J. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M.-J. Tsai, and J. O’Malley 1997. Steroid receptor coactivator one is a histone acetyltransferase. Nature 389:194–198.
  • Taunton, J., C. A. Hassig, and J. Schreiber 1996. A mammalian histone deacetylase related to a yeast transcriptional regulator Rpd3. Science 272:408–411.
  • Tong, J. K., C. A. Hassig, G. R. Schnitzer, R. E. Kingston, and J. Schreiber 1998. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–921.
  • Torchia, J., C. Glass, and J. Rosenfeld 1998. Coactivators and corepressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10:373–383.
  • Tyler, J. K., M. Bulger, R. T. Kamakaka, R. Kobayashi, and J. Kadonaga 1996. The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylase-associated protein. Mol. Cell. Biol. 16:6149–6159.
  • Ura, K., H. Kurumizaka, S. Dimitrov, G. Almouzni, and J. Wolffe 1997. Histone acetylation: influence on transcription nucleosome mobility and positioning and linker histone-dependent transcriptional repression. EMBO J. 16:2096–2107.
  • Verdel, A., and J. Khochbin 1999. Identification of a new family of higher eukaryotic histone deacetylases. Coordinate expression of differentiation-dependent chromatin modifiers. J. Biol. Chem. 274:2440–2445.
  • Vermaak, D. 1999. Functional studies of linker histone H1 domains and histone acetylation in Xenopus development. Dissertation. The Johns Hopkins University, Baltimore, Md.
  • Verreault, A., P. D. Kaufman, R. Kobayashi, and J. Stillman 1996. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104.
  • Verreault, A., P. D. Kaufman, R. Kobayashi, and J. Stillman 1998. Nucleosomal DNA regulates the core-histone binding subunit of the human hat1 acetyltransferase. Curr. Biol. 8:96–108.
  • Vidal, M., and J. Gaber 1991. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:6317–6327.
  • Vidal, M., R. Strich, R. E. Esposito, and J. Gaber 1991. RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol. Cell. Biol. 11:6306–6316.
  • Wade, P. A., P. L. Jones, D. Vermaak, and J. Wolffe 1998. The multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr. Biol. 8:843–846.
  • Wade, P. A., D. Pruss, and J. Wolffe 1997. Histone acetylation: chromatin in action. Trends Biochem. Sci. 22:128–132.
  • Wall, M. A., D. E. Coleman, E. Lee, J. A. Iniguez-Lluhi, B. A. Posner, A. G. Gilman, and J. Sprang 1995. The structure of the G protein heterotrimer Gi α1β1γ2. Cell 83:1047–1058.
  • Wang, H., and J. Stillman 1990. In vitro regulation of a SIN3-dependent DNA-binding activity by stimulatory and inhibitory factors. Proc. Natl. Acad. Sci. USA 87:9761–9765.
  • Wang, H., and J. Stillman 1993. Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol. Cell. Biol. 13:1805–1814.
  • Wang, H., I. Clark, P. R. Nicholson, I. Herskowitz, and J. Stillman 1990. The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol. Cell. Biol. 10:5927–5936.
  • Wong, J., D. Patterton, A. Imhof, Y.-B. Shi, and J. Wolffe 1998. Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. EMBO J. 17:520–534.
  • Wong, J., and J. Shi 1995. Coordinated regulation of and transcriptional activation by Xenopus thyroid hormone and retinoid X receptors. J. Biol. Chem. 270:18479–18483.
  • Yang, W. M., C. Inouye, Y. Zeng, D. Bearss, and J. Soto 1996. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc. Natl. Acad. Sci. USA 93:12845–12850.
  • Yang, X.-J., V. V. Ogryzko, J.-I. Nishikawa, B. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral E1A oncoprotein. Nature 382:319–324.
  • Zhang, Y., R. Iratni, H. Erdjument-Bromage, P. Tempst, and J. Reinberg 1997. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89:357–364.
  • Zhang, Y., G. LeRoy, H. P. Seelig, W. S. Lane, and J. Reinberg 1998. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95:279–289.
  • Zhang, Y., Z.-W. Sun, R. Iratni, H. Erdjument-Bromage, P. Tempst, M. Hampsey, and J. Reinberg 1998. SAP30, a novel protein conserved between human and yeast, is a component of a histone deacetylase complex. Mol. Cell 1:1021–1031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.