10
Views
72
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Structure and Dynamic Properties of a Glucocorticoid Receptor-Induced Chromatin Transition

, , , , , & show all
Pages 6466-6475 | Received 17 Mar 2000, Accepted 07 Jun 2000, Published online: 28 Mar 2023

REFERENCES

  • Archer, T. K., Cordingley, M. G., Wolford, R. G., and Hager, G. L.. 1991. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol. Cell. Biol. 11:688–698
  • Archer, T. K., Lefebvre, P., Wolford, R. G., and Hager, G. L.. 1992. Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255:1573–1576
  • Becker, P. B., and Wu, C.. 1992. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol. Cell. Biol. 12:2241–2249
  • Blomquist, P., Li, Q., and Wrange, O.. 1996. The affinity of nuclear factor 1 for its DNA site is drastically reduced by nucleosome organization irrespective of its rotational or translational position. J. Biol. Chem. 271:153–159
  • Cairns, B. R., Levinson, R. S., Yamamoto, K. R., and Kornberg, R. D.. 1996. Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 10:2131–2144
  • Cato, A. C., Skroch, P., Weinmann, J., Butkeraitis, P., and Ponta, H.. 1988. DNA sequences outside the receptor-binding sites differently modulate the responsiveness of the mouse mammary tumor virus to various steroid hormones. EMBO J. 7:1403–1410
  • Cavin, C., and Buetti, E.. 1995. Tissue-specific and ubiquitous factors binding next to the glucocorticoid receptor modulate transcription from the mouse mammary tumor virus promoter. J. Virol. 69:3759–3770
  • Cordingley, M. G., Riegel, A. T., and Hager, G. L.. 1987. Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 48:261–270
  • Di Croce, L., Koop, R., and Beato, M.. 1999. Rapid purification of intact minichromosomes over a glycerol cushion. Nucleic Acids Res. 27:11
  • Di Croce, L., Koop, R., Venditti, P., Westphal, H. M., Nightingale, K. P., Corona, D. F., Becker, P. B., and Beato, M.. 1999. Two-step synergism between the progesterone receptor and the DNA-binding domain of nuclear factor 1 on MMTV minichromosomes. Mol. Cell 4:45–54
  • Dilworth, F. J., Fromental-Ramain, C., Remboutsika, E., Benecke, A., and Chambon, P.. 1999. Ligand-dependent activation of transcription in vitro by retinoic acid receptor alpha/retinoid X receptor alpha heterodimers that mimics transactivation by retinoids in vivo. Proc. Natl. Acad. Sci. USA 96:1995–2000
  • Eriksson, M. A., Hard, T., and Nilsson, L.. 1995. Molecular dynamics simulations of the glucocorticoid receptor DNA-binding domain in complex with DNA and free in solution. Biophys. J. 68:402–426
  • Eriksson, M. A., and Nilsson, L.. 1995. Structure, thermodynamics and cooperativity of the glucocorticoid receptor DNA-binding domain in complex with different response elements. Molecular dynamics simulation and free energy perturbation studies. J. Mol. Biol. 253:453–472
  • Fragoso, G., John, S., Roberts, M. S., and Hager, G. L.. 1995. Nucleosome positioning on the MMTV LTR results from the frequency-biased occupancy of multiple frames. Genes Dev. 9:1933–1947
  • Fragoso, G., Pennie, W. D., John, S., and Hager, G. L.. 1998. The position and length of the steroid-dependent hypersensitive region in the mouse mammary tumor virus long terminal repeat is invariant despite multiple nucleosome B frames. Mol. Cell. Biol. 18:3633–3644
  • Fryer, C. J., and Archer, T. K.. 1998. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393:88–91
  • Gouilleux, F., Sola, B., Couette, B., and Richard-Foy, H.. 1991. Cooperation between structural elements in hormone-regulated transcription from the mouse mammary tumor virus promoter. Nucleic Acids Res. 19:1563–1569
  • Hager, G. L., Archer, T. K., Fragoso, G., Bresnick, E. H., Tsukagoshi, Y., John, S., and Smith, C. L.. 1993. Influence of chromatin structure on the binding of transcription factors to DNA. Chromosomes and DNA. Cold Spring Harbor Symp. Quant. Biol. 58:63–71
  • Hager, G. L., and Fragoso, G.. 1999. Analysis of nucleosome positioning in mammalian cells Chromatin. Wassarman, P. M., and Wolffe, A. P. 626–638 Academic Press, Orlando, Fla
  • Hager, G. L., Smith, C. L., Svaren, J., and Horz, W.. 1994. Initiation of expression: remodelling genes Chromatin structure and gene expression. Elgin, S. C. R. 89–103 Oxford University Press, Oxford, United Kingdom
  • Hirst, M. A., Northrop, J. P., Danielsen, M., and Ringold, G. M.. 1990. High level expression of wild type and variant mouse glucocorticoid receptors in Chinese hamster ovary cells. Mol. Endocrinol. 4:162–170
  • Lee, H.-L., and Archer, T. K.. 1994. Nucleosome mediated disruption of transcription factor: chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vivo. Mol. Cell. Biol. 14:32–41
  • Le Ricousse, S., Gouilleux, F., Fortin, D., Joulin, V., and Richard-Foy, H.. 1996. Glucocorticoid and progestin receptors are differently involved in the cooperation with a structural element of the mouse mammary tumor virus promoter. Proc. Natl. Acad. Sci. USA 93:5072–5077
  • Liu, J., Bramblett, D., Zhu, Q., Lozano, M., Kobayashi, R., Ross, S. R., and Dudley, J. P.. 1997. The matrix attachment region-binding protein SATB1 participates in negative regulation of tissue-specific gene expression. Mol. Cell. Biol. 17:5275–5287
  • Liu, Z., Wong, J., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1999. Steroid receptor coactivator-1 (SRC-1) enhances ligand-dependent and receptor-dependent cell-free transcription of chromatin. Proc. Natl. Acad. Sci. USA 96:9485–9490
  • Luisi, B. F., Xu, W. X., Otwinowski, Z., Freedman, L. P., Yamamoto, K. R., and Sigler, P. B.. 1991. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352:497–505
  • McNally, J. G., Mueller, W. G., Walker, D., Wolford, R. G., and Hager, G. L.. 2000. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:1262–1265
  • Mellentin-Michelotti, J., John, S., Pennie, W. D., Williams, T., and Hager, G. L.. 1994. The 5′ enhancer of the MMTV LTR contains a functional AP-2 element. J. Biol. Chem. 269:31983–31990
  • Mink, S., Ponta, H., and Cato, A. C. B.. 1990. The long terminal repeat region of the mouse mammary tumour virus contains multiple regulatory elements. Nucleic Acids Res. 18:2017–2024
  • Muchardt, C., and Yaniv, M.. 1993. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12:4279–4290
  • Nordeen, S. K.. 1988. Luciferase reporter gene vectors for analysis of promoters and enhancers. BioTechniques 6:454–458
  • Ostlund Farrants, A. K., Blomquist, P., Kwon, H., and Wrange, O.. 1997. Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol. Cell. Biol. 17:895–905
  • Payvar, F., DeFranco, D., Firestone, G. L., Edgar, B., Wrange, O., Okret, S., Gustafsson, J. A., and Yamamoto, K. R.. 1983. Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell 35:381–392
  • Pennie, W. D., Hager, G. L., and Smith, C. L.. 1995. Nucleoprotein structure influences the response of the mouse mammary tumor virus promoter to activation of the cAMP signalling pathway. Mol. Cell. Biol. 15:2125–2134
  • Perlmann, T., Eriksson, P., and Wrange, O.. 1990. Quantitative analysis of the glucocorticoid receptor-DNA interaction at the mouse mammary tumor virus glucocorticoid response element. J. Biol. Chem. 265:17222–17229
  • Perlmann, T., and Wrange, O.. 1988. Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome. EMBO J. 7:3073–3079
  • Pina, B., Brüggemeier, U., and Beato, M.. 1990. Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60:719–731
  • Richard-Foy, H., and Hager, G. L.. 1987. Sequence specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J. 6:2321–2328
  • Richard-Foy, H., Sistare, F. D., Riegel, A. T., Simons, S. S.Jr., and Hager, G. L.. 1987. Mechanism of dexamethasone 21-mesylate antiglucocorticoid action. II. Receptor-antiglucocorticoid complexes are unable to interact productively with MMTV LTR chromatin in vivo. Mol. Endocrinol. 1:659–665
  • Rigaud, G., Roux, J., Pictet, R., and Grange, T.. 1991. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 67:977–986
  • Ross, S. R., Hsu, C.-L. L., Choi, Y., Mok, E., and Dudley, J. P.. 1990. Negative regulation in correct tissue-specific expression of mouse mammary tumor virus in transgenic mice. Mol. Cell. Biol. 10:5822–5829
  • Sandaltzopoulos, R., Blank, T., and Becker, P. B.. 1994. Transcriptional repression by nucleosomes but not H1 in reconstituted preblastoderm Drosophila chromatin. EMBO J. 13:373–379
  • Schaffner, W.. 1988. Gene regulation. A hit-and-run mechanism for transcriptional activation? Nature 336:427–428
  • Shapiro, D. J., Sharp, P. A., Wahli, W. W., and Keller, M. J.. 1988. A high-efficiency HeLa cell nuclear transcription extract. DNA 7:47–55
  • Smith, C. L., and Hager, G. L.. 1997. Transcriptional regulation of mammalian genes in vivo: a tale of two templates. J. Biol. Chem. 272:27493–27496
  • Truss, M., Bartsch, J., Hache, R. S., and Beato, M.. 1993. Chromatin structure modulates transcription factor binding to the mouse mammary tumor virus (MMTV) promoter. J. Steroid Biochem. Mol. Biol. 47:1–10
  • Truss, M., Bartsch, J., Schelbert, A., Hache, R. J., and Beato, M.. 1995. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14:1737–1751
  • Tsukiyama, T., and Wu, C.. 1995. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83:1011–1020
  • Varga-Weisz, P. D., Wilm, M., Bonte, E., Dumas, K., Mann, M., and Becker, P. B.. 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602 (Erratum, 389:1003.)
  • Wall, G., Varga-Weisz, P. D., Sandaltzopoulos, R., and Becker, P. B.. 1995. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro. EMBO J. 14:1727–1736
  • Warren, B. S., Kusk, P., Wolford, R. G., and Hager, G. L.. 1996. Purification and stabilization of transcriptionally active glucocorticoid receptor. J. Biol. Chem. 271:11434–11440
  • Yudkovsky, N., Logie, C., Hahn, S., and Peterson, C. L.. 1999. Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev. 13:2369–2374
  • Zaret, K. S., and Yamamoto, K. R.. 1984. Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoid-dependent enhancer element. Cell 38:29–38

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.