29
Views
60
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Activation of the Kss1 Invasive-Filamentous Growth Pathway Induces Ty1 Transcription and Retrotransposition in Saccharomyces cerevisiae

, &
Pages 5766-5776 | Received 17 Dec 1999, Accepted 28 Apr 2000, Published online: 28 Mar 2023

REFERENCES

  • Adams, A., Gottschling, D. E., Kaiser, C. A., and Stearns, T.. 1997. Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Baur, M., Esch, R. K., and Errede, B.. 1997. Cooperative binding interactions required for function of the Ty1 sterile responsive element. Mol. Cell. Biol. 17:4330–4337
  • Benard, L., Carroll, K., Valle, R. C., and Wickner, R. B.. 1998. Ski6p is a homolog of RNA-processing enzymes that affects translation of non-poly(A) mRNAs and 60S ribosomal subunit biogenesis. Mol. Cell. Biol. 18:2688–2696
  • Boeke, J. D., Eichinger, D., Castrillon, D., and Fink, G. R.. 1988. The Saccharomyces cerevisiae genome contains functional and nonfunctional copies of transposon Ty1. Mol. Cell. Biol. 8:1432–1442
  • Boeke, J. D., Garfinkel, D. J., Styles, C. A., and Fink, G. R.. 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500
  • Boeke, J. D., and Sandmeyer, S. B.. 1991. Yeast transposable elements The molecular and cellular biology of the yeast Saccharomyces. Broach, J. R., Pringle, J. R., and Jones, E. W. 193–261 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Boeke, J. D., Styles, C. A., and Fink, G. R.. 1986. Saccharomyces cerevisiae SPT3 gene is required for transposition and transpositional recombination of chromosomal Ty elements. Mol. Cell. Biol. 6:3575–3581
  • Bradshaw, V. A., and McEntee, K.. 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218:465–474
  • Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H., and Hieter, P.. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122
  • Ciriacy, M., Freidel, K., and Lohning, C.. 1991. Characterization of trans-acting mutations affecting Ty and Ty-mediated transcription in Saccharomyces cerevisiae. Curr. Genet. 20:441–448
  • Company, M., Adler, C., and Errede, B.. 1988. Identification of a Ty1 regulatory sequence responsive to STE7 and STE12. Mol. Cell. Biol. 8:2545–2554
  • Company, M., and Errede, B.. 1987. Cell-type-dependent gene activation by yeast transposon Ty1 involves multiple regulatory determinants. Mol. Cell. Biol. 7:3205–3211
  • Conte, D. J., Barber, E., Banerjee, M., Garfinkel, D. J., and Curcio, M. J.. 1998. Posttranslational regulation of Ty1 retrotransposition by mitogen-activated protein kinase Fus3. Mol. Cell. Biol. 18:2502–2513
  • Conte, D. J., and Curcio, J. M.. 2000. Fus3 controls Ty1 transpositional dormancy through the invasive growth MAPK pathway. Mol. Cell. Biol. 35:415–427
  • Cook, J. G., Bardwell, L., and Thorner, J.. 1997. Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signaling pathway. Nature 390:85–88
  • Curcio, M. J., and Garfinkel, D. J.. 1991. Single-step selection for Ty1 element retrotransposition. Proc. Natl. Acad. Sci. USA 88:936–940
  • Curcio, M. J., Hedge, A. M., Boeke, J. D., and Garfinkel, D. J.. 1990. Ty RNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 220:213–221
  • Devine, S. E., and Boeke, J. D.. 1996. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA-polymerase III. Genes Dev. 10:620–633
  • Dubois, E., Jacobs, E., and Jauniaux, J. C.. 1982. Expression of the ROAM mutations in Saccharomyces cerevisiae: involvement of trans-acting regulatory elements and relation with the Ty1 transcription. EMBO J. 1:1133–1139
  • Eichenbaum, Z., and Livneh, Z.. 1998. UV light induces IS10 transposition in Escherichia coli. Genetics 149:1173–1181
  • Elder, R. T., St. John, T. P., Stinchcomb, D. T., Davis, R. W., Scherer, S., and Davis, R. W.. 1981. Studies on the transposable element Ty1 of yeast. Cold Spring Harb. Symp. Quant. Biol. 45:581–591
  • Elion, E. A., Brill, J. A., and Fink, G. R.. 1991. FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc. Natl. Acad. Sci. USA 88:9392–9396
  • Elion, E. A., Grisafi, P. L., and Fink, G. R.. 1990. FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation. Cell 60:649–664
  • Errede, B., Cardillo, T. S., Sherman, F., Dubois, E., Deschamps, J., and Wiame, J. M.. 1980. Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell. 22:427–436
  • Errede, B., Cardillo, T. S., Wever, G., Sherman, F., Stiles, J. I., Friedman, L. R., and Sherman, F.. 1981. Studies on transposable elements in yeast. Cold Spring Harb. Symp. Quant. Biol. 45:593–607
  • Errede, B., Company, M., and Hutchison, C. A. D.. 1987. Ty1 sequence with enhancer and mating-type-dependent regulatory activities. Mol. Cell. Biol. 7:258–265
  • Farabaugh, P. J., Vimaladithan, A., Turkel, S., Johnson, R., and Zhao, H.. 1993. Three downstream sites repress transcription of a Ty2 retrotransposon in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:2081–2090
  • Fulton, A. M., Rathjen, P. D., Kingsman, S. M., and Kingsman, A. J.. 1988. Upstream and downstream transcriptional control signals in the yeast retrotransposon, TY. Nucleic Acids Res. 16:5439–5458
  • Galitski, T., Saldanha, A. J., Styles, C. A., Lander, E. S., and Fink, G. R.. 1999. Ploidy regulation of gene expression. Science 285:251–254
  • Gimeno, C. J., Ljungdahl, P. O., Styles, C. A., and Fink, G. R.. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090
  • Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philipsen, P., Tettelin, H., and Oliver, S. G.. 1996. Life with 6000 genes. Science 274:546–567
  • Hagen, D. C., McCaffrey, G., Sprague, G. F.Jr.. 1991. Pheromone response elements are necessary and sufficient for basal and pheromone-induced transcription of the FUS1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:2952–2961
  • Kim, J. M., Vanguri, S., Boeke, J. D., Gabriel, A., and Voytas, D. F.. 1998. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res. 8:464–478
  • Laloux, I., Dubois, E., Dewerchin, M., and Jacobs, E.. 1990. TEC1, a gene involved in the activation of Ty1 and Ty1-mediated gene expression in Saccharomyces cerevisiae: cloning and molecular analysis. Mol. Cell. Biol. 10:3541–3550
  • Lauermann, V., Hermankova, M., and Boeke, J. D.. 1997. Increased length of long terminal repeats inhibits Ty1 transposition and leads to the formation of tandem multimers. Genetics 145:911–922
  • Lee, B. S., Lichtenstein, C. P., Faiola, B., Rinckel, L. A., Wysock, W., Curcio, M. J., and Garfinkel, D. J.. 1998. Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p. Genetics 148:1743–1761
  • Liao, X.-B., Clare, J., and Farabaugh, P.. 1987. The upstream activation site of a Ty2 element of yeast is necessary but not sufficient to promote maximal transcription of the element. Proc. Natl. Acad. Sci. USA 84:8520–8524
  • Liu, H., Styles, C. A., and Fink, G. R.. 1993. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262:1741–1744
  • Liu, H., Styles, C. A., and Fink, G. R.. 1996. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144:967–978
  • Madhani, H. D., and Fink, G. R.. 1997. Combinatorial control required for the specificity of yeast MAPK signaling. Science 275:1314–1317
  • Madhani, H. D., and Fink, G. R.. 1998. The riddle of MAP kinase signaling specificity. Trends Genet. 14:151–155
  • Madhani, H. D., Styles, C. A., and Fink, G. R.. 1997. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91:673–684
  • Maftahi, M., Gaillardin, C., and Nicaud, J. M.. 1996. Sticky-end polymerase chain reaction method for systematic gene disruption in Saccharomyces cerevisiae. Yeast 12:859–68
  • Miller, J. H.. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Myers, A. M., Tzagoloff, A., Kinney, D. M., and Lusty, C. J.. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299–310
  • Oehlen, L., and Cross, F. R.. 1998. The mating factor response pathway regulates transcription of TEC1, a gene involved in pseudohyphal differentiation of Saccharomyces cerevisiae. FEBS Lett. 429:83–88
  • Pan, X., and Heitman, J.. 1999. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:4874–4887
  • Qian, Z., Huang, H., Hong, J. Y., Burck, C. L., Johnston, S. D., Berman, J., Carol, A., and Liebman, S. W.. 1998. Yeast Ty1 retrotransposition is stimulated by a synergistic interaction between mutations in chromatin assembly factor I and histone regulatory proteins. Mol. Cell. Biol. 18:4783–4792
  • Roberts, R. L., and Fink, G. R.. 1994. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8:2974–2985
  • Rose, M., and Botstein, D.. 1983. Construction and use of gene fusions to lacZ (beta-galactosidase) that are expressed in yeast. Methods Enzymol. 101:167–180
  • Rupp, S., Summers, E., Lo, H. J., Madhani, H., and Fink, G.. 1999. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18:1257–1269
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Wessler, S. R.. 1996. Plant retrotransposons—turned on by stress. Curr. Biol. 6:959–961
  • White, S. E., Habera, L. F., and Wessler, S. R.. 1994. Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl. Acad. Sci. USA 91:11792–11796
  • Winston, F., Dollard, C., and Ricupero-Hovasse, S. L.. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55
  • Xu, H., and Boeke, J. D.. 1991. Inhibition of Ty1 transposition by mating pheromones in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:2736–2743
  • Yu, K., and Elder, R.. 1989. A region internal to the coding sequence is essential for transcription of the yeast Ty1-D15 element. Mol. Cell. Biol. 9:3667–3678

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.