8
Views
45
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Yeast Trimeric Guanine Nucleotide-Binding Protein α Subunit, Gpa2p, Controls the Meiosis-Specific Kinase Ime2p Activity in Response to Nutrients

&
Pages 6110-6119 | Received 19 Jan 1999, Accepted 09 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Bardwell, L., J. G. Cook, C. J. Inouye, and J. Thorner 1994. Signal propagation and regulation in mating pheromone response pathway of the yeast Saccharomyces cerevisiae. Dev. Biol. 166:363–379.
  • Bowdish, K. S., and J. Mitchell 1993. Bipartite structure of an early meiotic upstream activation sequence from Saccharomyces cerevisiae. Mol. Cell. Biol. 13:2172–2181.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Broach, J. R. 1991. Ras-regulated signaling processes in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 1:370–377.
  • Cameron, S., L. Levin, M. Zoller, and J. Wigler 1988. cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae. Cell 53:555–566.
  • Colombo, S., P. Ma, L. Cauwenberg, J. Winderickx, M. Crauwels, A. Teunissen, D. Nauwelaers, J. H. de Winde, M. F. Gorwa, D. Colavizza, and J. Thevelein 1998. Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J. 17:3326–3341.
  • Crivellone, M. D., M. A. Wu, and J. Tzagoloff 1988. Assembly of the mitochondrial membrane system: analysis of structural mutants of the yeast coenzyme QH2-cytochrome c reductase complex. J. Biol. Chem. 263:14323–14333.
  • Exton, J. H. 1997. Cell signaling through guanine-nucleotide-binding regulatory proteins (G proteins) and phospholipases. Eur. J. Biochem. 243:10–20.
  • Fields, S., and J. Song 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245–246.
  • Frangioni, J. V., and J. Neel 1993. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal. Biochem. 210:179–187.
  • Guarente, L., and J. Ptashne 1981. Fusion of Escherichia coli LacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:2199–2203.
  • Hoffman, C. S., and J. Winston 1983. A ten minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of E. coli. Gene 57:257–272.
  • Hunter, T., and J. Plowman 1997. The protein kinases of budding yeast: six scores and more. Trends Biochem. Sci. 22:18–22.
  • Ito, H., Y. Fukuda, K. Murata, and J. Kimura 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kawaguchi, H., M. Yoshida, and J. Yamashita 1992. Nutritional regulation of meiosis-specific gene expression in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 56:289–297.
  • Kominami, K. I., Y. Sakata, M. Sakai, and J. Yamashita 1993. Protein kinase activity associated with the IME2 gene product, a meiotic inducer in the yeast Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 57:1731–1735.
  • Kübler, E., H. U. Mösch, S. Rupp, and J. Lisanti 1997. Gpa2p, a G-protein alpha-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via cAMP-dependent mechanism. J. Biol. Chem. 272:20321–20323.
  • Kurjan, J. 1993. The pheromone response pathway in Saccharomyces cerevisiae. Annu. Rev. Genet. 27:147–179.
  • Lorenz, M. C., and J. Heitman 1997. Yeast pseudohyphal growth is regulated by GPA2, a G protein α homologue. EMBO J. 16:7008–7018.
  • Lorenz, M. C., and J. Heitman 1998. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains. Genetics 150:1443–1457.
  • Mitchell, A. P., S. E. Driscoll, and J. Smith 1990. Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2104–2110.
  • Miyajima, I., M. Nakafuku, N. Nakayama, C. Brenner, A. Miyajima, K. Kaibuchi, K. I. Arai, Y. Kaziro, and J. Matsumoto 1987. GPA1, a haploid-specific essential gene, encodes a yeast homologue of mammalian G protein which may be involved in mating factor signal transduction. Cell 50:1011–1019.
  • Mösch, H-U., R. L. Roberts, and J. Fink 1996. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5352–5356.
  • Nakafuku, M., T. Obara, K. Kaibuchi, I. Miyajima, A. Miyajima, H. Itoh, S. Nakamura, K. I. Arai, K. Matsumoto, and J. Kaziro 1988. Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc. Natl. Acad. Sci. USA 85:1374–1378.
  • Neer, J. E. 1995. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80:249–257.
  • Papasavvas, S., S. Arkinstall, J. Reid, and J. Payton 1992. Yeast a-mating factor receptor and G-protein-linked adenylyl cyclase inhibition requires RAS2 and GPA2 activities. Biochem. Biophys. Res. Commun. 184:1373–1385.
  • Proft, M., P. Kötter, D. Hedges, N. Bojunga, and J. Entian 1995. CAT5, a new gene necessary for derepression of gluconeogenetic enzymes in Saccharomyces cerevisiae. EMBO J. 14:6116–6126.
  • Rothstein, R. J. 1983. One-step disruption in yeast. Methods Enzymol. 101:202–211.
  • Schricker, R., V. Magdolen, A. Kaniak, K. Wolf, and J. Bandlow 1992. The adenylate kinase family in yeast: identification of URA6 as a multicopy suppressor of deficiency in major AMP kinase. Gene 122:111–118.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Smith, H. E., and J. Mitchell 1989. A transcriptional cascade governs entry into meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:2142–2152.
  • Soler, M., A. Plovins, H. Martin, M. Molina, and J. Nombela 1995. Characterization of domains in the yeast MAP kinase Slt2 (Mkp1) required for functional activity and in vivo interaction with protein kinases Mkk1 and Mkk2. Mol. Microbiol. 17:833–842.
  • Su, Y-C., J. Han, S. Xu, M. Cobb, and J. Skolnik 1997. NIK is a new Ste20-related kinase that binds NCK and MEKK1 and activates the SAPK/JNK cascade via a conserved regulatory domain. EMBO J. 16:1279–1290.
  • Thevelein, J. M. 1994. Signal transduction in yeast. Yeast 10:1753–1790.
  • Toda, T., I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, S. Cameron, J. Broach, K. Matsumoto, and J. Wigler 1985. In yeast, RAS are controlling elements of adenylate cyclase. Cell 40:27–36.
  • Tu, H., M. Barr, D. L. Dong, and J. Wigler 1997. Multiple regulatory domains on the Byr2 protein kinase. Mol. Cell. Biol. 17:5876–5887.
  • Vernet, T., D. Digrand, and J. Thomas 1987. A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52:225–233.
  • Whiteway, M., L. Hougan, D. Dignard, D. Y. Thomas, L. Bell, G. C. Saari, F. J. Grant, P. O’Hara, and J. Mackay 1989. The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56:467–477.
  • Xue, Y., M. Batlle, and J. Hirsch 1998. GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p Gα subunit and functions in a Ras-independent pathway. EMBO J. 17:1996–2007.
  • Yoshida, M., H. Kawaguchi, Y. Sakata, K. I. Kominami, M. Hirano, H. Shima, R. Akada, and J. Yamashita 1990. Initiation of meiosis and sporulation in Saccharomyces cerevisiae requires a novel protein kinase homologue. Mol. Gen. Genet. 221:176–186.
  • Yun, C. W., H. Tamaki, R. Nakayama, K. Yamamoto, and J. Kumagai 1997. G-protein coupled receptor from yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 240:280–292.
  • Yun, C. W., H. Tamaki, R. Nakayama, K. Yamamoto, and J. Kumagai 1998. Gpr1, a putative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 252:29–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.