36
Views
95
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Specific Structural Motifs Determine TRAP220 Interactions with Nuclear Hormone Receptors

, , , , &
Pages 5433-5446 | Received 30 Dec 1999, Accepted 01 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Alen, P., Claessens, F., Verhoeven, G., Rombauts, W., and Peeters, B.. 1999. The androgen receptor amino-terminal domain plays a key role in p160 coactivator-stimulated gene transcription. Mol. Cell. Biol. 19:6085–6097
  • Baniahmad, A., Leng, X., Burris, T. P., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1995. The τ 4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol. 15:76–86
  • Barettino, D., Vivanco Ruiz, M. M., and Stunnenberg, H. G.. 1994. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13:3039–3049
  • Blanco, J. C., Minucci, S., Lu, J., Yang, X. J., Walker, K. K., Chen, H., Evans, R. M., Nakatani, Y., and Ozato, K.. 1998. The histone acetylase PCAF is a nuclear receptor coactivator. Genes Dev. 12:1638–1651
  • Carlberg, C., Bendik, I., Wyss, A., Meier, E., Sturzenbecker, L. J., Grippo, J. F., and Hunziker, W.. 1993. Two nuclear signalling pathways for vitamin D. Nature 361:657–660
  • Chakravarti, D., LaMorte, V. J., Nelson, M. C., Nakajima, T., Schulman, I. G., Juguilon, H., Montminy, M., and Evans, R. M.. 1996. Role of CBP/P300 in nuclear receptor signalling. Nature 383:99–103
  • Chen, H., Lin, R. J., Schiltz, R. L., Chakravarti, D., Nash, A., Nagy, L., Privalsky, M. L., Nakatani, Y., and Evans, R. M.. 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580
  • Chen, H., Lin, R. J., Xie, W., Wilpitz, D., and Evans, R. M.. 1999. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98:675–686
  • Chen, J. Y., Clifford, J., Zusi, C., Starrett, J., Tortolani, D., Ostrowski, J., Reczek, P. R., Chambon, P., and Gronemeyer, H.. 1996. Two distinct actions of retinoid-receptor ligands. Nature 382:819–822
  • Chiang, C. M., and Roeder, R. G.. 1993. Expression and purification of general transcription factors by FLAG epitope-tagging and peptide elution. Pept. Res. 6:62–64
  • Danielian, P. S., White, R., Lees, J. A., and Parker, M. G.. 1992. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11:1025–1033
  • Darimont, B. D., Wagner, R. L., Apriletti, J. W., Stallcup, M. R., Kushner, P. J., Baxter, J. D., Fletterick, R. J., and Yamamoto, K. R.. 1998. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12:3343–3356
  • Ding, X. F., Anderson, C. M., Ma, H., Hong, H., Uht, R. M., Kushner, P. J., and Stallcup, M. R.. 1998. Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol. Endocrinol. 12:302–313
  • Drane, P., Barel, M., Balbo, M., and Frade, R.. 1997. Identification of RB18A, a 205 kDa new p53 regulatory protein which shares antigenic and functional properties with p53. Oncogene 15:3013–3024
  • Durand, B., Saunders, M., Gaudon, C., Roy, B., Losson, R., and Chambon, P.. 1994. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13:5370–5382
  • Fondell, J. D., Roy, A. L., and Roeder, R. G.. 1993. Unliganded thyroid hormone receptor inhibits formation of a functional preinitiation complex: implications for active repression. Genes Dev. 7:1400–1410
  • Fondell, J. D., Ge, H., and Roeder, R. G.. 1996. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93:8329–8333
  • Fondell, J. D., Brunel, F., Hisatake, K., and Roeder, R. G.. 1996. Unliganded thyroid hormone receptor alpha can target TATA-binding protein for transcriptional repression. Mol. Cell. Biol. 16:281–287
  • Fondell, J. D., Guermah, M., Malik, S., and Roeder, R. G.. 1999. Thyroid hormone receptor-associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID. Proc. Natl. Acad. Sci. USA 96:1959–1964
  • Forman, B. M., Umesono, K., Chen, J., and Evans, R. M.. 1995. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 81:541–550
  • Gu, W., Malik, S., Ito, M., Yuan, C. X., Fondell, J. D., Zhang, X., Martinez, E., Qin, J., and Roeder, R. G.. 1999. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol. Cell 3:97–108
  • Hallenbeck, P. L., Phyillaier, M., and Nikodem, V. M.. 1993. Divergent effects of 9-cis-retinoic acid receptor on positive and negative thyroid hormone receptor-dependent gene expression. J. Biol. Chem. 268:3825–3828
  • Hanstein, B., Eckner, R., DiRenzo, J., Halachmi, S., Liu, H., Searcy, B., Kurokawa, R., and Brown, M.. 1996. p300 is a component of an estrogen receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93:11540–11545
  • Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G.. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736
  • Henttu, P. M., Kalkhoven, E., and Parker, M. G.. 1997. AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors. Mol. Cell. Biol. 17:1832–1839
  • Hong, H., Darimont, B. D., Ma, H., Yang, L., Yamamoto, K. R., and Stallcup, M. R.. 1999. An additional region of coactivator GRIP1 required for interaction with the hormone-binding domains of a subset of nuclear receptors. J. Biol. Chem. 274:3496–3502
  • Kakizawa, T., Miyamoto, T., Kaneko, A., Yajima, H., Ichikawa, K., and Hashizume, K.. 1997. Ligand-dependent heterodimerization of thyroid hormone receptor and retinoid X receptor. J. Biol. Chem. 272:23799–23804
  • Kalkhoven, E., Valentine, J. E., Heery, D. M., and Parker, M. G.. 1998. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17:232–243
  • Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S. C., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G.. 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414
  • Kato, S. et al. 1995. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494
  • Keller, H., Dreyer, C., Medin, J., Mahfoudi, A., Ozato, K., and Wahli, W.. 1993. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc. Natl. Acad. Sci. USA 90:2160–2164
  • Kliewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A., and Evans, R. M.. 1992. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774
  • Kurokawa, R., DiRenzo, J., Boehm, M., Sugarman, J., Gloss, B., Rosenfeld, M. G., Heyman, R. A., and Glass, C. K.. 1994. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371:528–531
  • Le Douarin, B., Nielsen, A. L., Garnier, J. M., Ichinose, H., Jeanmougin, F., Losson, R., and Chambon, P.. 1996. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 15:6701–6715
  • Lee, J. W., Choi, H. S., Gyuris, J., Brent, R., and Moore, D. D.. 1995. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9:243–254
  • Lehmann, J. M., Zhang, X. K., Graupner, G., Lee, M. O., Hermann, T., Hoffmann, B., and Pfahl, M.. 1993. Formation of retinoic X receptor homodimers leads to repression of T3 response: hormonal cross talk by ligand-induced squelching. Mol. Cell. Biol. 13:7698–7707
  • Ma, H., Hong, H., Huang, S. M., Irvine, R. A., Webb, P., Kushner, P. J., Coetzee, G. A., and Stallcup, M. R.. 1999. Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol. Cell. Biol. 19:6164–6173
  • Mak, H. Y., Hoare, S., Henttu, P. M., and Parker, M. G.. 1999. Molecular determinants of the estrogen receptor-coactivator interface. Mol. Cell. Biol. 19:3895–3903
  • Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P. et al. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839
  • Mangelsdorf, D. J., and Evans, R. M.. 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850
  • McInerney, E. M., Rose, D. W., Flynn, S. E., Westin, S., Mullen, T. M., Krones, A., Inostroza, J., Torchia, J., Nolte, R. T., Assa-Munt, N., Milburn, M. V., Glass, C. K., and Rosenfeld, M. G.. 1998. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 12:3357–3368
  • McKenna, N. J., Lanz, R. B., and O'Malley, B. W.. 1999. Nuclear receptor coregulators: cellular and molecular biology. Endocr. Rev. 20:321–344
  • Minucci, S., Leid, M., Toyama, R., Saint-Jeannet, J. P., Peterson, V. J., Horn, V., Ishmael, J. E., Bhattacharyya, N., Dey, A., Dawid, I. B., and Ozato, K.. 1997. Retinoid X receptor (RXR) within the RXR-retinoic acid receptor heterodimer binds its ligand and enhances retinoid-dependent gene expression. Mol. Cell. Biol. 17:644–655
  • Moras, D., and Gronemeyer, H.. 1998. The nuclear receptor ligand-binding domain: structure and function. Curr. Opin. Cell Biol. 10:384–391
  • Nagpal, S., Saunders, M., Kastner, P., Durand, B., Nakshatri, H., and Chambon, P.. 1992. Promoter context- and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell 70:1007–1019
  • Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeld, M. G., Willson, T. M., Glass, C. K., and Milburn, M. V.. 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143
  • Parker, M. G.. 1993. Steroid and related receptors. Curr. Opin. Cell Biol. 5:499–504
  • Rachez, C., Suldan, Z., Ward, J., Chang, C. P., Burakov, D., Erdjument-Bromage, H., Tempst, P., and Freedman, L. P.. 1998. A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev. 12:1787–1800
  • Rachez, C., Gamble, M., Chang, C.-P. B., Atkins, G. B., Lazar, M. A., and Freedman, L. P.. 2000. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol. Cell. Biol. 20:2718–2726
  • Rosen, E. D., O'Donnell, A. L., and Koenig, R. J.. 1992. Ligand-dependent synergy of thyroid hormone and retinoid X receptors. J. Biol. Chem. 267:22010–22013
  • Ryu, S., Zhou, S., Ladurner, A. G., and Tjian, R.. 1999. The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature 397:446–450
  • Saatcioglu, F., Bartunek, P., Deng, T., Zenke, M., and Karin, M.. 1993. A conserved C-terminal sequence that is deleted in v-ErbA is essential for the biological activities of c-ErbA (the thyroid hormone receptor). Mol. Cell. Biol. 13:3675–3685
  • Shiau, A. K., Barstad, D., Loria, P. M., Cheng, L., Kushner, P. J., Agard, D. A., and Greene, G. L.. 1998. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937
  • Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198
  • Sun, X., Zhang, Y., Cho, H., Rickert, P., Lees, E., Lane, W., and Reinberg, D.. 1998. NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol. Cell 2:213–222
  • Tora, L., White, J., Brou, C., Tasset, D., Webster, N., Scheer, E., and Chambon, P.. 1989. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59:477–487
  • Torchia, J., Rose, D. W., Inostroza, J., Kamei, Y., Westin, S., Glass, C. K., and Rosenfeld, M. G.. 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684
  • Torchia, J., Glass, C., and Rosenfeld, M. G.. 1998. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10:373–383
  • Treuter, E., Johansson, L., Thomsen, J. S., Warnmark, A., Leers, J., Pelto-Huikko, M., Sjoberg, M., Wright, A. P., Spyrou, G., and Gustafsson, J. A.. 1999. Competition between thyroid hormone receptor-associated protein (TRAP) 220 and transcriptional intermediary factor (TIF) 2 for binding to nuclear receptors. Implications for the recruitment of TRAP and p160 coactivator complexes. J. Biol. Chem. 274:6667–6677
  • Tsai, M. J., and O'Malley, B. W.. 1994. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63:451–486
  • Voegel, J. J., Heine, M. J., Tini, M., Vivat, V., Chambon, P., and Gronemeyer, H.. 1998. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17:507–519
  • Westin, S., Kurokawa, R., Nolte, R. T., Wisely, G. B., McInerney, E. M., Rose, D. W., Milburn, M. V., Rosenfeld, M. G., and Glass, C. K.. 1998. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature 395:199–202
  • Wong, J., Shi, Y. B., and Wolffe, A. P.. 1997. Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone-regulated chromatin disruption is not sufficient for transcriptional activation. EMBO J. 16:3158–3171
  • Yuan, C. X., Ito, M., Fondell, J. D., Fu, Z. Y., and Roeder, R. G.. 1998. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl. Acad. Sci. USA 95:7939–7944
  • Zhang, J., and Fondell, J. D.. 1999. Identification of mouse TRAP100: a transcriptional coregulatory factor for thyroid hormone and vitamin D receptors. Mol. Endocrinol. 13:1130–1140
  • Zhang, J., Hu, X., and Lazar, M. A.. 1999. A novel role for helix 12 of retinoid X receptor in regulating repression. Mol. Cell. Biol. 19:6448–6457
  • Zhu, Y., Qi, C., Jain, S., Rao, M. S., and Reddy, J. K.. 1997. Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J. Biol. Chem. 272:25500–25506

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.