33
Views
264
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Cyclin D1 Is Required for Transformation by Activated Neu and Is Induced through an E2F-Dependent Signaling Pathway

, , , , , , , , , , , & show all
Pages 672-683 | Received 16 Jun 1999, Accepted 11 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Albanese, C., Johnson, J., Watanabe, G., Eklund, N., Vu, D., Arnold, A., and Pestell, R. G.. 1995. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270:23589–23597
  • Alberts, A. S., Geneste, O., and Treisman, R.. 1998. Activation of SRF-regulated chromosomal templates by Rho-family GTPases requires a signal that also induces H4 hyperacetylation. Cell 92:475–487
  • Alessi, D. R., Cuenda, A., Cohen, P., Dudley, D. T., and Saltiel, A. R.. 1995. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270:27489–27494
  • Alroy, I., Soussan, L., Seger, R., and Yarden, Y.. 1999. Neu differentiation factor stimulates phosphorylation and activation of the Sp1 transcription factor. Mol. Cell. Biol. 19:1961–1972
  • Amundadottir, L. T., and Leder, P.. 1998. Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene 16:737–746
  • Ashton, A. W., Watanabe, G., Albanese, C., Harrington, E. O., Ware, J. A., and Pestell, R. G.. 1999. Protein kinase Cδ inhibition of S-phase transition in capillary endothelial cells involves the cyclin dependent kinase inhibitor p27Kip1. J. Biol. Chem. 274:20805–20811
  • Bargmann, C. I., Hung, M. C., and Weinberg, R. A.. 1986. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45:649–657
  • Bartkova, J., Lukas, J., Muller, H., Lutzhoft, D., Strauss, M., and Bartek, J.. 1994. Cyclin D1 protein expression and function in human breast cancer. Int. J. Cancer 57:351–361
  • Ben-Levy, R., Paterson, H. F., Marshall, C. J., and Yarden, Y.. 1994. A single autophosphorylation site confers oncogenicity to the Neu/ErbB-2 receptor and enables coupling to the MAP-kinase pathway. EMBO J. 13:3302–3311
  • Bodrug, S. E., Warner, B. J., Bath, M. L., Lindeman, G. J., Harris, A. W., and Adams, J. M.. 1994. Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J. 13:2124–2130
  • Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., Zhao, Y., Albanese, C., Pestell, R. G., and Darnell, J. E. J.. 1999. Stat3 as an Oncogene. Cell 98:295–303
  • Byeon, I.-J. L., Li, J., Ericson, K., Selby, T. L., Tevelev, A., Kim, H.-J., O'Maille, P., and Tsai, M.-D.. 1998. Tumor suppressor p16Ink4a: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol. Cell 1:421–431
  • Caceres, A., Binder, L. I., Payne, M. R., Bender, P., Rebhun, L., and Steward, O.. 1983. Differential subcellular localization of tubulin and the microtubule-associated protein MAP2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies. J. Neurosci. 4:394–410
  • Chen, X., Azizkhan, J. C., and Lee, D. C.. 1992. The binding of transcription factor Sp1 to multiple sites is required for maximal expression from the rat transforming growth factor alpha promoter. Oncogene 7:1805–1815
  • Chou, M. M., and Blenis, J.. 1996. The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Rac1. Cell 85:573–583
  • Clark, G. J., Cox, A. D., Graham, S. M., and Der, C. J.. 1995. Biological assays for Ras transformation. Methods Enzymol. 255:395–412
  • Cowley, S., Paterson, H., Kemp, P., and Marshall, C. J.. 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852
  • Dickens, M., Rogers, J. S., Cavanagh, J., Raitano, A., Xia, Z., Halpern, J. R., Greenberg, M. E., Sawyers, C. L., and Davis, R. J.. 1997. A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277:693–696
  • Diehl, J. A., and Sherr, C. J.. 1997. A dominant negative cyclin D1 mutant prevents nuclear import of cyclin-dependent kinase 4 (CDK4) and its phosphorylation of CDK-activating kinase. Mol. Cell. Biol. 17:7362–7374
  • Diehl, J. A., Zindy, F., and Sherr, C. J.. 1997. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 11:957–972
  • Earp, H. S., Dawson, T. L., Li, X., and Yu, H.. 1995. Heterodimerization and functional interaction between EGF receptor family members: a new signaling paradigm with implications for breast cancer research. Breast Cancer Res. Treat. 35:115–132
  • Flemington, E. K., Speck, S. H., and Kaelin, W. G. J.. 1993. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl. Acad. Sci. USA 90:6914–6918
  • Galbiati, F., Volonte, D., Engelman, J. A., Watanabe, G., Burk, R., Pestell, R. G., and Lisanti, M. P.. 1998. Targeted Down-regulation of caveolin-1 is sufficient to drive cell transformation and activate the p42/p44 MAP kinase cascade. EMBO J. 17:6633–6648
  • Guy, C. T., Cardiff, R. D., and Muller, W. J.. 1996. Activated neu induces rapid tumor progression. J. Biol. Chem. 271:7673–7678
  • Guy, C. T., Webster, M. A., Schaller, M., Parson, T. J., Cardiff, R. D., and Muller, W. J.. 1992. Expression of the neu proto-oncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. USA 89:10578–10582
  • Hirai, H., and Sherr, C.. 1996. Interaction of D-type cyclins with a novel Myb-like transcription factor, DMP1. Mol. Cell. Biol. 16:6457–6467
  • Janes, P. W., Daly, R. J., deFazio, A., and Sutherland, R. L.. 1994. Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene 9:3601–3608
  • Jardines, L., Weiss, M., Fowble, B., and Greene, M.. 1993. neu (c-erbB-2/HER2) and the epidermal growth factor receptor (EGFR) in breast cancer. Pathobiology 61:268–282
  • Joyce, D., Bouzahzah, B., Fu, M., D'Amico, M., Albanese, C., Steer, J., Klein, J. U., Lee, R. J., Segal, J. D., Westwick, J. K., Der, C. J., and Pestell, R. G.. 1999. Integration of Rac-dependent regulation of cyclin D1 transcription through an NF-kB-dependent pathway. J. Biol. Chem. 274:25245–25249
  • Karlseder, J., Rotheneder, H., and Wintersberger, E.. 1996. Interaction of Sp1 with growth- and cell cycle-regulated transcription factor E2F. Mol. Cell. Biol. 16:1659–1667
  • Lacroix, H., Iglehart, J. D., Skinner, M. A., and Kraus, M. H.. 1989. Overexpression of erbB-2 or EGF-receptor proteins present in early stage mammary carcinoma is detected simultaneously in matched primary tumors and regional metastasis. Oncogene 4:145–151
  • Lammie, G. A., Fantl, V., Smith, R., Schuuring, E., Brookes, S., Michalides, R., Dickson, C., Arnold, A., and Peters, G.. 1991. D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1. Oncogene 6:439–444
  • Lee, R. J., Albanese, C., Stenger, R. J., Watanabe, G., Inghirami, G., Haines, G. K.III, Webster, M., Muller, W. J., Brugge, J. S., Davis, R., and Pestell, R. G.. 1999. pp60v-src induction of cyclin D1 requires collaborative interactions between the ERK, p38 and Jun kinase pathways: a role for CREB and ATF-2 in pp60v-src signaling in breast cancer cells. J. Biol. Chem. 274:7341–7350
  • Li, R., Hannon, G. J., Beach, D., and Stillman, B.. 1996. Subcellular distribution of p21 and PCNA in normal and repair-deficient cells following DNA damage. Curr. Biol. 6:189–199
  • Liu, J.-J., Chao, J.-R., Jiang, M.-C., Ng, S.-Y., Yen, J. J.-Y., and Yang-Yen, H.-F.. 1995. Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol. Cell. Biol. 15:3654–3663
  • Lukas, J., Bartkova, J., and Bartek, J.. 1996. Convergence of mitogenic signalling cascades from diverse classes of receptors at the cyclin D–cyclin-dependent kinase–pRb-controlled G1 checkpoint. Mol. Cell. Biol. 16:6917–6925
  • Lukas, J., Bartkova, J., Rohde, M., Srauss, M., and Bartek, J.. 1995. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol. Cell. Biol. 15:2600–2611
  • Matsumura, I., Kitamura, T., Wakao, H., Tanaka, H., Hashimoto, K., Albanese, C., Downward, J., Pestell, R. G., and Kanakura, Y.. 1999. Transcriptional regulation of cyclin D1 promoter by STAT5: its involvement in cytokine-dependent growth of hematopoietic cells. EMBO J. 18:101–111
  • Miltenyi, S., Muller, W., Weichel, W., and Radbruch, A.. 1990. High gradient magnetic cell separation with MACS. Cytometry 11:231–238
  • Minden, A., Lin, A., Claret, F.-X., Abo, A., and Karin, M.. 1995. Selective activation of the JNK signalling cascade and c-jun transcriptional activity by the small GTPases RAC and Cdc42Hs. Cell 81:1147–1157
  • Muller, W. J., Sinn, E., Pattengale, P. K., Wallace, R., and Leder, P.. 1988. Single step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115
  • Musgrove, E. A., Lee, C. S., Buckley, M. F., and Sutherland, R. L.. 1994. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc. Natl. Acad. Sci. USA 91:8022–8026
  • Muthuswamy, S. K., Siegel, P. M., Dankort, D. L., Webster, M. A., and Muller, W. J.. 1994. Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity. Mol. Cell. Biol. 14:735–743
  • Nehls, M. C., Grapilon, M. L., and Brenner, D. A.. 1992. NF-I/Sp1 switch elements regulate collagen alpha 1(I) gene expression. DNA Cell. Biol. 11:443–452
  • Neuman, E., Ladha, M., Lin, N., Upton, T. M., Miller, S. J., DiRenzon, J., Pestell, R. G., Hinds, P. W., Dowdy, S. F., Brown, M., and Ewen, M. E.. 1997. Cyclin D1 stimulation of estrogen receptor transcription independent of Cdk4 activation. Mol. Cell. Biol. 17:5338–5347
  • Paulus, W., Baur, I., Boyce, F. M., Breakefield, X. O., and Reeves, S. A.. 1996. Self-contained, tetracycline-regulated retroviral vector system for gene delivery to mammalian cells. J. Virol. 70:62–67
  • Peles, E., and Yarden, Y.. 1993. Neu and its ligands: from an oncogene to neural factors. Bioessays 15:815–824
  • Pietras, R. J., Arboleda, J., Reese, D. M., Wongvipat, N., Pegram, M. D., Ramos, L., Gorman, C. M., Parker, M. G., Sliwkowski, M. X., and Slamon, D. J.. 1995. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10:2435–2446
  • Pinkas-Kramarski, R., Soussan, L., Waterman, H., Levkowitz, G., Alroy, I., Klapper, L., Lavi, S., Seger, R., Ratzkin, B. J., Sela, M., and Yarden, Y.. 1996. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 15:2452–2467
  • Proud, C. G.. 1996. p70 S6 kinase: an enigma with variations. Trends Biochem. Sci. 21:181–185
  • Qian, X., Dougall, W. C., Fei, Z., and Greene, M. I.. 1995. Intermolecular association and trans-phosphorylation of different neu-kinase forms permit SH2-dependent signaling and oncogenic transformation. Oncogene 10:211–219
  • Qiu, R. G., Chen, J., Kirn, D., McCormick, F., and Symons, M.. 1995. An essential role for Rac in Ras transformation. Nature 374:457–459
  • Qiu, R. G., Chen, J., McCormick, F., and Symons, M.. 1995. A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. USA 92:11781–11785
  • Resnitzky, D., and Reed, S. I.. 1995. Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Mol. Cell. Biol. 15:3463–3469
  • Scherer, P. E., Lewis, R. Y., Volonte, D., Engelman, J. A., Galbiati, F., Couet, J., Kohtz, D. S., van Donselaar, E., Peters, P., and Lisanti, M. P.. 1997. Cell-type and tissue-specific expression of caveolin-2: caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272:29337–29346
  • Schuuring, E., Verhoeven, E., Mooi, W. J., and Michalides, R. J.. 1992. Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. Oncogene 7:355–361
  • Sherr, C. J.. 1996. Cancer cell cycles. Science 274:1672–1677
  • Shin, T. H., Paterson, A. J., Grant, J. H. 3., Meluch, A. A., and Kudlow, J. E.. 1992. 5-Azacytidine treatment of HA-A melanoma cells induces Sp1 activity and concomitant transforming growth factor alpha expression. Mol. Cell. Biol. 12:3998–4006
  • Sicinski, P., Donaher, J. L., Parker, S. B., Li, T., Fazeli, A., Gardner, H., Haslam, S. Z., Bronson, R. T., Elledge, S. J., and Weinberg, R. A.. 1995. Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630
  • Siebenkotten, G., Behrens-Jung, U., Miltenyi, S., Petry, K., and Radbruch, A.. 1998. Employing surface markers for the selection of transfected cells Cell separation methods and applications. Recktenwald, D., and Radbruch, A. 271–281 Marcel Dekker, New York, N.Y
  • Siegel, P. M., Dankort, D. L., Hardy, W. R., and Muller, W. J.. 1994. Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol. Cell. Biol. 14:7068–7077
  • Siegel, P. M., Ryan, E. D., Cardiff, R. D., and Muller, W. J.. 1999. Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J. 18:2149–2164
  • Sif, S., and Gilmore, T. D.. 1994. Interaction of the v-Rel oncoprotein with cellular transcription factor Sp1. J. Virol. 68:7131–7138
  • Slamon, D. J., Clark, G. M., Wong, S. G., Levin, W. J., Ullrich, A., and McGuire, W. L.. 1987. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182
  • Solomon, M. J., Larsen, P. L., and Varshavsky, A.. 1988. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53:937–947
  • Tao, Y., Kassatly, R. F., Cress, W. D., and Horowitz, J. M.. 1997. Subunit composition determines E2F DNA-binding site specificity. Mol. Cell. Biol. 17:6994–7007
  • Van Aelst, L., and D'Souza-Schorey, C.. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322
  • Wallasch, C., Weiss, F. U., Niederfellner, G., Jallal, B., Issing, W., and Ullrich, A.. 1995. Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J. 14:4267–4275
  • Wang, T. C., Cardiff, R. D., Zukerberg, L., Lees, E., Arnold, A., and Schmidt, E. V.. 1994. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671
  • Watanabe, G., Albanese, C., Lee, R. J., Reutens, A., Vairo, G., Henglein, B., and Pestell, R. G.. 1998. Inhibition of cyclin D-kinase activity is associated with E2F-mediated inhibition of cyclin D1 promoter activity through E2F and Sp1. Mol. Cell. Biol. 18:3212–3222
  • Watanabe, G., Howe, A., Lee, R. J., Albanese, C., Shu, I.-W., Karnezis, A., Zon, L., Kyriakis, J., Rundell, K., and Pestell, R. G.. 1996. Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc. Natl. Acad. Sci. USA 93:12861–12866
  • Watanabe, G., Lee, R. J., Albanese, C., Rainey, W. E., Batlle, D., and Pestell, R. G.. 1996. Angiotensin II (AII) activation of cyclin D1-dependent kinase activity. J. Biol. Chem. 271:22570–22577
  • Weinberg, R. A.. 1996. E2F and cell proliferation: a world turned upside down. Cell 85:457–459
  • Weinberg, R. A.. 1995. The retinoblastoma protein and cell cycle control. Cell 81:323–330
  • Weinstat-Saslow, D., Merino, M. J., Manrow, R. E., Lawrence, J. A., Bluth, R. F., Wittenbel, K. D., Simpson, J. F., Page, D. L., and Steeg, P. S.. 1995. Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat. Med. 1:1257–1259
  • Westwick, J. K., Lambert, Q. T., Clark, G. J., Symons, M., Van Aelst, L., Pestell, R. G., and Der, C. J.. 1997. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17:1324–1335
  • Wymann, M. P., Bulgarelli-Leva, G., Zvelebil, M. J., Pirola, L., Vanhaesebroeck, B., Waterfield, M. D., and Panayotou, G.. 1996. Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol. Cell. Biol. 16:1722–1733
  • Xie, Y., Li, K., and Hung, M.-C.. 1995. Tyrosine phosphorylation of Shc proteins and formation of Shc/Grb2 complex correlate to the transformation of NIH3T3 cells mediated by the point-mutation activated neu. Oncogene 10:2409–2413
  • Xiong, W., Pestell, R. G., and Rosner, M. R.. 1997. Role of cyclins in neuronal differentiation of immortalized hippocampal cells. Mol. Cell. Biol. 17:6585–6597
  • Xu, G., Livingston, D. M., and Krek, W.. 1995. Multiple members of the E2F transcription factor family are the products of oncogenes. Proc. Natl. Acad. Sci. USA 92:1357–1361
  • Ye, J., Xu, R. H., Taylor-Papadimitriou, J., and Pitha, P. M.. 1996. Sp1 binding plays a critical role in Erb-B2- and v-ras-mediated downregulation of α2-integrin expression in human mammary epithelial cells. Mol. Cell. Biol. 16:6178–6189
  • Zerfass-Thome, K., Schulze, A., Zwerschke, W., Vogt, B., Helin, K., Bartek, J., Henglein, B., and Jansen-Durr, P.. 1997. p27KIP1 blocks cyclin E-dependent transactivation of cyclin A gene expression. Mol. Cell. Biol. 17:407–415
  • Zwijsen, R. M. L., Klompmaker, R., Wientjens, E. B. H. G. M., Kristel, P. M. P., van der Burg, B., and Michalides, R. J. A. M.. 1996. Cyclin D1 triggers autonomous growth of breast cancer cells by governing cell cycle exit. Mol. Cell. Biol. 16:2554–2560

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.