34
Views
76
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Cleavage and Inactivation of ATM during Apoptosis

, , &
Pages 6076-6084 | Received 21 Dec 1998, Accepted 16 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Arends, M. J., and J. Wyllie 1991. Apoptosis—mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32:223–254.
  • Banin, S., L. Moyal, S. Y. Shieh, Y. Taya, C. W. Anderson, L. Chessa, N. I. Smorodinsky, C. Prives, Y. Reiss, Y. Shiloh, and J. Ziv 1998. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677.
  • Barlow, C., S. Hirotsune, R. Paylor, M. Liyange, M. Eckgaus, F. Collins, Y. Shiloh, J. N. Crawley, T. Reid, D. Tagle, and J. Wynshaw-Boris 1996. Atm-deficient mice: a paradigm of ataxia. Cell 86:159–171.
  • Barlow, C., K. D. Brown, C. X. Deng, D. A. Tagle, and J. Wynshaw-Boris 1997. Atm selectively regulates distinct p53-dependent cell-cycle checkpoint and apoptotic pathways. Nat. Genet. 17:453–456.
  • Brown, K. D., Y. Ziv, S. N. Sadanandan, L. Chessa, F. S. Collins, Y. Shiloh, and J. Tagle 1997. The ataxia-telangiectasia gene product, a constitutively expressed nuclear protein that is not up-regulated following genome damage. Proc. Natl. Acad. Sci. USA 94:1840–1845.
  • Canman, C. E., D. S. Lim, K. A. Cimprich, Y. Taya, K. Tamai, K. Sakaguchi, E. Appella, M. B. Kastan, and J. Siliciano 1998. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679.
  • Casciola-Rosen, L. A., G. J. Anhlat, and J. Rosen 1995. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182:1625–1634.
  • Chen, G., and J. Lee 1996. The product of the ATM gene is a 370-kDa nuclear phosphoprotein. J. Biol. Chem. 52:33693–33697.
  • Cimprich, K. A., T. B. Shin, C. T. Keith, and J. Schreiber 1996. cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein. Proc. Natl. Acad. Sci. USA 93:2850–2855.
  • Cliby, W. A., C. J. Roberts, K. A. Cimprich, C. M. Stringer, J. R. Lamb, S. L. Schreiber, and J. Friend 1998. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17:159–169.
  • Cryns, V., and J. Yuan 1998. Proteases to die for. Genes Dev. 12:1551–1570.
  • Ellis, H. M., J. Yuan, and J. Horvitz 1991. Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7:663–698.
  • Enari, M., H. Sakahira, H. Yokoyama, K. Okawa, A. Iwamatsu, and J. Nagata 1998. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50.
  • Faleiro, L., R. Kobayashi, H. Fearnhead, and J. Lazebnik 1997. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J. 16:2271–2281.
  • Foray, N., A. Priestley, C. F. Arlett, and J. Malaise 1997. Hypersensitivity of ataxia telangiectasia fibroblasts to ionising radiation is associated with a repair deficiency of DNA double-strand breaks. Int. J. Radiat. Biol. 72:271–283.
  • Han, Z., D. Chatterjee, D. M. He, J. Early, P. Pantazis, J. H. Wyche, and J. Hendrickson 1995. Evidence for a G2 checkpoint in p53-independent apoptosis induction by X-irradiation. Mol. Cell. Biol. 15:5849–5857.
  • Han, Z., N. Malik, T. Carter, W. H. Reeves, J. H. Wyche, and J. Hendrickson 1996. DNA-dependent protein kinase is a target for a CPP32-like apoptotic protease. J. Biol. Chem. 271:25035–25040.
  • Herzog, K. H., M. J. Chong, M. Kapsetaki, J. I. Morgan, and J. McKinnon 1998. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280:1089–1091.
  • Hoekstra, M. F. 1997. Responses to DNA damage and regulation of cell-cycle checkpoints by the ATM protein kinase family. Curr. Opin. Genet. Dev. 7:170–175.
  • Jackson, S. P. 1995. Cancer predisposition; ataxia-telangiectasia at the crossroads. Curr. Biol. 5:1210–1212.
  • Jackson, S. P. 1996. DNA damage detection by DNA dependent protein kinase and related enzymes. Cancer Surv. 28:261–279.
  • Jacobson, M. D., M. Weil, and J. Raff 1997. Programmed cell death in animal development. Cell 88:347–354.
  • Janicke, R. U., P. Ng, M. L. Sprengart, and J. Porter 1998. Caspase-3 is required for a-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273:15540–15545.
  • Jeggo, P. A. 1998. DNA repair: PARP—another guardian angel? Curr. Biol. 8:R49–R51.
  • Kastan, M. B., Q. Zhan, W. S. El-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and J. Fornace 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597.
  • Kaufmann, S. H., S. Desnoyers, Y. Ottaviano, N. E. Davidson, and J. Poirier 1993. Specific proteolytic cleavage of poly(ADP-ribose) polymerase—an early marker of chemotherapy-induced apoptosis. Cancer Res. 53:3976–3985.
  • Khanna, K., and J. Lavin 1993. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia. Oncogene 8:3307–3312.
  • Lakin, N. D., P. Weber, T. Stankovic, S. T. Rottinghaus, A. M. Taylor, and J. Jackson 1996. Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 13:2707–2716.
  • Lazebnik, Y. A., S. H. Kaufmann, S. Desnoyers, G. G. Poirier, and J. Earnshaw 1994. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347.
  • Lu, X., and J. Lane 1993. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell 75:765–778.
  • Martin, S. J., and J. Green 1995. Protease activation during apoptosis: death by a thousand cuts? Cell 82:349–352.
  • Meyn, M. S. 1995. Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res. 55:5991–6001.
  • Nicholson, D. W., A. Ali, N. A. Thornberry, J. P. Vaillancourt, C. K. Ding, M. Gallant, Y. Gareau, P. R. Griffen, M. Labelle, Y. A. Lazebnick, N. A. Munday, S. M. Raju, M. E. Smulson, T.-T. Yamin, V. L. Yu, and J. Miller 1995. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43.
  • Porter, A. G., P. Ng, and J. Janicke 1997. Death proteases come alive. Bioessays 19:501–507.
  • Rotman, G., and J. Shiloh 1998. ATM: from gene to function. Hum. Mol. Genet. 7:1555–1563.
  • Salvesen, G. S., and J. Dixit 1997. Caspases: intracellular signaling by proteolysis. Cell 91:443–446.
  • Savitsky, K., A. Bar-Shira, S. Gilad, G. Rotman, Y. Ziv, L. Vanagaite, D. A. Tagle, S. Smith, T. Uziel, S. Sfez, M. Ashjenazi, I. Pecker, M. Frydman, R. Harnik, S. R. Patanjali, A. Simmons, G. A. Clines, A. Sateil, R. A. Gatti, L. Chessa, O. Sanal, M. F. Lavin, N. G. I. Jaspers, A. M. R. Taylor, C. F. Arlett, T. Miki, S. M. Weissmann, M. Lovett, F. S. Collins, and J. Shiloh 1995. A single ataxia telangiectasia gene with a product similar to PI 3-kinase. Science 268:1749–1753.
  • Shiloh, Y. 1995. Ataxia-telangiectasia: closer to unraveling the mystery. Eur. J. Hum. Genet. 3:116–138.
  • Siliciano, J. D., C. E. Canman, Y. Taya, J. Sakaguchi, E. Appella, and J. Kastan 1997. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11:3471–3481.
  • Smith, G. C. M., R. B. Cary, N. D. Lakin, S.-H. Teo, D. J. Chen, and S. P. Jackson. Submitted for publication.
  • Song, Q., S. P. Lees-Miller, S. Kumar, Z. Zhang, D. W. Chan, G. C. M. Smith, S. P. Jackson, E. S. Alnemari, G. Litwack, K. K. Khanna, and J. Lavin 1996. DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 15:3238–3246.
  • Talanian, R. V., C. Quinlan, S. Trautz, M. C. Hackett, J. A. Mankovich, D. Banach, T. Ghayur, K. D. Brady, and J. Wong 1997. Substrate specificities of caspase family proteases. J. Biol. Chem. 272:9677–9682.
  • Tewari, M., L. T. Quan, K. O’Rourke, S. Desnoyers, Z. Zeng, D. R. Beidler, G. G. Poirier, G. S. Salvesen, and J. Dixit 1995. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–809.
  • Thompson, C. 1995. Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462.
  • Thornberry, N. A., T. A. Ranon, E. P. Pieterson, D. M. Rasper, T. Timkey, M. Garcia-Calvo, V. M. Houtzager, P. A. Nordstrom, S. Roy, J. P. Vaillancourt, K. T. Chapman, and J. Nicholson 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272:17907–17911.
  • Vaux, D. L. 1993. Towards an understanding of the molecular mechanisms of physiological cell death. Proc. Natl. Acad. Sci. USA 90:786–789.
  • Wang, X., J. Pai, E. A. Wiedenfield, J. C. Medina, C. A. Slaughter, J. L. Goldstein, and J. Brown 1995. Purification of an interleukin-1β converting enzyme-related cysteine protease that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains. J. Biol. Chem. 270:18044–18050.
  • Watters, D., K. K. Khanna, H. Beamish, G. Birrel, K. Spring, P. Kedar, M. Gatei, D. Stenzel, K. Hobson, S. Koslov, N. Zhang, A. Farrel, J. Ramsay, R. Gatti, and J. Lavin 1997. Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene 14:1911–1921.
  • Woo, M., R. Hakem, M. S. Soengas, G. S. Duncan, A. Shahinian, D. Kagi, A. Hakem, M. McCurrach, W. Khoo, S. A. Kaufman, G. Senaldi, T. Howard, S. W. Lowe, and J. Mak 1998. Essential contribution of caspase 3 CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12:805–819.
  • Xu, Y., and J. Baltimore 1996. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev. 10:2401–2410.
  • Yuan, J., S. Shaman, S. Ledoux, H. M. Ellis, and J. Horvitz 1993. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652.
  • Zakian, V. A. 1995. ATM-related genes: what do they tell us about functions of the human gene? Cell 82:685–687.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.