23
Views
51
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Histone Acetyltransferase Complexes Can Mediate Transcriptional Activation by the Major Glucocorticoid Receptor Activation Domain

, , , , &
Pages 5952-5959 | Received 18 Feb 1999, Accepted 18 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Almlöf, T., A. P. H. Wright, and J. Gustafsson 1995. Role of acidic and phosphorylated residues in gene activation by the glucocorticoid receptor. J. Biol. Chem. 270:17535–17540.
  • Almlöf, T., J.-Å. Gustafsson, and J. Wright 1997. Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor. Mol. Cell. Biol. 17:934–945.
  • Almlöf, T., A. E. Wallberg, J.-Å. Gustafsson, and J. Wright 1998. Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor τ1-core activation domain and target factors. Biochemistry 37:9586–9594.
  • Barlev, N. A., R. Candau, L. Wang, P. Darpin, N. Silverman, and J. Berger 1995. Characterization of physical interactions of the putative transcriptional adaptor, Ada2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270:19337–19344.
  • Berger, S. L., B. Pina, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and J. Guarente 1992. Genetic isolation of Ada2: a potential transcriptional adaptor required for function of certain acidic activation domains. Cell 70:251–265.
  • Brownell, J. E., J. Zhou, T. Randalli, R. Kobayashi, D. G. Edmundsson, S. Y. Roth, and J. Allis 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5 linking histone acetylation to gene activation. Cell 84:843–851.
  • Candau, R., and J. Berger 1996. Structural and functional analysis of yeast putative adaptors. Evidence for an adaptor complex in vivo. J. Biol. Chem. 271:5237–5245.
  • Candau, R., J. X. Zhou, C. D. Allis, and J. Berger 1997. Histone acetyltransferase activity and interaction with Ada2 are critical for Gcn5 function in vivo. EMBO J. 16:555–565.
  • Chávez, S., R. Candau, M. Truss, and J. Beato 1995. Constitutive repression and nuclear factor I-dependent hormone activation of the mouse mammary tumor virus promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:6987–6998.
  • Chiang, Y. C., P. Komarnitsky, D. Chase, and J. Denis 1996. ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. J. Biol. Chem. 271:32359–32365.
  • Cordingley, M. G., A. T. Riegel, and J. Hager 1987. Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 48:261–270.
  • Côté, J., R. T. Utley, and J. Workman 1995. Basic analysis of transcription factor binding to nucleosomes. Methods Mol. Genet. 6:108–129.
  • Dahlman-Wright, K., T. Almlöf, I. J. McEwan, J.-Å. Gustafsson, and J. Wright 1994. Delineation of a small region within the major transactivation domain of the human glucocorticoid receptor that mediates transactivation of gene expression. Proc. Natl. Acad. Sci. USA 91:1619–1623.
  • Dahlman-Wright, K., H. Baumann, I. J. McEwan, T. Almlöf, A. P. H. Wright, J.-Å. Gustafsson, and J. Härd 1995. Structural characterization of a minimal functional transactivation domain from the human glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 92:1699–1703.
  • Ford, J., I. J. McEwan, A. P. H. Wright, and J. Gustafsson 1997. Involvement of the TFIID protein complex in gene activation by the N-terminal transactivation domain of the glucocorticoid receptor in vitro. Mol. Endocrinol. 11:1467–1475.
  • Grant, P. A., L. Duggan, J. Côte, S. M. Roberts, J. E. Brownell, R. Candau, R. Ohba, T. Owen-Hughes, C. D. Allis, F. Winston, S. L. Berger, and J. Workman 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11:1640–1650.
  • Grant, P. A., D. E. Sterner, L. J. Duggan, J. L. Workman, and J. Berger 1998. The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol. 8:193–197.
  • Grant, P. A., D. Schieltz, M. G. Pray-Grant, D. J. Steger, J. C. Reese, J. R. Yates III, and J. Workman 1998. A subset of TAFIIs are integral components of the SAGA complex required for nucleosome acetylation and transcription stimulation. Cell 94:45–53.
  • Grant, P. A., D. Schieltz, M. G. Pray-Grant, J. R. Yates, and J. Workman 1998. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 2:863–867.
  • Grant, P. A., A. Eberharter, S. John, R. G. Cook, B. M. Turner, and J. Workman 1999. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274:5895–5900.
  • Grant, P. A., S. L. Berger, and J. L. Workman. Chromatin protocols, p. 311–317. In P. B. Becker (ed.), Methods in molecular biology. Humana Press Inc., Totowa, N.J., in press.
  • Gregory, P. D., A. Schmid, M. Zavari, L. Lui, S. L. Berger, and J. Hörtz 1998. Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast. Mol. Cell 4:495–505.
  • Hagemeier, C., A. Cook, and J. Kouzarides 1993. The retinoblastoma protein binds E2F residues required for activation in vivo and TBP binding in vitro. Nucleic Acids Res. 21:4998–5004.
  • Henriksson, A., A. Almlöf, J. Ford, I. J. McEwan, J.-Å. Gustafsson, and J. Wright 1997. Role of the Ada adaptor complex in gene activation by the glucocorticoid receptor. Mol. Cell. Biol. 17:3065–3073.
  • Hollenberg, S. M., and J. Evans 1988. Multiple and cooperative transactivation domains of the human glucocorticoid receptor. Cell 55:899–906.
  • Horiuchi, J., N. Silverman, G. A. Marcus, and J. Guarente 1995. ADA3, a putative transcriptional adaptor, consists of two separable domains and interacts with ADA2 and GCN5 in a trimeric complex. Mol. Cell. Biol. 15:1203–1209.
  • Ikeda, K., D. Steger, A. Eberharter, and J. Workman 1999. Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes. Mol. Cell. Biol. 19:855–863.
  • Iniguez-Lluhi, J. A., D. Y. Lou, and J. Yamamoto 1997. Three amino acid substitutions selectively disrupt the activation but not the repression function of the glucocorticoid receptor N terminus. J. Biol. Chem. 272:4149–4156.
  • Kuo, M. H., J. E. Brownell, R. E. Sobel, T. A. Ranalli, R. G. Cook, D. G. Edmondson, S. Y. Roth, and J. Allis 1996. Transcription-linked acetylation by Gcn5 of histones H3 and H4 at specific lysines. Nature 383:269–272.
  • Marcus, G. A., N. Silverman, S. L. Berger, J. Horiuchi, and J. Guarente 1994. Functional similarity and physical association between Gcn5 and Ada2: putative transcriptional adaptors. EMBO J. 13:4807–4815.
  • Marcus, G. A., J. Horiuchi, N. Silverman, and J. Guarente 1996. Ada5/Spt20 links the ADA and SPT genes, which are involved in yeast transcription. Mol. Cell. Biol. 16:3197–3205.
  • McEwan, I. J., A. P. H. Wright, K. Dahlman-Wright, J. Carlstedt-Duke, and J. Gustafsson 1993. Direct interaction of the τ1 transactivation domain of the human glucocorticoid receptor with the basal transcription machinery. Mol. Cell. Biol. 13:399–407.
  • McEwan, I. J., T. Almlöf, A.-C. Wikström, K. Dahlman-Wright, A. P. Wright, and J. Gustafsson 1994. The glucocorticoid receptor functions at multiple steps during transcription initiation by RNA polymerase II. J. Biol. Chem. 269:25629–25636.
  • Melcher, K., and J. Johnson 1995. GAL4 interacts with TATA-binding protein and coactivators. Mol. Cell. Biol. 15:2839–2848.
  • Muchardt, C., and J. Yaniv 1993. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12:4279–4290.
  • Ogryzko, V. V., T. Kotani, X. Zhang, R. L. Schiltz, T. Howard, X.-J. Yang, B. H. Howard, J. Qin, and J. Nakatani 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44.
  • Ohara-Nemoto, Y., P. E. Stromstedt, K. Dahlman-Wright, T. Nemoto, J.-Å. Gustafsson, and J. Carlstedt-Duke 1990. The steroid-binding properties of recombinant glucocorticoid receptor: a putative role for heat shock protein hsp90. J. Steroid Biochem. Mol. Biol. 37:481–490.
  • Parajape, S. M., R. T. Kamakaka, and J. Kadonaga 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297.
  • Pazin, M. J., and J. Kadonaga 1997. What’s up and down with histone deacetylation and transcription? Cell 89:325–328.
  • Piña, B., S. Berger, G. A. Marcus, N. Silverman, J. Agapite, and J. Guarente 1993. ADA3: a gene identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol. Cell. Biol. 13:5981–5989.
  • Pollard, K. J., and J. Peterson 1997. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol. Cell. Biol. 17:6212–6222.
  • Reik, A., G. Schutz, and J. Stewart 1991. Glucocorticoids are required for establishment and maintenance of an alteration in chromatin structure: induction leads to a reversible disruption of nucleosomes over an enhancement. EMBO J. 10:2569–2576.
  • Roberts, S. M., and J. Winston 1996. SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:3206–3213.
  • Roberts, S. M., and J. Winston 1997. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147:451–465.
  • Ruiz-Garcia, A. B., R. Sendra, M. Pamblanco, and J. Tordera 1997. Gcn5p is involved in the acetylation of histone H3 in nucleosomes. FEBS Lett. 403:186–190.
  • Saleh, A., V. Lang, R. Cook, and J. Brandl 1997. Identification of native complexes containing the yeast coactivator/repressor proteins NGG1/ADA3 and ADA2. J. Biol. Chem. 272:5571–5578.
  • Saleh, A., D. Schieltz, N. Ting, S. B. McMahon, D. W. Litchfield, J. R. Yates, S. P. Lees-Miller, M. D. Cole, and J. Brandl 1998. Tra1p is a component of the yeast Ada-Spt transcriptional regulatory complexes. J. Biol. Chem. 273:26559–26565.
  • Silverman, N., J. Agapite, and J. Guarente 1994. Yeast Ada2 protein binds to the VP16 protein activation domain and activates transcription. Proc. Natl. Acad. Sci. USA 91:11665–11668.
  • Steger, D. J., A. Eberharter, S. John, P. A. Grant, and J. Workman 1998. Purified histone acetyltransferase complexes stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc. Natl. Acad. Sci. USA 95:12924–12929.
  • Steger, D. J., and J. L. Workman. Transcriptional analysis of purified histone acetyltransferase complexes. Methods, in press.
  • Sterner, D. E., P. A. Grant, S. M. Roberts, L. J. Duggan, R. Belotserkovskaya, L. A. Pacella, F. Winston, J. L. Workman, and J. Berger 1999. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19:86–98.
  • Syntichaki, P., and J. Thireos 1998. The Gen5.Ada complex potentiates the histone acetyltransferase activity of Gcn5. J. Biol. Chem. 273:24414–24419.
  • Tasset, D., L. Tora, C. Fromental, E. Scheer, and J. Chambon 1990. Distinct classes of transcriptional activating domains function by different mechanisms. Cell 62:1177–1187.
  • Then Bergh, F., E. M. Flinn, J. Svaren, A. P. Wright, and W. Hörz. Unpublished data.
  • Tse, C., E. I. Georgieva, A. B. Ruiz-Garcia, R. Sendra, and J. Hansen 1998. Gcn5p, a transcription-related histone acetyltransferase, acetylates nucleosomes and folded nucleosomal arrays in the absence of other protein subunits. J. Biol. Chem. 273:32388–32392.
  • Utley, R. T., K. Ikeda, P. A. Grant, J. Côte, D. J. Steger, A. Eberharter, S. John, and J. Workman 1998. Transcriptional activators target histone acetyltransferase complexes to nucleosomes. Nature 394:498–502.
  • vom Baur, E., M. Harbers, S.-J. Um, A. Benecke, P. Chambon, and J. Losson 1998. The yeast Ada complex mediates the ligand-dependent activation function AF-2 of retinoid X and estrogen receptors. Genes Dev. 12:1278–1289.
  • Wakui, H., A. P. Wright, J.-Å. Gustafsson, and J. Zilliacus 1997. Interaction of the ligand-activated glucocorticoid receptor with the 14-3-3 η protein. J. Biol. Chem. 272:8153–8156.
  • Wang, L., C. Mizzen, C. Ying, R. Candau, N. Barlev, J. Brownell, C. D. Allis, and J. Berger 1997. Histone acetyltransferase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation. Mol. Cell. Biol. 17:519–527.
  • Wright, A. P. H., I. J. McEwan, K. Dahlman-Wright, and J. Gustafsson 1991. High level expression of the major transactivation domain of the human glucocorticoid receptor in yeast cells inhibits endogenous gene expression and cell growth. Mol. Endocrinol. 5:1366–1372.
  • Wright, A. P. H., and J. Gustafsson 1991. Mechanism of synergistic transcriptional transactivation by the human glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 88:8283–8287.
  • Yang, X. J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and J. Nakatani 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.
  • Zilliacus, J., A. P. Wright, J. Carlstedt-Duke, and J. Gustafsson 1995. Structural determinants of DNA-binding specificity by steroid receptors. Mol. Endocrinol. 9:389–400.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.