37
Views
41
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Tat-SF1 Protein Associates with RAP30 and Human SPT5 Proteins

, , , &
Pages 5960-5968 | Received 05 Apr 1999, Accepted 09 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Bieniasz, P. D., T. A. Gardina, H. P. Bogerd, and J. Cullen 1998. Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J. 17:7056–7065.
  • Buratowski, S., S. Hahn, P. A. Sharp, and J. Guarente 1988. Function of a yeast TATA element-binding protein in a mammalian transcription system. Nature 334:37–42.
  • Chen, D., Y. Fong, and J. Zhou 1999. Specific interaction of Tat with the human but not rodent P-TEFb complex mediates the species-specific Tat activation of HIV-1 transcription. Proc. Natl. Acad. Sci. USA 96:2728–2733.
  • Cujec, T., H. Okamoto, K. Fujinaga, J. Meyer, H. Chamberlin, D. O. Morgan, and J. Peterlin 1997. The HIV transactivator Tat binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II. Genes Dev. 11:2645–2657.
  • Cullen, B. R. 1993. Does HIV-1 Tat induce a change in viral initiation rights? Cell 73:417–420.
  • Cullen, B. R. 1998. HIV-1 auxiliary proteins: making connections in a dying cell. Cell 93:685–692.
  • Emerman, M., and J. Malim 1998. HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280:1880–1884.
  • Feng, S., and J. Holland 1988. HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334:165–167.
  • Garber, M. E., P. Wei, V. N. KewalRamani, T. P. Mayall, C. H. Herrmann, A. P. Rice, D. R. Littman, and J. Jones 1998. The interaction between HIV-1 tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev. 12:3512–3527.
  • Garcia-Martinez, L. F., G. Mavankal, J. M. Neveu, W. S. Lane, D. Ivanov, and J. Gaynor 1997. Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription. EMBO J. 16:2836–2850.
  • Hartzog, G. A., T. Wada, H. Handa, and J. Winston 1998. Evidence that SPT4, SPT5 and SPT6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12:357–369.
  • Herrmann, C. H., and J. Rice 1993. Specific interaction of the human immunodeficiency virus Tat proteins with a cellular protein kinase. Virology 197:601–608.
  • Herrmann, C. H., and J. Rice 1995. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J. Virol. 69:1612–1620.
  • Holstege, F. C. P., and J. Young 1999. Transcriptional regulation: contending with complexity. Proc. Natl. Acad. Sci. USA 96:2–4.
  • Jones, K. A. 1997. Taking a new TAK on tat transactivation. Genes Dev. 11:2593–2599.
  • Jones, K. A., and J. Peterlin 1994. Control of RNA initiation and elongation at the HIV-1 promoter. Annu. Rev. Biochem. 63:717–743.
  • Kato, H., H. Sumimoto, P. Pognonec, C. H. Chen, C. A. Rosen, and J. Roeder 1992. HIV-1 Tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Genes Dev. 6:655–666.
  • Li, X. Y., and J. Green 1998. The HIV-1 Tat cellular coactivator Tat-SF1 is a general transcription elongation factor. Genes Dev. 12:2992–2996.
  • Mancebo, H. S., G. Lee, J. Flygare, J. Tomassini, P. Luu, Y. Zhu, J. Peng, C. Blau, D. Hazuda, D. Price, and J. Flores 1997. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 11:2633–2644.
  • Marciniak, R. A., B. J. Calnan, A. D. Frankel, and J. Sharp 1990. HIV-1 Tat protein trans-activates transcription in vitro. Cell 63:791–802.
  • Marciniak, R. A., and J. Sharp 1991. HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J. 10:4189–4196.
  • Marshall, N. F., J. Peng, Z. Xie, and J. Price 1996. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal kinase. J. Biol. Chem. 271:27176–27183.
  • Marshall, N. F., and J. Price 1995. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270:12335–12338.
  • Parada, C. A., and J. Roeder 1996. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384:375–378.
  • Parvin, J. D., B. M. Shykind, R. E. Meyers, J. Kim, and J. Sharp 1994. Multiple sets of basal factors initiate transcription by RNA polymerase II. J. Biol. Chem. 269:18414–18421.
  • Peng, J., Y. Zhu, J. T. Milton, and J. Price 1998. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 12:755–762.
  • Ratnasabapathy, R., M. Sheldon, L. Johal, and J. Hernandez 1990. The HIV-1 long terminal repeat contains an unusual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters. Genes Dev. 4:2061–2074.
  • Sehgal, P. B., J. E. Darnell, and J. Tamm 1976. The inhibition by DRB(5,6-dichloro-1-β-d-ribofuranosylbenzimidazole) of hnRNA and mRNA production in HeLa cells. Cell 9:473–480.
  • Tan, S., T. Aso, R. C. Conaway, and J. Conaway 1994. Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. J. Biol. Chem. 269:25684–25691.
  • Tan, S., R. C. Conaway, and J. Conaway 1995. Dissection of transcription factor TFIIF functional domains required for initiation and elongation. Proc. Natl. Acad. Sci. USA 92:6042–6046.
  • Wada, T., T. Takagi, Y. Yamaguchi, A. Ferdous, T. Imai, S. Hirose, S. Sugimoto, K. Yank, G. A. Hartzog, F. Winston, S. Buratowski, and J. Handa 1998. DSIF, a novel transcription elongation factor that regulate RNA polymerase II processivity, is composed of human SPT4 and SPT5 homologs. Genes Dev. 12:343–353.
  • Wada, T., T. Takagi, Y. Yamaguchi, D. Watanabe, and J. Handa 1998. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17:7395–7403.
  • Wei, P., M. E. Garber, S. M. Fang, W. H. Fischer, and J. Jones 1998. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462.
  • Winston, F., and J. Carlson 1992. Yeast Snf/Swi transcriptional activators and Spt/Sin chromosome connection. Trends Genet. 8:387–391.
  • Wu-Baer, F., W. S. Lane, and J. Gaynor 1998. Role of the human homolog of the yeast transcription factor SPT5 in HIV-1 Tat-activation. J. Mol. Biol. 277:179–197.
  • Yamaguchi, Y., T. Takagi, T. Wada, K. Yano, A. Furuya, S. Sugimoto, T. Hasegawa, and J. Handa 1999. NELF, amultisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41–51.
  • Yamaguchi, Y., T. Wada, and J. Handa 1998. Interplay between positive and negative elongation factors: drawing a new view of DRB. Genes Cells 3:9–15.
  • Yamaguchi, Y., T. Wada, D. Watanabe, T. Takagi, J. Hasegawa, and J. Handa 1999. Structure and function of the human transcription elongation factor DSIF. J. Biol. Chem. 274:8085–8092.
  • Yang, X., C. H. Herrmann, and J. Rice 1996. The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function. J. Virol. 70:4576–4584.
  • Yankulov, K., K. Yamashita, R. Roy, J. M. Egly, and J. Bently 1995. The transcriptional elongation inhibitor 5,6-dichloro-1-β-d-ribofuransyl benzimidazole inhibits transcription factor TFIIH associated protein kinase. J. Biol. Chem. 270:23922–23925.
  • Zawel, L., K. P. Kumar, and J. Reinberg 1995. Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev. 9:1479–1490.
  • Zhou, Q., D. Chen, E. Pierstorff, and J. Luo 1998. Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. EMBO J. 17:3681–3691.
  • Zhou, Q., and J. Sharp 1995. Novel mechanism and factor for regulation by HIV-1 Tat. EMBO J. 14:321–328.
  • Zhou, Q., and J. Sharp 1996. Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat. Science 274:605–610.
  • Zhu, Y., T. Pe’ery, J. Peng, Y. Ramanathan, N. Marshall, T. Marshall, B. Amendt, M. B. Mathews, and J. Price 1997. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 11:2622–2632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.