71
Views
160
CrossRef citations to date
0
Altmetric
Gene Expression

Eukaryotic Translation Initiation Factor 4E (eIF4E) Binding Site and the Middle One-Third of eIF4GI Constitute the Core Domain for Cap-Dependent Translation, and the C-Terminal One-Third Functions as a Modulatory Region

, , , &
Pages 468-477 | Received 30 Aug 1999, Accepted 06 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Allen, M., Metz, A. M., Timmer, R. T., Rhoads, R. E., and Browning, K. S.. 1992. Isolation and sequence of the cDNAs encoding the subunits of the isozyme form of wheat protein synthesis initiation factor 4F. J. Biol. Chem. 267:23232–23236
  • De Gregorio, E., Preiss, T., and Hentze, M. W.. 1998. Translational activation of uncapped mRNAs by the central part of human eIF4G is 5′ end-dependent. RNA 4:828–836
  • Fuerst, T. R., Niles, E. G., Studier, F. W., and Moss, B.. 1986. Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83:8122–8126
  • Fukunaga, R., and Hunter, T.. 1997. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16:1921–1933
  • Gingras, A.-C., Raught, B., and Sonenberg, N.. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913–963
  • Goyer, C., Altmann, M., Lee, H. S., Blanc, A., Deshmukh, M., Woolford, J. L.Jr., Trachsel, H., and Sonenberg, N.. 1993. TIF4631 and TIF4632: two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol. Cell. Biol. 13:4860–4874
  • Gradi, A., Imataka, H., Svitkin, Y. V., Rom, E., Raught, B., Morino, S., and Sonenberg, N.. 1998. A novel functional human eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 18:334–342
  • Gunnery, S., Mäivali, Ü., and Mathews, M. B.. 1997. Translation of an uncapped mRNA involves scanning. J. Biol. Chem. 272:21642–21646
  • Haghighat, A., Svitkin, Y. V., Novoa, I., Kuechler, E., Skern, T., and Sonenberg, N.. 1996. The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J. Virol. 70:8445–8450
  • Hellen, C. U. T., Witherell, G. W., Schmid, M., Shin, S. H., Pestova, T. V., Gil, A., and Wimmer, E.. 1993. A cytoplasmic 57kDa protein that is required for translation of picornavirus RNA by internal ribosome entry is identical to the nuclear pyrimidine tract-binding protein. Proc. Natl. Acad. Sci. USA 90:7642–7646
  • Imataka, H., Olsen, H. S., and Sonenberg, N.. 1997. A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 16:817–825
  • Imataka, H., and Sonenberg, N.. 1997. Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol. Cell. Biol. 17:6940–6947
  • Imataka, H., Gradi, A., and Sonenberg, N.. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17:7480–7489
  • Lamphear, B. J., Kirchweger, R., Skern, T., and Rhoads, R. E.. 1995. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases: implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 270:21975–21983
  • Lamphear, B. J., Yan, R., Yang, F., Waters, D., Liebig, H. D., Klump, H., Kuechler, E., Skern, T., and Rhoads, R. E.. 1993. Mapping of the cleavage site in protein synthesis initiation factor eIF-4γ of the 2A proteases from human coxsackievirus and rhinovirus. J. Biol. Chem. 268:19200–19203
  • Levy-Strumpf, N., Deiss, L. P., Berissi, H., and Kimchi, A.. 1997. DAP-5, a novel homolog of eukaryotic translation initiation factor 4G isolated as a putative modulator of gamma interferon-induced programmed cell death. Mol. Cell. Biol. 17:1615–1625
  • Li, Q., Imataka, H., Morino, S., Rogers, G. W.Jr., Richter-Cook, N. J., Merrick, W. C., and Sonenberg, N.. 1999. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol. Cell. Biol. 19:7336–7346
  • Mader, S., Lee, H., Pause, A., and Sonenberg, N.. 1995. The translation initiation factor eIF4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15:4990–4997
  • Merrick, W. C., and Hershey, J. W. B.. 1996. The pathway and mechanism of eukaryotic protein synthesis Translational control. Hershey, J., Mathews, M., and Sonenberg, N. 31–70 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Morley, S. J., Curtis, P. S., and Pain, V. M.. 1997. eIF4G: translation's mystery factor begins to yield its secrets. RNA 3:1085–1104
  • Neff, C. L., and Sachs, A. B.. 1999. Eukaryotic translation initiation factors 4G and 4A from Saccharomyces cerevisiae interact physically and functionally. Mol. Cell. Biol. 19:5557–5564
  • Pain, V. M.. 1996. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 236:747–771
  • Pestova, T. V., Hellen, C. U. T., and Shatsky, I. N.. 1996. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell. Biol. 16:6859–6869
  • Pestova, T. V., Shatsky, I. N., and Hellen, C. U. T.. 1996. Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol. Cell. Biol. 16:6870–6878
  • Pestova, T. V., Borukhov, S. I., and Hellen, C. U. T.. 1998. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394:854–859
  • Pyronnet, S., Imataka, H., Gingras, A.-C., Fukunaga, R., Hunter, T., and Sonenberg, N.. 1999. Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E. EMBO J. 18:270–279
  • Sachs, A. B., Sarnow, P., and Hentze, M. W.. 1997. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89:831–838
  • Sonenberg, N.. 1996. mRNA 5′ cap-binding protein eIF4E and control of cell growth Translational control. Hershey, J., Mathews, M., and Sonenberg, N. 271–294 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Waskiewicz, A. J., Flynn, A., Proud, C. G., and Cooper, J. A.. 1997. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16:1909–1920
  • Waskiewicz, A. J., Johnson, J. C., Penn, B., Mahalingam, M., Kimball, S. R., and Cooper, J. A.. 1999. Phosphorylation of the cap-binding protein eIF4E by the protein kinase Mnk1 in vivo. Mol. Cell. Biol. 19:1871–1880
  • Yamanaka, S., Poksay, K. S., Arnold, K. S., and Innerarity, T. L.. 1997. A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme. Genes Dev. 11:321–333
  • Yan, R., Rychlik, W., Etchsion, D., and Rhoads, R. E.. 1992. Amino acid sequence of the human protein synthesis initiation factor eIF-4γ. J. Biol. Chem. 267:23226–23231

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.